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The goal

• Find simple (not simplified) consistent and renormaizable models of Dark Mater
(DM) of spin 0, 1/2 and 1.

• Impose experimental and theoretical constraints.

• Maximize signals and differences between cross-sections to compare the models in
a meaningful way.
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Pseudo-Goldstone Dark Matter (pGDM)
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VpGDM(H,S) = −µ2
H|H|2 + λH|H|4 − µ2

S|S|2 + λS|S|4 + κ|S|2|H|2 + (µ2S2 + H.c.)

S =
1√
2

(vS + φ+ iA) , and H =

(
π+

1√
2
(v + h+ iπ0)

)
.

Positivity: λH > 0, λS > 0, κ > −2
√
λHλS

Symmetries:

• µ2 6= 0 breaks global U(1) softly to residual Z2 : S → −S,

• rephase S such that Imµ2 = 0 (basis choice),

• V 3 µ2(S2 + S∗ 2), so S
C→ S∗ (φ→ φ and A→ −A) is a symmetry,

• global minimum at 〈S〉 = vS√
2

with vS being real, so C is unbroken and A is a

stable DM candidate, m2
A ∝ µ2, if µ2 → 0 then A becomes a Goldstone boson of

broken U(1),
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S =
1√
2

(vS + φ+ iA) , and H =

(
π+

1√
2
(v + h+ iπ0)

)
.

M2 =

 2λHv
2 κvvS 0

κvvS 2λSv
2
S 0

0 0 −4µ2


M2

diag =

 m2
1 0 0

0 m2
2 0

0 0 m2
A

 , R =

(
cosα − sinα
sinα cosα

)
,

(
h1
h2

)
= R−1

(
h
φ

)
,

VpGDM 3 λS|S|4 + κ|S|2|H|2 3 A
2

2
(2λSvSφ+ κvφ) =

A2

2vS
(sinαm2

1h1 + cosαm2
2h2)

−im
2
i

vs
R2ihi

A

A

−i(R2iR2jλS −R1iR1jκ)

hi

hj

A

A
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N N

A A

h1,2

The DM direct detection signals are naturally suppressed in the pGDM model:

iM = −isinα cosαfNmN

vvS

(
m2

1

q2 −m2
1

− m2
2

q2 −m2
2

)
ūN(p4)uN(p2)

≈ −isinα cosαfNmN

vvS

(
m2

1 −m2
2

m2
1m

2
2

)
q2ūN(p4)uN(p2) .
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N N

A A

h1,2

The total cross section σAN :

σ
(tree)
AN ∝ sin2α cos2α

v2S
(m2

1 −m2
2)

2 × v4A ,

where vA is the A velocity in the lab frame. Since vA ∼ 200 km/s, the total DM
nuclear recoil cross section σAN is greatly suppressed by the factor v4A ∼ 10−13:

σ
(tree)
AN ∼ 10−70 cm2 � σ

(XENON1T )
AN ∼ 10−46 cm2

⇓
1-loop effects are leading

• if q2 → 0 then loop corrections are expected to be UV finite,

• if m2
A ∝ µ2 → 0 then loop corrections should vanish.
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Figure 1: 1-loop diagrams contributing to A-nucleon scattering.

σ
(1)
AN =

f2N
πv2

m2
Nµ

2
AN

m2
A

F2 ,

where the one-loop function F is defined as

F =
V

(1)
AA1cα
m2

1

− V
(1)
AA2sα
m2

2

with V
(1)
AA1 ,AA2 as one-loop corrections to the vertices h1A

2 and h2A
2.
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σAN =
µ2m2

DM

π
· m

2
N

v2
f2N

m4
1m

4
2

· sin
2α cos2α

v2S
(m2

1 −m2
2)

2 ·
[ A

64π2vv2S

]2
,

A =a1 · C2(0,m
2
DM,m

2
DM,m

2
1,m

2
2,m

2
DM)+

a2 ·D3(0, 0,m
2
DM,m

2
DM, 0,m

2
DM,m

2
1,m

2
1,m

2
2,m

2
DM)+

a3 ·D3(0, 0,m
2
DM,m

2
DM, 0,m

2
DM,m

2
1,m

2
2,m

2
2,m

2
DM)

with a1,2,3 being coefficients
Comments:

