Higgs-boson reheating and frozen-in DM

Bohdan Grzadkowski

University of Warsaw

based on:

- Aqeel Ahmed, BG, Anna Socha, Phys.Lett.B 831 (2022) 137201, e-Print: 2111.06065
- Aqeel Ahmed, BG, Anna Socha, e-Print: 2207.11218

Workshop on the Standard Model and Beyond, September 6, 2022, Corfu

Introduction

Inflation dynamics

The model of reheating and DM

Results

Summary

Introduction

Inflation dynamics

The model of reheating and DM

Results

Summary

• Inflation solves puzzles of the standard Big-Bang cosmology.

- Inflation solves puzzles of the standard Big-Bang cosmology.
- Dynamics of the reheating period, which follows the inflation is often underestimated or oversimplified.

- $\cdot\,$ Inflation solves puzzles of the standard Big-Bang cosmology.
- Dynamics of the reheating period, which follows the inflation is often underestimated or oversimplified.
- It is usually assumed that the inflaton decay rate, Γ_{ϕ} , is constant.

- $\cdot\,$ Inflation solves puzzles of the standard Big-Bang cosmology.
- Dynamics of the reheating period, which follows the inflation is often underestimated or oversimplified.
- It is usually assumed that the inflaton decay rate, Γ_{ϕ} , is constant.
- Hereafter we are going to discuss relations between inflation and reheating dynamics focusing on possible interactions between the Higgs boson and inflaton.

- Inflation solves puzzles of the standard Big-Bang cosmology.
- Dynamics of the reheating period, which follows the inflation is often underestimated or oversimplified.
- It is usually assumed that the inflaton decay rate, Γ_{ϕ} , is constant.
- Hereafter we are going to discuss relations between inflation and reheating dynamics focusing on possible interactions between the Higgs boson and inflaton.
- Dynamics of reheating influences the dark matter sector, especially in the context of the freeze-in DM production.

Non-instantaneous reheating

Introduction

Inflation dynamics

The model of reheating and DM

Results

Summary

The α -attractor T-model

$$\mathcal{L}_{\phi} = \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi - V(\phi)$$
$$V(\phi) = \Lambda^{4} \tanh^{2n} \left(\frac{|\phi|}{\sqrt{6\alpha} M_{\text{Pl}}} \right)$$
$$\simeq \begin{cases} \Lambda^{4} & |\phi| \gg M_{\text{Pl}} \\ \left| \Lambda^{4} \left| \frac{\phi}{M_{\text{Pl}}} \right|^{2n} & |\phi| \ll M_{\text{Pl}} \end{cases}$$

•

where n > 0, $\sqrt{6\alpha} \lesssim 10$, $\Lambda \lesssim 1.6 \times 10^{16} \, {
m GeV}$.

 $\ddot{\phi}+3H\dot{\phi}+V_{,\phi}(\phi)=0,$

 $H \equiv \dot{a}/a$ is the Hubble rate.

Introduction

Inflation dynamics

The model of reheating and DM

Results

Summary

Interactions

Limits on $g_{h\phi}$

• Perturbativity ($h_i \phi \rightarrow h_i \phi$)

$$\mathsf{g}_{h\phi}\lesssim \left(rac{\Lambda^2}{\phi M_{
m Pl}}
ight),$$

- The inflationary dynamics is dominated by the cosmological constant term $\sim \Lambda^4$ therefore

$$g_{h\phi} \lesssim \sqrt{\lambda_h} \left(rac{\Lambda^2}{\phi M_{
m Pl}}
ight),$$

• If $m_{h_0} > 3H_I/2$ the Higgs field fluctuations during inflation are strongly suppressed ensuring stability (J. R. Espinosa, et al. , [arXiv:1505.04825]), therefore

$$g_{h\phi}\gtrsim rac{3}{4}\sqrt{6lpha}\left(rac{\Lambda^2}{\phi M_{
m Pl}}
ight)^2\left(rac{\phi}{M}
ight).$$

$$6\cdot 10^{-11} \lesssim g_{h\phi} \lesssim 3\cdot 10^{-6}$$

The Higgs portal

$$m_{h_0}^2 = g_{h\phi} M_{\rm Pl} \varphi \begin{cases} |\mathcal{P}|, & \mathcal{P}(t) > 0\\ 2|\mathcal{P}|, & \mathcal{P}(t) < 0 \end{cases}$$

$$v_{h} = \begin{cases} 0, & \mathcal{P}(t) > 0 \\ \sqrt{|m_{h_{0}}^{2}|/(2\lambda_{h})}, & \mathcal{P}(t) < 0 \end{cases}$$

