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Multi-component generic dark matter

Motivations:

• Naturality

• No satisfactory single-component model
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• Two separate dark sectors, χi and χ̃i, common dark sector φ̃ and SM φ

• Stabilizing symmetry: Z2 × Z′2

A(Z2,Z
′
2) χ0(−,+) χ1(−,+)

φ̃(−,−)
Ã(Z2,Z

′
2) χ̃0(+,−) χ̃1(+,−)

φ(+,+) - SM
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We limit our-self to a model that contains three odd particles χ, χ̃ and φ̃:

A(Z2,Z
′
2) χ(−,+)

φ̃(−,−)
Ã(Z2,Z

′
2) χ̃(+,−)

φ(+,+) - SM
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φ
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gφφφ φ

χ

χ

gφχχ φ

χ̃

χ̃

gφχ̃χ̃ φ

φ̃

φ̃

gφφ̃φ̃ φ̃

χ

χ̃

gχχ̃φ̃

χχ(χ̃χ̃, φ̃φ̃)↔ φφ′ Annihilation

χχ↔ χ̃χ̃, φ̃φ̃↔ χχ(χ̃χ̃) Conversion

φ̃φ↔ χχ̃, χφ↔ χ̃φ̃, χ̃φ↔ χφ̃, Semi-annihilation

φ̃↔ χχ̃ Semi-decay

where φ, φ′ belong to the visible sector.
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Figure 1: The Feynman diagrams for annihilation, conversion, semi-annihilation, and
decay.
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dnχ

dt
= −3Hnχ − 〈σχχφφvMøl〉

(
n

2
χ − n̄

2
χ

)
annihilation

−
[
〈σχχχ̃χ̃vMøl〉

(
n

2
χ − n

2
χ̃

n̄2
χ

n̄2
χ̃

)
+ {χ̃→ φ̃}

]
conversion

−
[
〈σχφ̃χ̃φvMøl〉

(
nχnφ̃ − n̄χn̄φ̃

nχ̃

n̄χ̃

)
+ {φ̃↔ χ̃}

]
semi-annihilation

+ Γφ̃→χχ̃

(
nφ̃ − n̄φ̃

nχ

n̄χ

nχ̃

n̄χ̃

)
, semi-decay

dnχ̃

dt
=
dnχ

dt
[χ↔ χ̃],

dnφ̃

dt
= −3Hnφ̃ − 〈σ

φ̃φ̃φφ
vMøl〉

(
n

2
χ̃ − n̄

2
χ̃

)
annihilation

−
[
〈σφ̃φ̃χχvMøl〉

(
n

2
φ̃ − n

2
χ

n̄2
φ̃

n̄2
χ

)
+ {χ↔ χ̃}

]
conversion

−
[
〈σχ̃φ̃χφvMøl〉

(
nχ̃nφ̃ − n̄χ̃n̄φ̃

nχ

n̄χ

)
+ {χ↔ χ̃}

]
semi-annihilation

− Γφ̃→χχ̃

(
nφ̃ − n̄φ̃

nχ

n̄χ

nχ̃

n̄χ̃

)
semi-decay
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I: mφ̃ > mχ̃ +mχ,

II: mχ̃ > mχ +mφ̃,

III: mχ > mχ̃ +mφ̃.

mχ̃

mφ̃

II

I

mχ

III

mχ

(0, 0)

3-component

Figure 2: 2- and 3-component dark matter scenarios, we consider mχ to be fixed,
the gray region represent parameter space where the all three dark sector particles are
stable, whereas the regions I, II and III represent the 2-component scenarios with φ̃, χ̃
and χ are unstable, respectively.
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gφφφ φ

χ

χ

gφχχ φ

χ̃

χ̃

gφχ̃χ̃ φ

φ̃

φ̃

gφφ̃φ̃ φ̃

χ

χ̃

gχχ̃φ̃

α ≡ gφφφ
gSM

=
gφχχ
gSM

=
gφχ̃χ̃
gSM

, β ≡
gφφ̃φ̃
gSM

, ξ ≡
gχχ̃φ̃
gSM

.

• All the thermally averaged cross sections of the order of the electroweak scale, i.e.

