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Zero g factors and nonzero orbital momenta in self-assembled quantum dots
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We point out using an empirical tight-binding approach that the ground state of holes in InAs/GaAs
self-assembled quantum dots carries nonzero orbital momentum. The spin and orbital motions of the hole state
are found to have opposite contributions to the hole g factor, leading to zero g factors of holes and then
excitons in dots of high aspect ratio. The nonzero envelope orbital momenta of the holes are also shown to
account for anisotropic circular polarization of exciton emission and nonlinear Zeeman splittings in high
magnetic fields. Our theory well explains recent experiments and indicates the possibility of engineering

magnetic splitting by tuning the electric confinement in nanostructures.
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As one of the most important magnetic properties of a
system, the g factor measures the Zeeman splitting of an
electron state in a magnetic field and is determined by both
the spin and orbital motion of the electron. In semiconduc-
tors like InAs and GaAs, the orbital motion of localized p
orbitals is strongly coupled to the spin, and the resulting
valence-band states can be classified by the corresponding
total angular momentum. Heavy and light holes, identified
by their different angular momenta, have distinctive g fac-
tors, i.e., gj,=—6k and gj,=—2k where « is an empirical
parameter in the k-p theory.!

In addition to the orbital motion of localized atomic or-
bitals, electrons in nanostructures like self-assembled quan-
tum dots” can also acquire orbital magnetic moment due to
the motion around the circumference of the structures. How-
ever, it is often taken for granted that the ground state of a
single exciton in these artificial atoms does not carry any
nonzero orbital momenta largely because the lowest level of
a natural atom is known to always have zero orbital momen-
tum. Such ignorance of the orbital motion can greatly im-
pede the understanding of electron and hole g factors in
quantum dots.’

While it is true that the ground state of electrons in quan-
tum dots does not carry any angular momentum, we find that
the ground state of holes does carry nonzero envelope angu-
lar momenta. In the present work, we will show that the
nonzero envelope orbital momenta (NEOM) of holes is es-
sential to understand the behavior of g factors of holes and
excitons and can explain the zero exciton g factor and non-
linear Zeeman splittings observed in a recent experiment.
Moreover, we predict that the NEOM would lead to aniso-
tropic circular polarization of the exciton emission.

For the purpose of this study, we choose an sp® tight-
binding method* which has been successfully applied in fer-
romagnetic quantum wells.> The one-electron tight-binding
Hamiltonian describes an electron hopping from atomic spin
orbital (a, o) at position R to spin orbital (a’,¢”) at position
R’
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where CI{’W, (CR’.a7 ov) are creation (annihilation) operators.
The basis of the spin orbitals is chosen as
{s).lx)ly)slz s . 1xp) .y 21} The hopping matrix
elements and site energies for s and p orbitals are extended
to include second-nearest-neighbor interactions® to fit the ef-
fective masses of electrons and holes at the I' point and
conduction- and valence-band edges at both the I' and X
points exactly. Spin-orbit interaction is also incorporated.

In a magnetic field, Peierls phase factors are introduced to
transform the off-diagonal matrix elements as

H(R,R') — exp(— i%jR, A(r)dr)H(R,R’), (2)
R

where A(r) is the vector potential. The Zeeman effect is
included by adding the spin terms to the diagonal matrix
elements,

1
HR ;) Ry(py) = HRy(1, Ry() + S8 B, 3)

where g is the g factor of a bare electron. It is noted that no
additional empirical parameters like « are used for the Zee-
man effect.

The calculations of electron and hole g factors are per-
formed for a typical lens-shaped InAs/GaAs quantum dot
which is 20 nm long in diameter, on a 2 monolayer wetting
layer and has a varying height. The total number of atoms
included in the calculation is about 500 000. A Lanczos al-
gorithm is used to compute the eigenvalues and eigenvectors
of large sparse matrices generated by the tight-binding
Hamiltonian. The calculation is first performed for the strain
distribution by an atomistic valence-force-field method, fol-
lowed by an analysis of the electronic structure by the tight-
binding method.

