Excitonic Fock-Darwin spectrum of a single quantum dot

A.Babinski¹, M. Potemski², S Raymond³, J.Lapointe³, Z. Wasilewski³, J. M. Baranowski¹

¹Institute of Experimental Physics, Warsaw University, Warsaw, Poland,

² Grenoble High Magnetic Field Laboratory, CNRS, France,

³ Institute for Microstructural Sciences, NRC Canada, Ottawa, Ontario, K1A 0R6, Canada

splitting

eman

15

10

 $P_4 - P_2$

 $P_{A}-P_{A}$

Ο

Investigated sample is *mesa-patterned* to limit the number of investigated dots. Laser excitation (Ar⁺ laser, $\lambda = 514.5$ nm) is delivered using a single-mode

The reduced electron-hole effective mass: $\mu^* = 0.057 \pm 0.0005 \ m_0,$ the zero-field splitting $\delta = 5.5 \pm 0.5$ meV,

The emission from the *s*-, *p*-, and *d*-shells of a single dot as a function of excitation power at T=4.2K in zero magnetic field. The spectra are offset for clarity.

$$\Delta E'(B) = E_{\Delta} + \sqrt{\delta^2 + (\hbar \varpi_c)^2}$$

The luminescence from the *s*-shell and *p*-shell of a single QDs in magnetic field. Excitation power density is approx. 35W/cm².

Energies of the S_2 , P_1 , P_4 , D_1 and D_2 emission lines plotted against magnetic field.

Symbols give the experimental data.

Calculated single-particle FD spectrum is shown with dotted lines.

Solid lines - the excitonic FD spectrum

(modified by electron-electron interaction and zero-field splitting)

Modified single-particle Fock-Darwin spectrum well describes the emission from a single quantum dot in magnetic field