〈σabcdvMøl〉 ≈
G2
F

2π
m2f2

abcd(α, β, ξ) ∼ σ0f
2
abcd(α, β, ξ),

where σ0 ≡ G2
F

2πm
2 ∼ 10−11 GeV−2 and m is the mass of dark matter candidate

which is order electroweak scale ∼ 100 GeV. fabcd(α, β, ξ) is a dimensionless
function which parametrizes the couplings of each annihilation diagrams in terms
of α, β and ξ.
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• We parameterize all the thermally average cross sections 〈σabcdvMøl〉 in terms of
fabcd(α, β, ξ):

fχχφφ′ ∼ fχ̃χ̃φφ′ ∝ α2,

fφ̃φ̃φφ′ ∝ (α+ β)β,

fχφ̃χ̃φ ∼ fχ̃φ̃χφ ∼ fχχ̃φ̃φ ∝ (α+ β)ξ,

fχφχ̃φ̃ ∼ fχ̃φχφ̃ ∼ fφ̃φχχ̃ ∝ (α+ β)ξ,

fχχχ̃χ̃ ∼ fχ̃χ̃χχ ∝ (α2 + ξ2),

fφ̃φ̃χχ ∼ fφ̃φ̃χ̃χ̃ ∝ (αβ + ξ2).

• Decay width of the φ̃ is approximately Γφ̃→χχ̃ ∼ ξ2 × O(1) GeV when the decay
processes are kinematically allowed otherwise it is zero.

• Yi(x) ≡ ni(x)
s(x) , where x ≡ m

φ̃

T

• SM is in thermal equilibrium, so Yφ(x) ∼ Ȳφ(x).
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Case-I: mφ̃∼>mχ̃ +mχ

BMP-I: mφ̃ = 300 GeV, mχ̃ = 150 GeV and mχ = 100 GeV
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Figure 3: The left, middle and right plots are for the values of parameter ξ = 0.1, 1
and 10, respectively. The values of other parameters are kept fixed α = 1 and β = 0.
Hereafter x is defined as x ≡ mφ̃/T .

• In this 2CDM scenario it is interesting to observe the decoupling of the φ̃ from
the thermal bath. Note that we consider β ≡ gφφ̃φ̃/gSM = 0 and hence there is

no direct annihilation of the φ̃φ̃ to SM fields. The only way the φ̃ may remain
in equilibrium with the thermal bath is through the semi-annihilation processes
χφ↔ φ̃χ̃ and χ̃φ↔ φ̃χ. Therefore when any of the two remaining states χ or χ̃
decouples from the equilibrium, then the φ̃ also decouples.
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Case-II: mχ̃∼>mχ +mφ̃

BMP-II: mφ̃ = 125 GeV, mχ̃ = 250 GeV and mχ = 100 GeV
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Figure 4: The left, middle and right plots are for the values of parameter ξ = 0.1, 1
and 10, respectively. The values of other parameters are kept fixed α = 1 and β = 0.

• Again, since β ≡ gφφ̃φ̃/gSM = 0 therefore there is no direct annihilation of the φ̃φ̃

to SM fields. The only way the φ̃, which is the dominant DM component, may
disappear is the semi-annihilation processes χφ↔ φ̃χ̃ and χ̃φ↔ φ̃χ. Therefore the
yield for φ̃ is very sensitive to the presence and interactions of the two remaining
states χ or χ̃.
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Figure 5: As in the previous figure, but with β = 0.1.
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Case-III: mχ∼>mχ̃ +mφ̃

BMP-III: mφ̃ = 25 GeV, mχ̃ = 50 GeV and mχ = 100 GeV
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Figure 6: The left, middle and right plots are for the values of parameter ξ = 0.1, 1
and 10, respectively. The values of other parameters are kept fixed α = 1 and β = 0.
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Figure 7: As above, but with β = 0.1.
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Three-component dark matter scenario

BMP-IV: mφ̃ = 50 GeV, mχ̃ = 75 GeV and mχ = 100 GeV
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Figure 8: The left, middle and right plots are for the values of parameter β = 0.1, 1
and 10, respectively. The values of other parameters are kept fixed α = 1 and ξ = 1.
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Three-component dark matter scenario

BMP-V: mφ̃ = 50 GeV, mχ̃ = 50 GeV and mχ = 100 GeV
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Figure 9: The left, middle and right plots are for the values of parameter β = 0.1, 1
and 10, respectively. The values of other parameters are kept fixed α = 1 and ξ = 1.
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Vector-fermion two-component dark matter

GSM ≡ SU(3)c × SU(2)L × U(1)Y GDS ≡ U(1)X

S = (1,1, 0, 2), χ = (1,1, 0, 1).

SM fields are neutral under the dark-sector gauge group GDS.