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.75.033316

BRIEF REPORTS

0.5

5
8 .
Q  0.0r
S
on
\Q
o
g 0.5
A =Xt
0 hole
® electron
-1.0— : - L 5 .
6 7 8 9 10 11

Height of dot (a)

FIG. 1. (Color online) The Landé g factors of holes and elec-
trons, calculated as a function of the height of the lens-shaped self-
assembled InAs/GaAs quantum dots as shown in the inset. The
heights of the dots are in units of the lattice constant of GaAs.

Figure 1 plots the calculated hole and electron g factors,
g, and g,, as a function of the height of the dots. The result
exhibits a weak dependence of the electron g factor on the
height of the dots (H). However, the hole g factor is found to
increase rapidly as the height H becomes larger. The com-
bined exciton g factor, g,,=g,+g., is seen to change from
—1.47 when H=3.4 nm to 0.09 when H=6.2 nm. Hence,
the exciton g factor vanishes at a point between 10a and 11a.
In a recent magnetospectroscopy experiment of on single
InAs/GaAs quantum dots,” the exciton g factors of two
single dots were measured; one was about 3 nm high and
had g,,=-1.5 and the other was about 5 nm high and had an
almost zero exciton g factor, which nearly quantitatively
agrees with our theoretical calculation.

In the following, we will explain why the g factor of holes
and then excitons would vanish as the height of the dots
increases. Let us start with an analysis of valence-band states
in self-assembled quantum dots. Because of the influence of
the band mixing and strain field, the valence-band states in
quantum dots are much more complex than those in the con-
duction bands. In general, a hole state in quantum dots is
composed of components from the heavy (hh), light (Ik), and
split-off (si) hole bands, and the conduction bands (s). It can
be written as V=X 4, |n)+i, |n), where n
={hh,lh,sh,s}.31° If only the contribution from the Bloch
functions is taken into account, the hole g factor can then be
expressed as g,=2,g,(c,;—c,|), where g, is the g factor for
band n and c,=|(,|¥,)]>."" Considering that the ground
state of the holes is dominated by its heavy and light hole
components, we have g, =g, cin+gycimy- It gives us a
simple theory to explain why the hole g factor becomes
smaller when the proportion of the heavy hole component
decreases,'”> which has been quite successful in quantum
wells where the lateral motion of carriers is not confined.
However, in quantum dots with strong lateral confinement,
understanding of the hole g factor would nevertheless require
knowledge of the spatial distribution of the envelope func-
tions of both heavy and light hole components.

Figure 2 plots the probability density of the light (|¢,(|?)
and heavy (|¢hhT|2) hole components in the ground state of
the holes in a dot of H=6a. The expectation value of the
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FIG. 2. (Color online) Plots of light and heavy hole envelope
functions in the ground state of holes in a flat lens-shaped
InAs/GaAs quantum dot. The expectation values of the orbital mo-
mentum operator L, are labeled.

orbital momentum operator in the envelope functions of the

light and heavy hole components can be calculated by (L;)
=(iy,|x(9/ dy)—y(9/ dx)| ). Similar to the ground state of
the electrons, we find that the orbital momentum of the
dominant heavy hole component is very small ((L.)<0.01).
However, the light hole components are found to carry non-
zero angular momenta, ie., (L,)=0.99 for ¢, and (L,
=1.79 for iy,

The reason why the heavy hole component of zero angu-
lar momentum mixes with the light hole parts of nonzero
angular momenta lies in the fact that the total angular mo-
mentum, i.e., the envelope part plus the Bloch part (L.+}.),
is a good quantum number in a system with cylindrical
symmetry.®%1314 Bven if the symmetry is broken by the
shear strain, we find that the conservation of the total angular
momentum is still a good approximation.