• The one loop amplitude F is UV finite in the limit of zero momentum transfer
q2 → 0,

• F → 0 for mA → 0,

•
V ⊃ M3

√
2

(S + S∗) + µ2(S2 + S∗2)

LA ⊃
1

2
(∂µA∂µA−m2

AA
2)− R2i

2vs

(
m2
i +

M3

vS

)
hiA

2 .
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The Vector Dark Matter (VDM) model

• T. Hambye, “Hidden vector dark matter”, JHEP 0901 (2009) 028,
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• Y. Farzan and A. R. Akbarieh, “VDM: A model for Vector Dark Matter”, JCAP
1210 (2012) 026,

• S. Baek, P. Ko, W.-I. Park, and E. Senaha, “Higgs Portal Vector Dark Matter :
Revisited”, JHEP 1305 (2013) 036,

• Ch. Gross, O. Lebedev, Y. Mambrini, “Non-Abelian gauge fields as dark matter”,
arXiv:1505.07480,

• · · ·
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The model:

• extra U(1)X gauge symmetry (AµX), DM candidate: AµX,

• a complex scalar field S, whose vev generates a mass for the U(1)’s vector field,
S = (0,1,1, 1) under U(1)Y × SU(2)L × SU(3)c × U(1)X.

• SM fields neutral under U(1)X,

• in order to ensure stability of the new vector boson a Z2 symmetry is assumed to
forbid U(1)-kinetic mixing between U(1)X and U(1)Y . The extra gauge boson Aµ
and the scalar S transform under Z2 (dark charge conjugation) as follows

AµX
C→ −AµX , S

C→ S∗

The scalar potential

VVDM(H,S) = −µ2
H|H|2 + λH|H|4 − µ2

S|S|2 + λS|S|4 + κ|S|2|H|2.
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For κ2 < 4λHλS the global minimum is

v2 =
4λSµ

2
H − 2κµ2

S

4λHλS − κ2
and v2S =

4λHµ
2
S − 2κµ2

H

4λHλS − κ2

The mass squared matrix M2 for the fluctuations (h, φ) and their eigenvalues read

M2 =

(
2λHv

2 κvvS
κvvS 2λSv

2
S

)
m2
± = λHv

2 + λSv
2
S ±

√
λ2Sv

4
S − 2λHλSv2v2S + λ2Hv

4 + κ2v2v4S

M2
diag =

(
m2

1 0
0 m2

2

)
, R =

(
cosα − sinα
sinα cosα

)
,

(
h1
h2

)
= R−1

(
h
φ

)
,

2imXgxR2ihi

X

X

2ig2xR2iR2j

hi

hj

X

X
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Fermion Dark Matter (FDM)

• DM: χ - a left-handed Dirac fermion,

• spin 0 mediator: S - a real field.

Z4 : S → −S , χ→ iχ

L = LSM + iχ̄/∂χ+
1

2
∂µS ∂µS −

yx
2

(χ̄cχ+ χ̄χc)S − V (H,S) ,

VFDM(H,S) = −µ2
H|H|2 + λH|H|4 −

µ2
S

2
S2 +

λS
4
S4 +

κ

2
|H|2S2 ,

where χc ≡ −iγ2χ∗ and

S = vS + φ , H =

(
π+

v+h+iπ0√
2

)
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After SSB relevant parts of the Lagrangian take the following form:

iχ̄/∂χ+
1

2
∂µS ∂µS −

yx
2

(χ̄cχ+ χ̄χc)S → i

2
ψ̄ /∂ψ +

1

2
∂µφ ∂µφ−

yxvS
2

ψ̄ψ − yx
2
ψ̄ψφ

where ψ = ψc ≡ χ+ χc is a Majorana mass eigenstate with mψ = yxvS.

(
h1
h2

)
= R−1

(
h
φ

)
,R =

[
cosα − sinα
sinα cosα

]
, α ∈

[
−π

4
,
π

4

]
, tan 2α =

κvvS
λHv2 − λSv2S

.

−iyxR2ihi

ψ

ψ

Figure 2: The vertex relevant for the FDM model.
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Parameters

VpGDM(H,S) = −µ2
H|H|2 + λH|H|4 − µ2

S|S|2 + λS|S|4 + κ|S|2|H|2 + (µ2S2 + H.c.)