Kinematic suppression

$$\dot{\rho}_{\phi} + \frac{6n}{n+1} H \rho_{\phi} = -\langle \Gamma_{\phi} \rangle \rho_{\phi}$$

$$\dot{\rho}_{\rm SM} + 4H \rho_{\rm SM} = \langle \Gamma_{\phi \to \rm SM \, SM} \rangle \rho_{\phi} - 2\langle E_X \rangle \overline{\left[S_{\rm SM} \right]} - \langle E_{h_0} \rangle \mathcal{D}_{h_0}$$

$$\dot{n}_X + 3Hn_X = \mathcal{D}_{\phi} + \mathcal{S}_{\phi} + \overline{\left[S_{\rm SM} \right]} + \mathcal{D}_{h_0}$$
with the Hubble rate $H^2 = \frac{1}{3M_{\rm Pl}^2} \left(\rho_{\phi} + \rho_{\rm SM} + \rho_X \right)$

$$\dot{\rho}_{\phi} + \frac{6n}{n+1} H \rho_{\phi} = -\langle \Gamma_{\phi} \rangle \rho_{\phi}$$

$$\dot{\rho}_{\rm SM} + 4H \rho_{\rm SM} = \langle \Gamma_{\phi \to \rm SM \, SM} \rangle \rho_{\phi} - 2\langle E_X \rangle S_{\rm SM} - \langle E_{h_0} \rangle \overline{\mathcal{D}_{h_0}}$$

$$\dot{n}_X + 3Hn_X = \mathcal{D}_{\phi} + S_{\phi} + S_{\rm SM} + \overline{\mathcal{D}_{h_0}}$$
with the Hubble rate $H^2 = \frac{1}{3M_{\rm Pl}^2} \left(\rho_{\phi} + \rho_{\rm SM} + \rho_X \right)$

$$\dot{\rho}_{\phi} + \frac{6n}{n+1} H \rho_{\phi} = -\langle \Gamma_{\phi} \rangle \rho_{\phi}$$

$$\dot{\rho}_{SM} + 4H \rho_{SM} = \langle \Gamma_{\phi \to SM SM} \rangle \rho_{\phi} - 2\langle E_X \rangle S_{SM} - \langle E_{h_0} \rangle \mathcal{D}_{h_0}$$

$$\dot{n}_X + 3Hn_X = \boxed{\mathcal{D}_{\phi}} + S_{\phi} + S_{SM} + \mathcal{D}_{h_0}$$
with the Hubble rate $H^2 = \frac{1}{3M_{P1}^2} (\rho_{\phi} + \rho_{SM} + \rho_X)$

$$\overset{h}{\longrightarrow} \qquad \overset{h^{\mu\nu}}{\longrightarrow} \qquad \overset{SM}{\longrightarrow} \qquad \overset{\phi}{\longrightarrow} \qquad \overset{h^{\mu\nu}}{\longrightarrow} \qquad$$

$$\dot{\rho}_{\phi} + \frac{6n}{n+1} H \rho_{\phi} = -\langle \Gamma_{\phi} \rangle \rho_{\phi}$$
$$\dot{\rho}_{SM} + 4H \rho_{SM} = \langle \Gamma_{\phi \to SM SM} \rangle \rho_{\phi} - 2\langle E_X \rangle S_{SM} - \langle E_{h_0} \rangle \mathcal{D}_{h_0}$$
$$\dot{n}_X + 3Hn_X = \mathcal{D}_{\phi} + \overbrace{\mathcal{S}_{\phi}}^{\infty} + \mathcal{S}_{SM} + \mathcal{D}_{h_0}$$
with the Hubble rate $H^2 = \frac{1}{3M_{P1}^2} \left(\rho_{\phi} + \rho_{SM} + \rho_X\right)$

Introduction

Inflation dynamics

The model of reheating and DM

Results

Summary

Non-instantaneous reheating

$$\rho_{\phi}(a) \overset{H \gg \Gamma_{\phi}}{\simeq} 3M_{\mathrm{Pl}}^{2}H_{e}^{2}\left(\frac{a_{e}}{a}\right)^{3(1+\overline{w})}$$

$$\rho_{\mathcal{R}}(a) = \frac{6M_{Pl}^{2}H_{e}\Gamma_{\phi}^{e}}{5-3\overline{w}-2\beta} \left[\left(\frac{a_{e}}{a}\right)^{\beta+3(1+\overline{w})/2} - \left(\frac{a_{e}}{a}\right)^{4}\right]$$

$$\rho \propto a^{0}$$

$$\rho \propto a^{-3(1+\overline{w})}$$
the dominant term
for $\beta \leq (n+4)/(n+1)$

$$A \propto a^{-\beta-3(1+\overline{w})/2}$$

$$\rho \propto a^{-4}$$

$$Hold = Hold = Hold$$

Gravitational DM production

$$\mathcal{L}_{\rm DM} = -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} + \frac{1}{2} m_X^2 X_\mu X^\mu + \mathcal{L}_{\rm int}$$

$$\mathcal{L}_{\rm int} = \frac{h_{\mu\nu}}{M_{\rm Pl}} \left(T_{\phi}^{\mu\nu} + T_X^{\mu\nu} + T_{\rm SM}^{\mu\nu} \right)$$