Including the contribution from the envelope functions,
we have the overall hole g factor

gh=8n+ & 4)

where g, denotes the contribution from NEOM,

g;; = 22 <¢nT|ljz|¢nT> + <¢n1|ljz|¢nl>~ (5)

In the dot of flat shape as shown in Fig. 2, the light hole
components have a very small projection in the ground state
of holes, i.e., ¢;;=1.86% and cj, =0.41%; hence NEOM
give only a small contribution to the hole g factor. As the
light hole components take a larger proportion, the contribu-
tion from the envelope part becomes more important to the
hole g factor.

Figure 3 plots the envelope orbital momenta of the heavy

and light hole components, i.e., (¢hhT|LAZ| ) ¢y and
<¢Ith|l:z| Yy ey, and gh, as a function of the height of
dots. As the aspect ratio of the dot increases, the light hole
component is found to have a larger projection (c;,;+cy;)) in
the ground state of holes due to its stronger mixture with the
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FIG. 3. Envelope orbital momenta of the heavy and light hole
components in the ground state of holes and the corresponding
equivalent g factor calculated as a function of the height of the
lens-shaped self-assembled InAs/GaAs quantum dot as shown in
the inset of Fig. 1.

heavy hole part.'? For example, when the height of the dot
(H) changes from 6a=3.4 nm to 1la=~6.2 nm where a is
the lattice constant of GaAs, ¢y, +cy, increases from 2.0%
to 7.1%; in the meantime, the proportion of the heavy hole
part ¢y +cpy,) drops from 96.6% to 89.0%.

Corresponding to these changes, the equivalent g factor
due to NEOM, g7, becomes larger. Moreover, the heavy hole
component starts to gain noticeable NEOM when H>8a,
which gives a significant contribution to gj. For example, the
contribution from the heavy hole part alone accounts for
41% of g; when H=9a while it increases to 61% when H
=11a. When the dot is flat, we find that the contribution from
NEOM (gj) is small and the hole g factor is dominated by
that from the Bloch parts (g;). In this case, we have
lg7] < |g;| while g) <0 and gf,>0. With the increase of the
aspect ratio of the dot, g7 becomes larger because of not only
the larger proportion of the light hole component but also the
NEOM of the heavy hole parts.

As the aspect ratio of the dot increases, the contribution
from the Bloch parts (g)) is seen to become smaller while
that from the envelope orbital momenta (g;) becomes the
dominant part in the hole g factor. Because the two parts (g}
and gj) have the opposite signs, they are found to nearly
cancel each other when H=10a, which results in an almost
zero hole g factor. When the aspect ratio increases further,
|g7| becomes larger than |g}|, which leads to the change of
the sign of the overall hole g factor. At H=11a, the hole g
factor is found to become positive and nearly cancel the elec-
tron g factor, leading to an almost zero exciton g factor,
which well explains the zero exciton g factor observed in the
recent experiment.7

While the result shown in Fig. 2 may also be obtained by
the eight-band k-p method,"> we find that it is necessary to
apply the tight-binding approach for the calculation of the g
factors. The key to this issue is that the « parameter used in
the k-p theory is not well established. Even in quantum
wells, a fitting procedure is often required to reproduce the
experimental data,'® and xxx the uncertainty in its value can
be as large as 10%. In our k- p calculation, a mere 3% change
in k (from 7.68 to 7.48) can induce a change of more than
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FIG. 4. (Color online) The proportion of the heavy hole compo-
nent in the spin-up and spin-down states of the holes and the circu-
lar polarization of the exciton emission, calculated as a function of
magnetic field in a lens-shaped InAs/GaAs quantum dot.

20% in the resulting hole g factor (from 0.30 to 0.24). An-
other difficulty we encounter in the k- p calculation is that in
most cases it gives electron and hole g factors with opposite
signs,'? which is in an obvious contradiction with the experi-
ment where the electron and hole g factors are shown to have
the same sign.’

