Natural 2HDM

Bohdan GRZADKOWSKI University of Warsaw

- The little hierarchy problem
- The strategy
- The natural 2 Higgs Doublet Model
- Summary

• B.G., P. Osland, "A Natural Two-Higgs-Doublet Model", e-Print: arXiv:0910.4068.

The little hierarchy problem

$$m_h^2 = m_h^{(B)\ 2} + \delta^{(SM)} m_h^2 + \cdots$$

$$\delta^{(SM)}m_h^2 \propto \frac{\Lambda^2}{v^2} \left[\frac{3}{2}m_t^2 - \frac{1}{8} \left(6m_W^2 + 3m_Z^2 \right) - \frac{3}{8}m_h^2 \right]$$

 $m_h = 130 \text{ GeV} \quad \Rightarrow \quad \delta^{(SM)} m_h^2 \simeq m_h^2 \qquad \text{for} \qquad \Lambda \simeq 600 \text{ GeV}$

• For $\Lambda \gtrsim 600$ GeV there must be a cancellation between the tree-level Higgs mass² $m_h^{(B) 2}$ and the 1-loop leading correction $\delta^{(SM)}m_h^2$:

$$m_h^{(B)\ 2} \sim \delta^{(SM)} m_h^2 > m_h^2$$
$$\Downarrow$$

the perturbative expansion is breaking down.

The SM cutoff is very low!

Solutions to the little hierarchy problem:

- Suppression of corrections growing with Λ^2 at the 1-loop level:
- The Veltman condition, no Λ^2 terms at the 1-loop level:

$$\frac{3}{2}m_t^2 - \frac{1}{8}\left(6m_W^2 + 3m_Z^2\right) - \frac{3}{8}m_h^2 = 0 \qquad \Longrightarrow \qquad m_h \simeq 310 \text{ GeV}$$

• SUSY:

$$\delta^{(SUSY)} m_h^2 \sim m_{\tilde{t}}^2 \, \frac{3g_t^2}{8\pi^2} \ln\left(\frac{\Lambda^2}{m_{\tilde{t}}^2}\right)$$

then for $\Lambda \sim 10^{16-18}$ GeV one gets $m_{\tilde{t}}^2 \lesssim 1$ TeV² in order to have $\delta^{(SUSY)} m_h^2 \sim m_h^2$.

- Increase of the allowed value of m_h :
- The inert Higgs model by Barbieri, Hall, Rychkov, Phys.Rev.D74:015007,2006, (Ma, Phys.Rev.D73:077301,2006) $\Rightarrow m_h \sim 400 - 600$ GeV, ($\ln m_h$ terms in T parameter canceled by $m_{H^{\pm}}, m_A, m_S$ contributions).

- The SM 1-loop quadratic divergences are dominated by the top (fermionic) contribution, so to suppress them we are going to introduce extra scalars to suppress δM_i^2 (as the SM Higgs would need to be too heavy to do the job).
- We will look for a model which allows for relatively heavy lightest Higgs boson H_1 in order to suppress $\delta M_i^2/M_i^2$ even more.
- CPV and DM are desirable.

The natural 2 Higgs Doublet Model

B.G., P. Osland, "A Natural Two-Higgs-Doublet Model", e-Print: arXiv:0910.4068

$$V(\phi_{1},\phi_{2}) = -\frac{1}{2} \left\{ m_{11}^{2} \phi_{1}^{\dagger} \phi_{1} + m_{22}^{2} \phi_{2}^{\dagger} \phi_{2} + \left[m_{12}^{2} \phi_{1}^{\dagger} \phi_{2} + \text{H.c.} \right] \right\} \\ + \frac{1}{2} \lambda_{1} (\phi_{1}^{\dagger} \phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\phi_{2}^{\dagger} \phi_{2})^{2} + \lambda_{3} (\phi_{1}^{\dagger} \phi_{1}) (\phi_{2}^{\dagger} \phi_{2}) \\ + \lambda_{4} (\phi_{1}^{\dagger} \phi_{2}) (\phi_{2}^{\dagger} \phi_{1}) + \frac{1}{2} \left[\lambda_{5} (\phi_{1}^{\dagger} \phi_{2})^{2} + \text{H.c.} \right]$$