VVDM(H,S) = −µ2
H|H|2 + λH|H|4 − µ2

S|S|2 + λS|S|4 + κ|S|2|H|2

VFDM(H,S) = −µ2
H|H|2 + λH|H|4 −

µ2
S

2
S2 +

λS
4
S4 +

κ

2
|H|2S2

S = vS + φ (+iA) , H =

(
π+

v+h+iπ0√
2

)
(
h1
h2

)
= R−1

(
h
φ

)
,R =

[
cosα − sinα
sinα cosα

]
It is convenient to use the same input parameters for all the models:

m2, sinα, mDM ≡ (mA,mX,mψ) and vS

• ILC:
√
s = 250 GeV =⇒ mDM <∼ 77.5 GeV
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Constraints

1. Perturbativity: yx < 4π
(
mψ

vS
< 4π

)
, gX < 4π

(
mX
vS

< 4π
)
, κ < 4π, mi

vS
< 4π,

2. Vacuum stability,

3. Minimum globality,

4. Higgs invisible decays (1809.05937):

BR(h1 → inv) = BR(h1 → DM DM) < 19%

5. The mixing angle: 0 < sinα < 0.3 (1501.02234, 1604.04552).

Bohdan Grzadkowski, University of Warsaw, FCC Physics and Experiments Workshop, November 10th 2020

https://arxiv.org/pdf/1809.05937.pdf
https://arxiv.org/pdf/1501.02234.pdf
https://arxiv.org/pdf/1604.04552.pdf


6. The Planck data (1807.06209): h2 ΩDM = 0.12± 0.0012. The thermally averaged
cross section (DM DM → f̄f) reads:

〈σv〉 =
nc
3

mDMm
2
f

πv2
· sin

2α cos2α

v2S
(m2

1 −m2
2)

2 ·
·
(
m2

DM −m2
f

)3/2
(4m2

DM −m2
1)

2(4m2
DM −m2

2)
2
·

×


12 +O

[(mDM
T

)−1]
(pGDM)

1 +O
[(mDM

T

)−1]
(VDM)

9
4

(mDM
T

)−1
+O

[(mDM
T

)−2]
(FDM)

〈σv〉 = σ0x
−n =⇒ h2ΩDM ∝

(n+ 1)xn+1
f

σ0
(x ≡ mDM

T
)

⇓
sin2α cos2α

v2S
(m2

1 −m2
2)

2 =

= 2.1 · 10−5 GeV−2
(4m2

DM −m2
1)

2 (4m2
DM −m2

2)
2

mDM(m2
DM −m2

b)
3/2

·


1
12 (pGDM)

1 (VDM)
4mDM
9Tf

(FDM)
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7. Indirect-detection (1611.03184) limits.
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Figure 3: Relic-density and indirect-detection limits. (1611.03184)

• For pGDM and VDM: mA,mX & 30 GeV, since otherwise the proper value of
annihilation cross section is forbidden.
• For FDM due to the T0/Tf factor, current annihilation cross-section corresponding

to the correct value of relic density is orders of magnitude times smaller than
the one for the pGDM and VDM, hence it satisfies the ID limit.
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8. Direct-detecion (1805.12562) constraint the spin-independent nucleon-scattering
cross section.
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Figure 4: Direct-detection limits. (1805.12562)

For VDM and FDM:

σSI '
µ2m2

DM

π
· m

2
N

v2
f2N

m4
1m

4
2

· sin
2α cos2α

v2S
(m2

1 −m2
2)

2 ,

Bohdan Grzadkowski, University of Warsaw, FCC Physics and Experiments Workshop, November 10th 2020

https://arxiv.org/pdf/1805.12562.pdf
https://arxiv.org/pdf/1805.12562.pdf


For pGDM 1-loop calculations are needed (1810.06105).