M. Garny <u>et al.</u>, arXiv:1511.03278 Y. Tang <u>et al.</u>, arXiv:1708.05138 M. Garny <u>et al.</u>, arXiv:1709.09688

Y. Mambrini <u>et al.</u>, arXiv:2102.06214 M.R. Haque <u>et al.</u>, arXiv:2112.14668 S. Clery <u>et al.</u>, arXiv:2112.15214

Gravitational DM production

Gravitational DM production

Heavy DM particles are produced

XX production

Introduction

Inflation dynamics

The model of reheating and DM

Results

Summary

Summary

• The α -attractor T-model potential for the inflaton field has been adopted:

$$V(\phi) = \Lambda^4 \tanh^{2n} \left(\frac{|\phi|}{\sqrt{6\alpha} M_{\rm Pl}} \right) \simeq \begin{cases} \Lambda^4 & |\phi| \gg M_{\rm Pl} \\ & \Lambda^4 & |\phi| \ll M_{\rm Pl} \end{cases}$$

• The reheating has been triggered by

$$\mathcal{L}_{int} = g_{h\phi} M_{\rm Pl} \phi |\mathbf{h}|^2$$

- It has been shown that both duration of reheating and evolution of radiation energy density, $\rho_{\mathcal{R}}$, are sensitive to the shape of the inflaton potential (*n*).
- The role of kinematical suppression emerging from \mathcal{L}_{int} has been investigated. It has been shown that the non-zero mass of the Higgs boson leads to the elongation of the reheating period, changes the $\rho_{\mathcal{R}}(a)$ and $\mathcal{T}(a)$ evolution, and favors reduced \mathcal{T}_{max} .

,

• It has been shown that purely gravitational perturbative production of DM is possible.

• Purely gravitation perturbative reheating needs to be investigated.

Back-up slides

Particle production in a classical inflaton background

For the interactions proportional to the $\phi = \varphi \cdot \mathcal{P}$ term, the lowest-order non-vanishing S-matrix element takes the form

$$S_{if}^{(1)} = \sum_{k} \mathcal{P}_{k} \langle f | \int d^{4} x \varphi(t) e^{-ik\omega t} \mathcal{L}_{int}(x) | i \rangle$$

where

$$\ket{i} \equiv \ket{0}, \qquad \qquad \ket{f} \equiv \hat{a}_{f}^{\dagger} \hat{a}_{f}^{\dagger} \ket{0}.$$

If the envelope $\varphi(t)$ varies on the time-scale much longer than the time-scale relevant for processes of particle creation, the S-matrix element can be written as

$$S_{if}^{(1)} = i\varphi(t)\sum_{k} \mathcal{P}_{k}\mathcal{M}_{0\to f}(k) \times (2\pi)^{4}\delta(k\omega - 2E_{f})\delta^{3}(p_{f_{1}} + p_{f_{2}}).$$

Planck and BICEP/Keck limits on $N_{ m rh}$

$$r \equiv \frac{\Delta_t^2(k)}{\Delta_s^2(k)}, \qquad \qquad n_s - 1 \equiv \frac{d \ln \Delta_s^2}{d \ln k}$$

where r is the tensor-to-scalar ratio and n_s is the scalar spectral index (tilt)

- * $\Lambda \lesssim 1.4 \times 10^{16} \; {\rm GeV}$
- $N_{\mathrm{rh}} \lesssim \frac{4}{3(1+\tilde{w})} \left[6.7 + \ln\left(\frac{\Lambda}{1 \ \mathrm{GeV}}\right) \right]$

α	п	$N_{\rm rh}[n_s:1\sigma]$	$N_{\rm rh}[n_s:2\sigma]$
1/6	2/3	13.8	26.1
1/6	1	22.0	41.7
1/6	3/2	48.0	47.8
1/6	3	38.4	38.4
1	2/3	15.2	27.5
1	1	23.4	43.1
1	3/2	47.8	47.7
1	3	38.2	38.0

Planck and BICEP/Keck limits on $N_{\rm rh}$

Figure 1: Left panel: Relation between reheating numbers of e-folds $N_{\rm rh}$ and the value of the inflaton-Higgs coupling $g_{h\phi}$. Right panel: Relation between the maximal temperature, $T_{\rm max}$, obtained during reheating and the value of the inflaton-Higgs coupling $g_{h\phi}$.

Time averaging:

$$\langle f(t) \rangle = \frac{1}{T} \int_{t}^{t+T} d\tau f(\tau)$$

Equation of state:

$$\bar{w} \equiv \frac{\langle p_{\phi} \rangle}{\langle \rho_{\phi} \rangle} = \frac{n-1}{n+1}$$

	п	$ar{w}\equivrac{\langle p_{\phi} angle}{\langle ho_{\phi} angle}$	
[$\frac{2}{3}$	$-\frac{1}{5}$	
	1	0	
	$\frac{3}{2}$	$\frac{1}{5}$	
	2	$\frac{1}{3}$	