The minimization conditions at $\langle \phi_1^0 \rangle = v_1/\sqrt{2}$ and $\langle \phi_2^0 \rangle = v_2/\sqrt{2}$ can be formulated as follows:

$$m_{11}^2 = v_1^2 \lambda_1 + v_2^2 (\lambda_{345} - 2\nu),$$

$$m_{22}^2 = v_2^2 \lambda_2 + v_1^2 (\lambda_{345} - 2\nu),$$

where $\lambda_{345} \equiv \lambda_3 + \lambda_4 + \Re \lambda_5$ and $\nu \equiv \Re m_{12}^2/(2v_1v_2)$.

We assume that ϕ_1 and ϕ_2 couple to down- and up-type quarks, respectively (the so-called 2HDM II).

$$\mathbb{Z}_2: \qquad \phi_2 \to -\phi_2$$

$$\phi_i = \left(\begin{array}{c} \varphi_i^+ \\ \frac{1}{\sqrt{2}}(v_i + \eta_i + i\chi_i) \end{array}\right)$$

Defining $\eta_3 \equiv -s_\beta \chi_1 + c_\beta \chi_2$ orthogonal to the neutral Goldstone boson $G^0 \equiv c_\beta \chi_1 + s_\beta \chi_2$ one gets 3×3 mass matrix \mathcal{M}^2 for neutral scalars (η_1, η_2, η_3) that could be diagonalized by the orthogonal rotation matrix R:

$$\begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix} = R \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix}$$

and

$$R\mathcal{M}^2 R^T = \mathcal{M}^2_{\text{diag}} = \text{diag}(M_1^2, M_2^2, M_3^2)$$

with $M_1 \leq M_2 \leq M_3$.

$$R = \begin{pmatrix} c_1 c_2 & s_1 c_2 & s_2 \\ -(c_1 s_2 s_3 + s_1 c_3) & c_1 c_3 - s_1 s_2 s_3 & c_2 s_3 \\ -c_1 s_2 c_3 + s_1 s_3 & -(c_1 s_3 + s_1 s_2 c_3) & c_2 c_3 \end{pmatrix}$$

where $s_i \equiv \sin \alpha_i$, $c_i \equiv \cos \alpha_i$ for i = 1, 2, 3.

1-Loop Corrections

Cancellation of quadratic divergences for ϕ_1 and ϕ_2 (Newton & Wu, 1994):

$$\begin{aligned} G_{11}^{(1)} &\equiv \frac{\Lambda^2}{v^2} \left[\frac{3}{2} m_W^2 + \frac{3}{4} m_Z^2 + \frac{v^2}{2} \left(\frac{3}{2} \lambda_1 + \lambda_3 + \frac{1}{2} \lambda_4 \right) - 3 \frac{m_b^2}{c_\beta^2} \right] &= 0, \\ G_{22}^{(1)} &\equiv \frac{\Lambda^2}{v^2} \left[\frac{3}{2} m_W^2 + \frac{3}{4} m_Z^2 + \frac{v^2}{2} \left(\frac{3}{2} \lambda_2 + \lambda_3 + \frac{1}{2} \lambda_4 \right) - 3 \frac{m_t^2}{s_\beta^2} \right] &= 0, \end{aligned}$$

where $v^2 \equiv v_1^2 + v_2^2$, $\tan \beta \equiv v_2/v_1$

 \downarrow

For a given choice of the mixing angles α_i 's (i = 1, 2, 3), the neutral-Higgs masses M_1^2 , M_2^2 and M_3^2 can be determined from the cancellation conditions in terms of $\tan \beta$, $\mu^2 \equiv \mathbf{Re}(m_{12}^2)/(2s_\beta c_\beta)$ and $M_{H^{\pm}}^2$.

Figure 1: Distributions of allowed masses M_2 vs M_1 (left panels) and M_3 vs M_2 (right) determined at 1 loop, resulting from a scan over the full range of α_i , $\tan \beta \in (0.5, 50)$ and $M_{H^{\pm}} \in (300, 700)$ GeV, for $\mu = 200$ GeV. No constraints are imposed other than the cancellation of quadratic divergences, $M_i^2 > 0$ and $M_1 < M_2 < M_3$. Two ranges of $\tan \beta$ -values are displayed: bottom panels: $0.5 \leq \tan \beta \leq 1$, top panels: $40 \leq \tan \beta \leq 50$. The color coding indicates increasing density of allowed points as one moves inward from the boundary.

