BEAUTY PHYSICS

Outline:

- introduction (for non-experts);
- Selected results;

- beauty physics in the LHC era;
- beauty physics in Poland;
- > summary.

Symposium on Physics of Elementary Interactions in the LHC Era; April 21-22, 2008, Warsaw

FLAVOR IN THE STANDARD MODEL

- What is flavor? Why three families?
- > What determines the V_{ii} and the mass pattern?
- How antimatter disappeared in the Universe?

Long-term step-by-step experimental approach in flavor physics needed to address these grand questions.

BEAUTY IS A SPECIAL GIFT FROM NATURE

BEAUTY & CP VIOLATION (CPV)

С

CP-transformation: charge conjugation (C) & mirror reflection (P)

- □ **CP-SYMMETRY:** physical processes in nature occur in precisely the same manner if all particles were converted to their antimatter opposites using the **CP** transformation.
- 1964: CP VIOLATION discovered in K_L decays
 H. Christenson, J. W. Cronin, V. L. Fitch,
 R. Turlay, Phys. Rev. Lett. 83, 138 (1964)

 $N(K_{L}^{0} \rightarrow \pi^{-}e^{+}v_{e}) > N(K_{L}^{0} \rightarrow \pi^{+}e^{-}\overline{v}_{e})$

asymmetry: 0.2%÷0.3%

absolute difference between matter and antimatter!

1972: CPV in the SM requires 3 quark families

M. Kobayashi, T. Maskawa, Progr.Theor. Phys. 49, 652 (1973)

1977: b quark discovered at FNAL

LARGE CP-ASYMMETRIES EXPECTED IN THE BEAUTY SECTOR

BEAUTY	FACTORIES
ENERGY FRONTIER	LUMINOSITY FRONTIER
$hh \rightarrow \overline{b}b + X$	$e^+e^- \rightarrow \Upsilon(4S) \rightarrow \overline{B}B$
$\overline{b}/b \Rightarrow B^0 / \ \overline{B}{}^0, B^{\pm}, B_s, B_c, \Lambda_b,$	$\Gamma(\Upsilon(4S) \rightarrow \overline{B}B) > 96\%; B = B^0, B^+$
beauty-factory	$\sigma(\overline{B}B)/\sigma_{tot} \sim 0.25$ B-factory
LHC 10 ⁵ ÷10 ⁵ 5b/s; o(5b)/ o _{inel} ~ 0.006 ATLAS CMS general purpose experiments; beauty physics at the beginning of LHC operation (L~10 ³³ /cm ² /s) LHCb – dedicated beauty physics exp. optimized @ L=2×10 ³² /cm ² /s	$\begin{aligned} & \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$

HIGHLIGHTS & HOT TOPICS

selected out of > 500 papers

OBSERVATION OF CP VIOLATION IN $B^0{\rightarrow}J/\psi K^0$

 $dN/d\Delta t(B^0 \rightarrow J/\psi K^0)$

BEAUTY, CPV & THE STANDARD MODEL

\Box V_{CKM} -Cabibbo-Kobayashi-Maskawa matrix

contains information on the strength of flavor-changing weak decays

$$\begin{bmatrix} \mathbf{V}_{ud} & \mathbf{V}_{us} & \mathbf{V}_{ub} \\ \mathbf{V}_{cd} & \mathbf{V}_{cs} & \mathbf{V}_{cb} \\ \mathbf{V}_{td} & \mathbf{V}_{ts} & \mathbf{V}_{tb} \end{bmatrix} V_{ub} = |V_{ub}| e^{-i\gamma} \quad \text{unitarity condition:} \\ V_{ub} = |V_{td}| e^{-i\beta}$$

• sides of the UNITARITY TRIANGLE (UT) can be determined from decay rates

 angles of UT can be extracted from CP-asymmetries

for
$$B^0 \rightarrow J/\psi K^0$$
: $S = sin(2\beta)$

Makoto Kobayashi receiving the EPS prize

Manchester, July 2007

Kobayashi-Maskawa model of CPV is now a tested theory

VERIFICATION OF THE UNITARITY CONDITION \Rightarrow FUNDAMENTAL TEST OF THE SM

NEW PHYSICS SEARCHES

CURRENT B-FACTORIES STUDY TOP PHYSICS !

