u T

Proceedings of the XXI International School of Semiconducting Compounds, Jaszowiec 1992

HYDROSTATIC PRESSURE SPECTROSCOPY OF THE VANADIUM LUMINESCENCE IN GaAs

A. WYSMOLEK, R. BOŻEK, A. BABIŃSKI AND A.M. HENNEL

Institute of Experimental Physics, Warsaw University Hoża 69, 00-681 Warszawa, Poland

We report luminescence measurements of the intracenter transition ${}^{3}T_{2} \rightarrow {}^{3}A_{2}$ of the V³⁺(3d²) charge state in semi-insulating GaAs under hydrostatic pressure up to 0.8 GPa at liquid helium temperature. The hydrostatic pressure coefficient of the zero-phonon line is found to be equal to $6.9 \pm 0.2 \text{ meV/GPa}$. This result enables us to determine the Huang-Rhys parameter, which characterizes the coupling to the symmetric mode of vibration, as $S_{A} = 1.4 \pm 0.1$. Using this parameter, computer simulation leading to a reconstruction of the shape of both luminescence and corresponding absorption spectra were performed.

PACS numbers: 71.55.Eq, 78.55.Cr

1. Introduction

Optical absorption and luminescence bands in GaAs at 0.74 eV corresponding to ${}^{3}A_{2} \leftrightarrow {}^{3}T_{2}$ transitions of the V³⁺(3d²) charge state crystals have been investigated for many years (see for example review articles [1, 2]). The results of several experiments were analysed in terms of a dynamical Jahn-Teller effect with the ε -mode existing in the excited ${}^{3}T_{2}$ state [3-7]. The obtained values of the Huang-Rhys parameter $S_{E} = E_{\rm JT}/\hbar\omega_{E}$ (where $E_{\rm JT}$ is the Jahn-Teller energy and $\hbar\omega_{E}$ — the phonon energy) vary between 3.4 and 4. It was also shown [8] that in order to explain the total shape of luminescence and absorption bands, an interaction with the symmetric α -mode of vibrations should also be taken into account.

The lack of any effect of hydrostatic pressure up to 1 GPa on the transport properties of p-type GaAs:V [9] suggests a minor influence of the α -mode on the ground ${}^{3}A_{2}$ state (degenerate with the GaAs valence band). The parameter S_{A} describing the interaction of the α -mode with the excited ${}^{3}T_{2}$ state can be thus obtained by a moment analysis of the luminescence or absorption bands [8] or from the hydrostatic pressure coefficient of one of these bands. This pressure coefficient is known from a uniaxial stress experiment [3], but with a significant experimental error. This paper presents hydrostatic pressure measurements of the vanadium luminescence band which gave a much more accurate value of the pressure coefficient and, subsequently the S_A parameter. This result and the ε -mode Jahn-Teller data from literature make it possible to reproduce the shape of both luminescence and absorption spectra

2. Experimental

Vanadium doped, semi-insulating GaAs crystals were prepared by the liquid encapsulated Czochralski (LEC) technique with a vanadium concentration of $7 \div 8 \times 10^{16}$ cm⁻³ [10]. Zero pressure luminescence was measured in a CF1204 (Oxford) cryostat. For pressure investigations samples were placed in a high pressure optical cell with benzine as the transmitting medium. The cell with a sample was mounted in the exchange helium gas cryostat and cooled to low temperatures. Hydrostatic pressure up to 0.8 GPa was measured with a calibrated InSb manometer. Photoluminescence (PL) was excited by the 488 nm line of an Ar ion laser with power density around 1 W/cm². PL was analysed with a SPEX 500M monochromator equipped with a North Coast Optics Ge photodiode or cooled PbS detector (Hamamatsu).

3. Results and discussion

A typical low-temperature (4 K) atmospheric pressure photoluminescence spectrum related to the ${}^{3}T_{2} \rightarrow {}^{3}A_{2}$ transition is shown in Fig. 1. It consists of a strong zero-phonon line (ZPL) A with accompanying hot line B (see inset)

Fig. 1. Luminescence (a) and absorption (b) bands corresponding to ${}^{3}A_{2} \leftrightarrow {}^{3}T_{2}$ transitions of the V³⁺(3d²) charge state in GaAs at about 4 K (solid lines). Theoretical Poisson shapes (star lines) were calculated for the parameters $S_{E} = 3.9$, $\hbar\omega_{E} = 8.1$ meV; $S_{A} = 1.4$, $\hbar\omega_{E} = 31.5$ meV. Inset — luminescence zero-phonon lines A and B.

2

Fig. 2. Shift of the luminescence zero-phonon line A under hydrostatic pressure at about 4 K (10 K for 0.62 GPa). Inset — a linear fit to the experimental data with a pressure coefficient equal to 6.9 ± 0.2 meV/GPa.

followed by phonon replicas. The energy shift of the A line with increasing pressure is presented in Fig. 2. With the exception of the measurements at 0.62 GPa, all photoluminescence data were collected at about 4 K. The low intensity shoulders of the main line are due to axial stresses induced on the GaAs surface by frozen benzene. The measured positions of line A were plotted versus the stress value. A straight line fit to the data gave the hydrostatic pressure coefficient of the ZPL being equal to $6.9 \pm 0.2 \text{ meV/GPa}$. From this value it is easy to calculate the symmetric vibration energy $E_A = 43 \pm 3 \text{ meV}$. Taking the phonon energy $\hbar\omega_A = 31.5 \text{ meV}$ from the experimental spectra one obtains the Huang-Rhys parameter being equal to $S_A = E_A/\hbar\omega_A = 1.4 \pm 0.1$.

Computer simulation taking into account optical transitions involving two phonons ($\hbar\omega_E$ and $\hbar\omega_A$) with the ε -mode Jahn-Teller effect at the 3T_2 state known from other experiments [3-7] and the obtained value of the S_A parameter lead to a reconstruction of the shape of both luminescence and absorption bands (see Fig. 1).

Acknowledgment

This work was supported by the Committee for Scientific Research grant No. 2 0179 91 01.

References

- [1] B. Clerjaud, J. Phys. C Solid State Phys. 18, 3615 (1985).
- [2] A.M. Hennel, in: Imperfections in III-V Materials, Ed. E. Weber; in series Semiconductors and Semimetals, Eds. R.K. Willardson, A.C. Beer, Vol. 38, Academic Press, in press.

[3] G. Armelles, J. Barrau, D. Thébaut, J. Phys. C, Solid State Phys. 17, 6883 (1984).

nį

- [4] G. Armelles, J. Barrau, D. Thébaut, M. Brousseau, J. de Phys. 45, 1795 (1984).
- [5] G. Aszodi, U. Kaufmann, Phys. Rev. B 32, 7108 (1985).
- [6] K.J. Nash, M.S. Skolnik, B. Cockayne, W.R. MacEwan, J. Phys. C, Solid State Phys. 17, 6199 (1984).
- [7] F.G. Anderson, F.S. Ham, in: Defects in Semiconductors, Ed. G. Ferenczi, Material Science Forum 38-41, 305 (1989).
- [8] A. Wysmołek, Z. Liro, A.M. Hennel, in: Defects in Semiconductors, Ed.G. Ferenczi, Material Science Forum 38-41, 827 (1989).
- [9] D. Wasik, A.M. Hennel, unpublished.
- [10] A.M. Hennel, C.D. Brandt, K.Y. Ko, J. Lagowski, H.C. Gatos, J. Appl. Phys. 62, 163 (1987).