L = LSM + LDS + Lint,

where LSM is the SM Lagrangian, LDS is the dark-sector Lagrangian,

LDS =− 1

4
FXµνFµνX +

(
DµS

)∗DµS + µ2
S|S|2 − λS|S|4

+ χ̄
(
i /D −mD

)
χ− 1√

2

(
yS∗χᵀCχ+ H.c.

)
,

and Lint is the interaction Lagrangian between the SM and the dark-sector,

Lint = −κ|S|2|H|2.
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Charge conjugation symmetry C:

Xµ
C−→ −Xµ, S

C−→ S∗, χ
C−→ χc ≡ −iγ2χ

∗,

where γ2 is the gamma matrix. It is instructive to write the scalar potential for our
model,

V (H,S) = −µ2
H|H|2 + λH|H|4 − µ2

S|S|2 + λS|S|4 + κ|H|2|S|2.

T. Hambye, JHEP 0901 (2009) 028,
M. Duch, BG, M. McGarrie, JHEP 1509 (2015) 162,
S. Weinberg, Phys. Rev. Lett. 110, 24, (2013) 241301

Tree-level positivity or stability of scalar potential implies the following constraints:

λH > 0, λS > 0, κ > −2
√
λHλS
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Minimization conditions for the scalar potential:

(
2λHv

2 − 2µ2
H + κv2

x

)
v = 0,

(
2λSv

2
x − 2µ2

S + κv2
)
vx = 0,

where 〈Hᵀ〉 ≡ (0, v/
√

2) and 〈S〉 ≡ vx/
√

2 are the vevs of respective fields. We
require κ2 < 4λHλS and the values of vevs are:

v2 =
4λSµ

2
H − 2κµ2

S

4λHλS − κ2
, v2

x =
4λHµ

2
S − 2κµ2

H

4λHλS − κ2
.

We expand the Higgs doublet and the singlet around their vevs as follow:

H =
1√
2

( √
2π+

v + h+ iπ0

)
, S =

1√
2

(
vx + φ+ iσ

)
,

where π0,± and σ are the Goldstone modes and they will be gauged away in the
unitary gauge to give masses to Z,W± and X.
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The mass squared matrix for the scalar fluctuations (h, φ)

M2 =

(
2λHv

2 κvvx
κvvx 2λSv

2
x

)
.

M2 can be diagonalized by the orthogonal rotational matrix R, such that,

M2
diag ≡ R−1M2R =

(
m2
h1

0

0 m2
h2

)
, where R =

(
cosα − sinα
sinα cosα

)
,

where (h1, h2) are the two Higgs physical states in the mass eigen bases with masses
(m2

h1
,m2

h2
), defined in terms of (h, φ)

(
h1

h2

)
= R−1

(
h
φ

)
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sin 2α =
sign(λSM − λH) 2M2

12√
(M2

11 −M2
22)2 + 4(M2

12)2
, cos 2α = · · · .

There are 5 real parameters in the potential: µH, µS, λH, λS and κ. Adopting the
minimization conditions µH, µS could be replaced by v and vx. The SM vev is fixed
at v = 246.22 GeV. Using the condition Mh1 = 125.7 GeV, v2

x could be eliminated in
terms of v2, λH, κ, λS, λSM = M2

h1
/(2v2):

v2
x = v2 4λSM(λH − λSM)

4λS(λH − λSM)− κ2

Eventually there are 4 independent parameters:

(λH, κ, λS, gx),

where gx is the U(1)X coupling constant.
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• Bottom part of the plot (λH < λSM = M2
h1
/(2v2) = 0.13): the heavier Higgs is

the currently observed one.

• Upper part (λH > λSM) the lighter state is the observed one.

• White regions in the upper and lower parts are disallowed by the positivity conditions
for v2

x and M2
h2

, respectively.
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Contour plots for the vacuum expectation value of the extra scalar vx ≡
√

2〈S〉.
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Vacuum stability

V = −µ2
H|H|2 + λH|H|4 − µ2

S|S|2 + λS|S|4 + κ|S|2|H|2

2-loop running of parameters adopted

λH(Q) > 0, λS(Q) > 0, κ(Q) + 2
√
λH(Q)λS(Q) > 0
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The mass of the Higgs boson is known experimentally therefore within the SM the
initial condition for running of λH(Q) is fixed

λH(mt) = M2
h1
/(2v2) = λSM = 0.13

For VDM this is not necessarily the case:

M2
h1

= λHv
2 + λSv

2
x ±

√
λ2
Sv

4
x − 2λHλSv2v2

x + λ2
Hv

4 + κ2v2v4
x.