 $V_{ud} V_{us} V_{ub}$

 $\mathsf{V}_{\mathsf{cd}} \; \mathsf{V}_{\mathsf{cs}} \; \mathsf{V}_{\mathsf{cb}}$

CDF & D0 @ TEVATRON

⁴⁰⁰ another example: B decays through penguin loops

coupling (including CP-violating phase) at

luminosity frontier: Belle, BaBar

If new physics at O(1)TeV... \Rightarrow It is plausible to expect its effects in B decays.

 $\mathsf{K}^0_{\mathrm{S}}$

 $J/\psi K_{\rm S}^0$

NEW PHYSICS SEARCHES IN b \rightarrow s TRANSITIONS

$B \rightarrow K\pi$ puzzle

HINTS OF NEW PHYSICS IN B_s ?

first evidence: 2006 CDF & D0 @ TEVATRON mixing rate: $\Delta m_s = 17.77 \pm 0.12 \text{ ps}^{-1}$

Consistent with indirect measurements from other constraints on CKM elements: $\Delta m_s = 18.6 \pm 2.3 \text{ ps}^{-1}$

 $A_{CP}(\Delta t) \Rightarrow S_{J/\psi K^0} \Rightarrow \arg(V_{td}) \qquad A_{CP}(\Delta t) \Rightarrow S_{J/\psi \varphi} \equiv \sin(2\beta_s) \Rightarrow \arg(V_{ts}) \stackrel{\text{SM}}{\cong} 0$

Combined analysis of the available B_s measurements $\Rightarrow \arg(V_{ts}) \neq 0 > 3\sigma$

M. Bona et al. (UTfit Colab.), arXiv:0803.0659 [hep-ph] (March 2008)

BEAUTY IN THE LHC ERA

□ If new physics found at LHC

- \Rightarrow the effects in B/D/K/ τ decays;
- \rightarrow flavour structure of new physics?
- \rightarrow CP violation in new physics?

Otherwise...

 \Rightarrow Search for deviations from SM in flavor physics will be one of the best ways to find new physics.

22.04.2008

TOWARDS SuperBelle

Polarization measurements in $B{\rightarrow}\phi K^{*}$

The needed decay modes & techniques established at B-factories

BEAUTY IN POLAND

only current activities in dedicated beauty experiments

LHCD – Large Hadron Collider beauty experiment SPD/PS HCAL M3 T3 RICH2 ECAL M1 Study of CP violation for B and B_s mesons. Search for rare B i B_s decays. Precision measurements to find the effects of **New Physics** Polish teams in LHCb Krakow – IFJ PAN (G. Polok) 10m 15m 20m and WFilS AGH (B.Muryn) Warsaw – IPJ (M. Szczekowski)

Outer Trackei

Contribution (from 1999)

- Design and production of Outer Tracker
- A system for monitoring of OT layers position
- "Timing and Fast Control" for DAQ
- Development of trigger algorithms
- Simulation and reconstruction software
- Tools for data analysis

Construction of Outer Tracker

Production of panels

LHCb

A straw

Polish contribution

- Prototypes of OT module
- Technology of production
- Production of panels (1000 m²)
- Production of modules
- Design of readout electronics
- Design of OT mechanical support
- Position monitoring system

Present status

- OT installation finished
- Connection of electronics in final phase
- Integration with central DAQ system advanced -detection of cosmic rays.

Outer Tracker in experimental cavern

SUMMARY

The flavor sector of the Standard Model passed fundamental tests;
 Kobayashi-Maskawa mechanism is a dominant source of CP violation.
 (but we know this is not enough)

□ Yet there are several measurements that are uncomfortable for the Standard Model:

- "B \rightarrow K π puzzle";
- $A_{CP}(\Delta t)$ (and polarization) in $b \rightarrow s$;
- constraints on β_s from B_s decays;
- "V_{ub} tension";

 \Rightarrow interesting questions to the next generation beauty experiments.

Comprehensive and detailed studies of beauty will remain crucial in the LHC era.