σSI =
µ2m2

DM

π
· m

2
N

v2
f2N

m4
1m

4
2

· sin
2α cos2α

v2S
(m2

1 −m2
2)

2 ·
[ A

64π2vv2S

]2
,

A =a1 · C2(0,m
2
DM,m

2
DM,m

2
1,m

2
2,m

2
DM)+

a2 ·D3(0, 0,m
2
DM,m

2
DM, 0,m

2
DM,m

2
1,m

2
1,m

2
2,m

2
DM)+

a3 ·D3(0, 0,m
2
DM,m

2
DM, 0,m

2
DM,m

2
1,m

2
2,m

2
2,m

2
DM)

with [ A
64π2vv2S

]2
<∼ 10−5

In considered range of parameters, in the case of pGDM, the DD upper bound on

the value of sin2 α cos2 α
v2
S

(m2
1 −m2

2)
2 is always higher than the value corresponding

to the correct relic density (for sinα that maximize the cross section for given m2

and mDM).
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σSI =
µ2m2

DM

π
· m

2
N

v2
f2N

m4
1m

4
2

· sin
2α cos2α

v2S
(m2

1 −m2
2)

2 ·
[ A

64π2vv2S

]2
,

The XENON1T limit for mDM & 100 GeV can be parametrized as:

σmax
SI

1 cm2
=

mDM

1 GeV
· 10−48.05 .

Hence, the strictest possible DD limit reads

sin2α cos2α

v2S
(m2

1 −m2
2)

2 <
m4

2

mDM

v2

m2
N

m4
1

f2N

π

µ2

1 cm2

1 GeV
· 10−48.05 ·


[

A
64π2vv2

S

]−2
(pGDM)

1 (FDM,VDM)
=

=
m4

2

mDM
· 1.5 · 10−6 GeV−1 ·

{
105 (pGDM)

1 (FDM,VDM)
.
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Dark matter at e+e− colliders

e−

e+ Z

χ

χZ

Q

hi

Figure 5: Feynman diagram for e+e− → Zχχ̄, χ denotes the dark particle (χ =
A,X,ψ).

• P. Ko, H. Yokoya, “Search for Higgs portal DM at the ILC”, JHEP 1608 (2016)
109,

• T. Kamon, P. Ko, J. Li “Characterizing Higgs portal dark matter models at the
ILC”, Eur.Phys.J. C77 (2017) no.9, 652
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Figure 6: Feynman diagram for e+e− → Zχχ̄, χ denotes the dark particle (χ =
A,X,ψ).
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Background
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Figure 8: Exemplary diagrams of the Standard Model background processes. Neutrinos
contribute to missing energy and can therefore mimic dark particles. The background
cross-section could be reduced by polarizing the initial e+ and e− beams.
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Strategy

• Fix
√
s e.g. at 240 GeV for the CEPC, or

√
s = 250 GeV for the ILC,

• Parameters: m2, mDM, sinα and vS,

• For given (m2,mDM) and sinα, the value of vS is derived by solving the relic-density
condition, so vS is no longer independent:

sin2α cos2α

v2S
(m2

1 −m2
2)

2 =

= 2.1 · 10−5 GeV−2
(m2

1 − 4m2
DM)2 (m2
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DM)2

mDM(m2
DM −m2

b)
3/2

·


1
12 (pGDM)

1 (VDM)
4mDM
9Tf

(FDM)

• For each point (m2,mDM) of the plot, we choose such value of sinα ≤ 0.3 that
maximizes the total cross section.
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Extra scalars at 500 ILC → Exclusion Limits

Prelimiary results for 500 GeV.

Yan Wang | Searching for new extra scalars at the ILC | October 25, 2018 | 17/18

Figure 9: Expected sensitivity for the measurement of the cross-section for e+e− →
DM DM Z at the ILC, from Yan Wang (DESY, IHEP) at LCWS 2018, Arlington,
October 25, 2018. κ95 ≡ σ(e+e− → · · ·+ Z)/σSM(e+e− → hSMZ)
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benchmark point for pGDM

m2 = 120.8 GeV , mDM = 58.9 GeV ,

sinα = 0.30 , vS = 646 GeV ,

Γ1 = 7.4 · 10−3 GeV , Γ2 = 9.8 · 10−3 GeV ,

BR(h1 → DM) = 19% , BR(h2 → DM) = 95% ,

σ = 62 fb

Figure 10: For the pGDM, the allowed region (greenish), the region forbidden by the
invisible BR of h1 (cyan) where BR(h1 → DM) > 19% and the gray region where
the cross section falls below its expected precision at the 95% CL. Coloring of the
greenish area shows the value of the normalized total cross section σ/σSM . The star
denotes the chosen benchmark point, characterized by relatively high cross section.
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benchmark point for VDM