Figure 2: Similar to Fig. 1, for $\mu = 500$ GeV.

$$M_1^2 - M_2^2 = \frac{1}{\tan\beta} \frac{R_{33}}{R_{12}R_{22}} \left[-4\bar{m}^2 - 2M_{H^{\pm}}^2 + 12m_t^2 + \mu^2 \right] + \mathcal{O}\left(\frac{1}{\tan^2\beta}\right)$$
$$M_3^2 = -\frac{M_1^2 R_{12}R_{13} + M_2^2 R_{22}R_{23}}{R_{32}R_{33}} + \mathcal{O}\left(\frac{1}{\tan\beta}\right).$$

where R_{ij} are elements of the orthogonal rotation matrix for the neutral scalars and $\bar{m}^2 \equiv \frac{3}{2}m_W^2 + \frac{3}{4}m_Z^2$.

 $\tan\beta \gtrsim 40 \qquad \Longrightarrow \qquad M_1 \simeq M_2 \simeq M_3 \simeq \mu^2 + 4m_b^2$

 \Downarrow

2-Loop Leading Corrections

$$\begin{aligned} G_{11}^{(1)} &\equiv \frac{\Lambda^2}{v^2} \left[\frac{3}{2} m_W^2 + \frac{3}{4} m_Z^2 + \frac{v^2}{2} \left(\frac{3}{2} \lambda_1 + \lambda_3 + \frac{1}{2} \lambda_4 \right) - 3 \frac{m_b^2}{c_\beta^2} \right] &= 0, \\ G_{22}^{(1)} &\equiv \frac{\Lambda^2}{v^2} \left[\frac{3}{2} m_W^2 + \frac{3}{4} m_Z^2 + \frac{v^2}{2} \left(\frac{3}{2} \lambda_2 + \lambda_3 + \frac{1}{2} \lambda_4 \right) - 3 \frac{m_t^2}{s_\beta^2} \right] &= 0, \end{aligned}$$

At higher orders (N-loops) leading terms read

$$G_{ii}^{(N)} = \Lambda^2 \sum_{n=0}^{N-1} f_n^{(i)}(\lambda) \left(\ln\Lambda\right)^n + \cdots,$$

where $f_{n-1}^{(i)}$ denotes *n*-loop results for the *i*th doublet and λ stands for various couplings that contribute.

Adopting the Einhorn-Jones algorithm one finds at the 2 loop level

$$f_1^{(i)} = \sum_I \frac{\partial f_0^{(i)}(\lambda_I)}{\partial \lambda_I} \beta_I$$

Then the 2-loop conditions for the cancellation of quadratic divergences read:

$$G_{11}^{(1)} + \delta G_{11} = 0$$
$$G_{22}^{(1)} + \delta G_{22} = 0$$

with

$$\delta G_{11} = \frac{v^2}{8} [9g_2\beta_{g_2} + 3g_1\beta_{g_1} + 6\beta_{\lambda_1} + 4\beta_{\lambda_3} + 2\beta_{\lambda_4}] \ln\left(\frac{\Lambda}{\bar{\mu}}\right)$$

$$\delta G_{22} = \frac{v^2}{8} [9g_2\beta_{g_2} + 3g_1\beta_{g_1} + 6\beta_{\lambda_2} + 4\beta_{\lambda_3} + 2\beta_{\lambda_4} - 24g_t\beta_{g_t}] \ln\left(\frac{\Lambda}{\bar{\mu}}\right)$$

Figure 3: 2-loop masses for $\Lambda = 2.5$ TeV and $\bar{\mu} = v$, scan over α_i , $\tan \beta \in (0.5, 50)$ and $M_{H^{\pm}} \in (300, 700)$ GeV, for $\mu = 300, 400, 500$ GeV. Red: Positivity is satisfied; yellow: positivity and unitarity satisfied; green: also experimental constraints satisfied.

Figure 4: Similar as Fig. 3 for $\Lambda = 6.5$ TeV for $\mu = 300, 400, 500$ GeV.