Besides the zero g factors of holes and excitons, the in-
terplay between the contributions from the Bloch and enve-
lope parts (g, and gj) can lead to many other observable
effects such as anisotropic circular polarization of the exciton
emission in a high magnetic field. Let us take the example of
the dot with height H=10a. As can be seen in Fig. 1, the
overall hole g factor nearly vanishes due to the opposite
contribution from the heavy and light hole parts. It can be
estimated that the effective g factor (including both the
Bloch parts and NEOM) for the heavy hole part is g,,~
—0.07 and for the light hole part g;,~0.08. As the magnetic
field increases, the heavy hole part of the spin-up state tends
to lower its energy because g, <O0. In the meantime, its light
hole part tends to do the opposite since g;;,>0. The compe-
tition means that the spin-up state gains more heavy hole part
while losing the light hole part as the field increases. A simi-
lar process also goes on in the spin-down state, but, ending
with the opposite dependence.

The calculated ¢, and ¢y, are plotted as a function of
the magnetic field in Fig. 4, and exhibit the predicted depen-
dence. As the intensity of the ¢* (o) transition is mainly
determined by the proportion of the heavy hole components
in the spin-up (spin-down) hole state, the polarized heavy
hole components directly lead to the anisotropic circular po-
larization of the exciton emission. The calculated degree of
circular polarization defined'” by p=(I +—1,-)/(I++1,-) is
plotted in Fig. 4, and is seen to increase with the magnetic
field. It is noted that due to the spin relaxation effect, this
phenomenon may not be well resolved when linearly polar-
ized excitation is applied. Instead, circularly polarized exci-
tation should be used for the observation of this effect.

Another observable phenomenon induced by NEOM is
nonlinear Zeeman splittings. As the spin-down state is no-
ticed to lose its heavy hole component faster than the spin-up
state gains the heavy hole component, the total projection of
the heavy hole components in the spin-up and spin-down
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hole states decreases as the magnetic field increases, which
causes the g factor of holes to change as the magnetic field
increases and leads to weak yet observable nonlinear Zeeman
splittings.”

NEOM also exist in other kinds of systems like carbon
nanotubes.'® Although the motion of carriers is not confined
in the lateral directions in quantum wells, a magnetic field
applied along the growth direction would induce lateral or-
bital motion that mixes heavy and light hole states. Such a
band mixture sometimes leads to strong nonlinear Zeeman
splitting.'® In spite of some similarities between the orbital
motion in quantum dots discussed here and that induced by
the applied magnetic field in quantum wells, the difference is
obvious: NEOM in self-assembled quantum dots are induced
by the structural confinement and hence represent an intrin-
sic property that does not depend on an external field. While
it may be argued that the mechanism leading to NEOM has
been included in previous work,'? we would like to remind
the reader that NEOM have not been explicitly studied, let
alone their effect on the g factor of holes in quantum dots.
On the contrary, it has recently been reported that the behav-
ior of the hole g factor in quantum dots can be understood in
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terms of orbital momentum quenching,'® which is proved
incorrect by our calculation.

As a result of NEOM, the light hole component in the
ground state of holes has almost zero overlap with the
ground state of electrons in a flat quantum dot; therefore, it
has little contribution to the interband transition. As the as-
pect ratio increases, AL ={iy,|L.| ) —(.|L.|¥,) starts to
deviate from 1, which partially lifts the forbidden transition.

In conclusion, we find that the hole g factor has two dis-
tinct contributions in self-assembled quantum dots, one from
the Bloch functions and the other from the nonzero orbital
momenta carried in the envelope functions of the holes. We
show that these two contributions to the hole g factor have
opposite signs and account for the zero g factors of holes and
excitons in dots of high aspect ratio. We also point out that
the nonzero orbital momenta are responsible for anisotropic
circular polarization of the exciton emission and nonlinear
Zeeman splittings.
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