VDM:

• Larger initial values of λH such that λH(mt) > λSM are allowed delaying the
instability (by shifting up the scale at which λH(Q) < 0).

• Even if the initial λH is smaller than its SM value, λH(mt) < λSM , still there is a
chance to lift the instability scale if appropriate initial value of the portal coupling
κ(mt) is chosen.

β
(1)
λH

= β
SM (1)
λH

+ κ2
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After the SSB the dark fermionic sector Lagrangian can be rewritten as,

LF =
i

2

(
χ̄γµ∂µχ+ χ̄cγµ∂µχ

c
)
− mD

2

(
χ̄χ+ χ̄cχc

)
− yvx

2

(
χ̄cχ+ χ̄χc

)

− gX
2

(
χ̄γµχ− χ̄cγµχc

)
Xµ −

y

2

(
χ̄cχ+ χ̄χc

)
φ.

Mass eigenstates

ψ+ ≡
1√
2

(
χ+ χc

)
, ψ− ≡

1

i
√

2

(
χ− χc

)
,

with m± = mD ± yvx.
In the new bases we can rewrite the above dark fermionic Lagrangian as,

LF =
i

2

(
ψ̄+γ

µ∂µψ+ + ψ̄−γ
µ∂µψ−

)
− 1

2
m+ψ̄+ψ+ −

1

2
m−ψ̄−ψ−

− i

2
gX
(
ψ̄+γ

µψ− + ψ̄−γ
µψ+

)
Xµ −

y

2

(
ψ̄+ψ+ + ψ̄−ψ−

)
φ.

The dark fermionic mass eigenstates ψ± are Majorana fermions and the mass difference
between the two Majorana states (ψ±) is defined as,

∆mψ ≡ m+ −m− = 2yvx
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Note that the above Lagrangian has a discrete symmetry Z2 × Z ′2, under which
the SM fields are even whereas the dark sector fields transform as follows

Symmetry Xµ ψ+ ψ− φ
Z2 − + − +
Z ′2 − − + +

Table 1: Discrete symmetries: Z2 × Z ′2

A(Z2,Z
′
2) χ(−,+)

φ̃(−,−)
Ã(Z2,Z

′
2) χ̃(+,−)

φ(+,+) - SM

X

ψ+

ψ−

− i
2
gX
(
ψ̄+γ

µψ− + ψ̄−γµψ+

)
Xµ
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Figure 10: The vector dark matter Xµ and Majorana fermion dark matter ψ±
annihilation diagrams. Above V and (f̄)f denote the SM vector bosons (W± and Z)
and the SM (anti)fermions (quarks and leptons).
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Figure 11: Semi-annihilation diagrams for the dark particles.
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Figure 12: Dark matter conversion processes.
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dnX
dt

= −3HnX − 〈σXXφφ
′

vMøl
〉
(
n2
X − n̄2

X

)
− 〈σXψ+ψ−hi

vMøl
〉
(
nXnψ+ − n̄Xn̄ψ+

nψ−
n̄ψ−

)

− 〈σXψ−ψ+hi
vMøl

〉
(
nXnψ− − n̄Xn̄ψ−

nψ+

n̄ψ+

)
− 〈σXhiψ+ψ−

vMøl
〉n̄hi

(
nX − n̄X

nψ+nψ−
n̄ψ+n̄ψ−

)

− 〈σXXψ+ψ+
vMøl

〉
(
n2
X − n̄2

X

n2
ψ+

n̄2
ψ+

)
− 〈σXXψ−ψ−vMøl

〉
(
n2
X − n̄2

X

n2
ψ−

n̄2
ψ−

)

+ Γψ+→Xψ−

(
nψ+ − n̄ψ+

nX
n̄X

nψ−
n̄ψ−

)
,
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dnψ−
dt

= −3Hnψ− − 〈σψ−ψ−φφ
′

vMøl
〉
(
n2
ψ− − n̄

2
ψ−

)
− 〈σψ−ψ+Xhi

vMøl
〉
(
nψ−nψ+ − n̄ψ−n̄ψ+

nX
n̄X

)

− 〈σXψ−ψ+hi
vMøl

〉
(
nXnψ− − n̄Xn̄ψ−

nψ+

n̄ψ+

)
− 〈σψ−hiXψ+

vMøl
〉n̄hi

(
nψ− − n̄ψ−

nψ+

n̄ψ+

nX
n̄X

)