Advantages:

- No 2-loop (leading) quadratic divergences (so, $\delta M_i^2/M_i^2$ suppressed),
- Large H_1 mass allowed by increased μ (so, $\delta M_i^2/M_i^2$ suppressed),
- A chance for CPV,
- DM candidate easily accommodated by adding singlets φ_i -like.

The following experimental constraints are imposed:

- $\bullet\,$ The oblique parameters T and S
- $B_0 \bar{B}_0$ mixing
- $B \to X_s \gamma$
- $B \to \tau \bar{\nu}_{\tau} X$
- $B \to D \tau \bar{\nu}_{\tau}$
- LEP2 Higgs-boson non-discovery
- R_b
- The muon anomalous magnetic moment
- Electron electric dipole moment

Figure 5: Two-loop allowed regions in the $\tan \beta - M_{H^{\pm}}$ plane, for $\Lambda = 2.5$ TeV (top) and $\Lambda = 6.5$ TeV (bottom) with $\bar{\mu} = v$, for $\mu = 300, 400, 500$ GeV (as indicated). Red: positivity is satisfied; yellow: positivity and unitarity both satisfied; green: also experimental constraints satisfied at the 95% C.L.

Violation of CP

$$\begin{aligned} \Im J_{1} &= -\frac{v_{1}^{2}v_{2}^{2}}{v^{4}}(\lambda_{1}-\lambda_{2})\Im\lambda_{5}, \\ \Im J_{2} &= -\frac{v_{1}^{2}v_{2}^{2}}{v^{8}}\left[\left((\lambda_{1}-\lambda_{3}-\lambda_{4})^{2}-|\lambda_{5}|^{2}\right)v_{1}^{4}+2(\lambda_{1}-\lambda_{2})\Re\lambda_{5}v_{1}^{2}v_{2}^{2}\right. \\ &\left. -\left((\lambda_{2}-\lambda_{3}-\lambda_{4})^{2}-|\lambda_{5}|^{2}\right)v_{2}^{4}\right]\Im\lambda_{5}, \\ \Im J_{3} &= \frac{v_{1}^{2}v_{2}^{2}}{v^{4}}(\lambda_{1}-\lambda_{2})(\lambda_{1}+\lambda_{2}+2\lambda_{4})\Im\lambda_{5}. \end{aligned}$$

For $\tan\beta \gtrsim 40$

$$\Im J_i \sim \frac{\Im \lambda_5}{\tan^2 \beta}$$

Figure 6: Imaginary parts of the rephasing invariants $|\Im J_i|$, at the 2-loops for $\Lambda = 2.5$ TeV, $\bar{\mu} = v$, $\mu = 500$ GeV (top) and $\mu = 300$ GeV (bottom). The colour coding in units 10^{-3} is given along the right vertical axis.

Figure 7: Similar as Fig. 6 for $\Lambda = 6.5$ TeV.

Stability of the cancellation condition

The leading contributions to scalar masses:

$$\delta M_i^2 = \Lambda^2 \sum_{n=0} f_n^{(i)}(\lambda) \left(\ln \Lambda\right)^n + \cdots,$$

The coefficients $f_n^{(i)}(\lambda)$ can be determined recursively (see Einhorn and Jones), however here a naive estimate is sufficient:

$$f_n^{(i)}(\lambda) \sim \left(\frac{\lambda}{16\pi^2}\right)^{n+1} \sim \left(\frac{4\pi}{16\pi^2}\right)^{n+1} \sim \left(\frac{1}{4\pi}\right)^{n+1}$$

Requiring that the sub-leading ($\propto \Lambda^2 \left[\ln \left(\frac{\Lambda}{v} \right) \right]^0$) 2-loop contribution does not exceed M_1^2 one finds:

$$\Lambda \! \leqslant \! 4\pi M_1$$

Then, e.g. for $M_1 = 200(500)$ GeV the cutoff is at $\Lambda \sim 2.5(6.3)$ TeV.