m2 = 118.4 GeV , mDM = 58.5 GeV ,

sinα = 0.30 , vS = 561 GeV ,

Γ1 = 7.4 · 10−3 GeV , Γ2 = 6.4 · 10−3 GeV ,

BR(h1 → DM) = 18% , BR(h2 → DM) = 92% ,

σ = 61 fb

Figure 11: As in Fig. 10 for the VDM model. The region forbidden by the DD
constraint is denoted in black.
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benchmark point for FDM

m2 = 123.6 GeV , mDM = 61.1 GeV ,

sinα = 0.30 , vS = 76 GeV ,

Γ1 = 7.4 · 10−3 GeV , Γ2 = 5.9 · 10−3 GeV ,

BR(h1 → DM) = 18% , BR(h2 → DM) = 91% ,

σ = 59 fb

Figure 12: As in Fig. 10 for the FDM model. The region forbidden by the DD
constraint is denoted by black.
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Figure 13: Top-left: pGDM model, top-right: FDM model, bottom-left: VDM model,
bottom-right: the three models combined. Light- and dark-gray regions denote
violation of perturbativity conditions. Note that the |κ| < 4π condition is not violated
in any place of the considered range of parameters.
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Figure 14: The difference between predictions for the pGDM and the VDM. The gray
region denotes parameter space for which the difference is smaller than the limit of
Fig. 9. The models are compared in the region where both of them are consistent
with the data, see Fig. 13.
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Figure 15: The difference between predictions for the pGDM and the FDM (left
panel), and the FDM and the VDM (right panel). The gray region denotes parameter
space for which the difference is smaller than the limit of Fig. 9. The models are
compared in the region where both of them are consistent with the data, see Fig. 13.

Bohdan Grzadkowski, University of Warsaw, FCC Physics and Experiments Workshop, November 10th 2020



Summary

1. The following models were discussed and compared:

• pGDM with complex scalar field S and U(1) global symmetry softly broken by
µ2(S2 + S∗ 2),
• VDM with gauged U(1)X and complex S,
• FDM with chiral χ and real S.

2. Perturbativity, vacuum stability and globality of the vacuum ensured.

3. • Limits for invisible Higgs boson decays BR(h1 → DM DM) < 19% and LHC
limits on sinα < 0.30 imposed.
• Limits from ID and DD satisfied.
• DM abundance constraint satisfied.

4. Direct detection efficiently suppressed in the pGDM model, σSI ∝ v4A, as a
consequence of A being a pseudo-Goldstone boson, 1-loop calculations were
performed and adopted. For q2 = 0 the 1-loop results are UV finite and vanish in
the limit mA = mDM → 0.

5. In some regions of (m2,mDM) space e+e− colliders might be useful to disentangle
the models.
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Backup slides: Vacuum stability

VVDM(H,S) = −µ2
H|H|2 + λH|H|4 − µ2

S|S|2 + λS|S|4 + κ|S|2|H|2

λH(Q) > 0, λS(Q) > 0, κ(Q) + 2
√
λH(Q)λS(Q) > 0
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Figure 16: Running of various parameters at 1- and 2-loop, in solid and dashed lines
respectively. For this choice of parameters λH(Q) > 0 at 2-loop (right panel blue)
but not at 1-loop. λS(Q) is always positive (right panel red), running of κ(Q) is
very limited, however the third positivity condition κ(Q) + 2

√
λH(Q)λS(Q) > 0 is

violated at higher scales even at 2-loops (right panel green).
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The mass of the Higgs boson is known experimentally therefore within the SM the
initial condition for running of λH(Q) is fixed

λH(mt) = M2
h1
/(2v2) = λSM = 0.13

For VDM this is not necessarily the case:

M2
h1

= λHv
2 + λSv

2
S ±

√
λ2Sv

4
S − 2λHλSv2v2S + λ2Hv

4 + κ2v2v4S.

VDM:

• Larger initial values of λH such that λH(mt) > λSM are allowed delaying the
instability (by shifting up the scale at which λH(Q) < 0).

• Even if the initial λH is smaller than its SM value, λH(mt) < λSM , still there is a
chance to lift the instability scale if appropriate initial value of the portal coupling
κ(mt) is chosen.

β
(1)
λH

= β
SM (1)
λH

+ κ2
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f(s,
√
Q2) ≡ g2V + g2A

24π
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