− 〈σψ−ψ−XXvMøl
〉
(
n2
ψ− − n̄

2
ψ−

n2
X

n̄2
X

)
− 〈σψ−ψ−ψ+ψ+

vMøl
〉
(
n2
ψ− − n̄

2
ψ−

n2
ψ+

n̄2
ψ+

)

+ Γψ+→Xψ−

(
nψ+ − n̄ψ+

nψ−
n̄ψ−

nX
n̄X

)
,

dnψ+

dt
= −3Hnψ+ − 〈σψ+ψ+φφ

′
vMøl

〉
(
n2
ψ+
− n̄2

ψ+

)
− 〈σψ+ψ−Xhi

vMøl
〉
(
nψ+nψ− − n̄ψ+n̄ψ−

nX
n̄X

)

− 〈σXψ+ψ−hi
vMøl

〉
(
nXnψ+ − n̄Xn̄ψ+

nψ−
n̄ψ−

)
− 〈σψ+hiXψ−

vMøl
〉n̄hi

(
nψ+ − n̄ψ+

nψ−
n̄ψ−

nX
n̄X

)

− 〈σψ+ψ+XX
vMøl

〉
(
n2
ψ+
− n̄2

ψ+

n2
X

n̄2
X

)
− 〈σψ+ψ+ψ−ψ−

vMøl
〉
(
n2
ψ+
− n̄2

ψ+

n2
ψ−

n̄2
ψ−

)

− Γψ+→Xψ−

(
nψ+ − n̄ψ+

nψ−
n̄ψ−

nX
n̄X

)
,
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Input parameters and strategies

• potential: 5 (µH, µS, λH, λS, κ), vector DM: 1 (gx), fermionic DM: 2 (mD, y),

• v=246 GeV and Mh1 =125 GeV,

• we adopt: κ, sinα,mX, gx,m±, then Mh2, µH, µS, λH, λS andmD, y are calculable.

mX = gxvx m± = mD ± yvx
Strategies:

A: y � 1 (m+ ' m−) =⇒ slow ψ±ψ± annihilation (so ψ− dominate the DM
abundance) =⇒ Yψ± controlled by semi-annihilation which is sensitive to gx and
to the whole dark sector. To have semi-annihilation controlled exclusively by gx
one should assume m+ +m− > mX +Mh2 and small mixing sinα ∼ 0.1. Strong
dependance on gx is expected. It would be a three-component DM.

B: y � 1 and sinα ∼ 0.1 with mX < Mh2 =⇒ fast ψ±ψ± annihilation and X may
dominate the DM abundance =⇒ nX controlled by semi-annihilation which is
sensitive to gx and to the whole dark sector. In addition m+ +m− < mX +Mh2

to allow for disappearance of X in the semi-annihilation.
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VFDM: Strategy-A
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• A 3CDM case, Xµ, ψ+ and ψ− are stable.

• Comparison of the 3CDM with micrOMEGAs 4.3 with the dominant component is
O(10%) but with the subdominant component it could be up to few times.
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VFDM: Strategy-B
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• A 2CDM case: Xµ and ψ− are stable.

• Comparison with micrOMEGAs 4.3 is O(10%) or less.

• Note that for left (right) plot the coupling gX is for 0.2(1) determines interesting
aspects of dynamics of dark matter evolution.
(in the generic setup gX corresponds to ξ ∝ gχχ̃φ̃)
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VFDM: Strategy-B

●

●
● ● ● ● ● ● ● ●

■

■

■

■

■
■ ■ ■ ■ ■

●

●
● ● ● ● ● ● ●

■

■

■

■
■ ■ ■ ■ ■

• A 2CDM case: Xµ and ψ− are stable.

• Comparison with micrOMEGAs 4.3 is O(10%) or less.

• Note that for left (right) plot the coupling gX is for 0.1(1) determines interesting
aspects of dynamics of dark matter density evolution (in the generic setup gX
corresponds to ξ ∝ gχχ̃φ̃)
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Summary

• Two-sector (2-3 component) dark matter generic scenario based on the stabilizing
Z2 × Z′2 symmetry was considered.

• Sensitivity of the leading component to the presence of the other dark elements
was determined and discussed.

• The vector-fermion model based on extra U(1) symmetry was introduced and the
set of three Boltzmann equations for the system was discussed. Its numerical
solutions were presented. Cross-sections were generated by CalcHEP while the
Boltzmann equations were solved adopting a dedicated code. For 2-component dark
matter an agreement with micrOMEGAs 4.3 at the O(10%) level was confirmed.

• The project is still in progress.
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