• DM in the Non-Inert Doublet Model with no quadratic divergences

$$V(\phi_{1},\phi_{2}) = -\frac{1}{2} \left\{ m_{11}^{2} \phi_{1}^{\dagger} \phi_{1} + m_{22}^{2} \phi_{2}^{\dagger} \phi_{2} + \left[m_{12}^{2} \phi_{1}^{\dagger} \phi_{2} + \text{H.c.} \right] \right\} \\ + \frac{1}{2} \lambda_{1} (\phi_{1}^{\dagger} \phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\phi_{2}^{\dagger} \phi_{2})^{2} + \lambda_{3} (\phi_{1}^{\dagger} \phi_{1}) (\phi_{2}^{\dagger} \phi_{2}) \\ + \lambda_{4} (\phi_{1}^{\dagger} \phi_{2}) (\phi_{2}^{\dagger} \phi_{1}) + \frac{1}{2} \left[\lambda_{5} (\phi_{1}^{\dagger} \phi_{2})^{2} + \text{H.c.} \right] \\ + \mu_{\varphi}^{2} \varphi^{2} + \frac{1}{24} \lambda_{\varphi} \varphi^{4} + \varphi^{2} (\eta_{1} \phi_{1}^{\dagger} \phi_{1} + \eta_{2} \phi_{2}^{\dagger} \phi_{2})$$

The cancellation conditions:

$$\begin{aligned} \frac{3}{2}m_W^2 + \frac{3}{4}m_Z^2 + \frac{v^2}{2}\left(\frac{1}{2}\eta_1 + \frac{3}{2}\lambda_1 + \lambda_3 + \frac{1}{2}\lambda_4\right) &= 3\frac{m_b^2}{c_\beta^2}, \\ \frac{3}{2}m_W^2 + \frac{3}{4}m_Z^2 + \frac{v^2}{2}\left(\frac{1}{2}\eta_2 + \frac{3}{2}\lambda_2 + \lambda_3 + \frac{1}{2}\lambda_4\right) &= 3\frac{m_t^2}{s_\beta^2}, \\ \frac{\lambda_\varphi}{2} + 4(\eta_1 + \eta_2) &= 8\operatorname{Tr}\{Y_\varphi Y_\varphi^\dagger\} \end{aligned}$$

where $\mathcal{L}_Y = -\varphi \overline{(\nu_R)^c} Y_{\varphi} \nu_R + \text{H.c.}$.

$$\mathcal{L} = -\varphi^2(\kappa_i v H_i + \lambda_{ij} H_i H_j + \lambda_{\pm} H^+ H^-)$$

with

$$\kappa_{i} = \eta_{1}R_{i1}c_{\beta} + \eta_{2}R_{i2}s_{\beta},$$

$$\lambda_{ij} = \frac{1}{2} \left[\eta_{1}(R_{i1}R_{j1} + s_{\beta}^{2}R_{i3}R_{j3}) + \eta_{2}(R_{i2}R_{j2} + c_{\beta}^{2}R_{i3}R_{j3}) \right],$$

$$\lambda_{\pm} = \eta_{1}s_{\beta}^{2} + \eta_{2}c_{\beta}^{2}$$

Assumption: $M_1 \ll M_{2,3}$ so that DM annihilation is dominated by H_1 exchange.

Figure 8: Inert-scalar coupling η (vs m_{φ}) required by the observed DM abundance $\Omega_{DM}h^2 = 0.106 \pm 0.008$ within a 3- σ band. As indicated above each panel, the lightest Higgs-boson mass ranges from $M_1 = 100$ to 400 GeV. It was assumed that $2\lambda_{11} = \kappa_1 \equiv \eta$.

Summary

- The SM could be easily extended so that the little hierarchy problem is ameliorated, DM candidate is provided and also CP is violated in the extra sector:
 - The addition of N_{φ} real scalar singlets φ_i to the SM lifts the cutoff Λ to $\sim 4-9$ TeV. It also provides a realistic candidate for DM if $m_{\varphi} \sim 1-3$ TeV (depending on N_{φ}).
 - To accommodate CPV in the Higgs potential the SM scalar sector should be replaced by 2 Higgs doublets (non-inert). Cancellation of quadratic divergences could be arranged. Heavy lightest Higgs additionally suppresses $\delta M_i^2/M_i^2$. Adding extra inert scalar singlet or doublet offers a DM candidate.
 - CPV in the Higgs potential with the SM doublet and singlets only?
- Some fine tuning always remains.