Pragmatic extensions of the Standard Model

Bohdan Grzadkowski
June 5, 2023
University of Warsaw

The 6th International Workshop on Higgs as a Probe of New Physics 2023, June $5^{\text {th }} 2023$, Osaka

Table of contents

1. Motivations
2. Authors
3. Difficulties of the SM
4. Interpretation of the LHC Higgs data
5. Fundamental (renormalizable) extensions of the SM
6. n-singlet models
7. Properties of nHDM
8. Minimal models with CPV and DM
9. Summary and conclusions

Motivations

- Lack of dark matter (DM) candidate within the Standard Model (SM)

Motivations

- Lack of dark matter (DM) candidate within the Standard Model (SM)
- Unexplained baryon asymmetry

Motivations

- Lack of dark matter (DM) candidate within the Standard Model (SM)
- Unexplained baryon asymmetry
- The strong CP problem

Motivations

- Lack of dark matter (DM) candidate within the Standard Model (SM)
- Unexplained baryon asymmetry
- The strong CP problem
- . .

Motivations

- Lack of dark matter (DM) candidate within the Standard Model (SM)
- Unexplained baryon asymmetry
- The strong CP problem
-...
- Hereafter we are going to advertise pragmatic extensions of the SM that cure some of its diseases

Motivations

- Lack of dark matter (DM) candidate within the Standard Model (SM)
- Unexplained baryon asymmetry
- The strong CP problem
....
- Hereafter we are going to advertise pragmatic extensions of the SM that cure some of its diseases

2+ Higgs Doublet Model (2+HDM)

Authors

- Howard Haber
- Jack Gunion
- Joao Silva
- Luis Lavoura
- Igor Ivanov
- Apostolos Pilaftsis
- Marc Sher
- Pedro Ferreira
- Rui Santos
- Michael J. Ramsey-Musolf
- Stefano Moretti
- Milada Margarete Mühlleitner
-...

Difficulties of the SM

- Lack of the DM candidate within the SM
- Strong experimental evidence for DM:
- Galaxy rotation curves
- Gravitational lensing
- Cosmic microwave background
- Structure formation
- Modified Newtonian Dynamics (MOND/TeVeS) not an attractive possibility, it is not sufficient to explain data (DM is still needed)
- Unexplained baryon asymmetry

The Sakhrov conditions:

- B-violation
- C - and $C P$-violation
- Thermal inequilibrium
- The strong CP problem
- symmetries of the SM allow for

$$
\operatorname{Tr}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right) \equiv \frac{1}{2} \epsilon^{\mu \nu \alpha \beta} \operatorname{Tr}\left(F_{\mu \nu} F_{\alpha \beta}\right) \xrightarrow{P}-\operatorname{Tr}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)
$$

- odd under CP

$$
\begin{gathered}
\mathcal{L}_{\theta}=\theta \frac{g_{s}^{2}}{32 \pi^{2}} F^{a \mu \nu} \tilde{F}_{\mu \nu}^{a} \Rightarrow \text { neutron-EDM } \quad D_{n} \simeq 2.7 \cdot 10^{-16} \theta \mathrm{e} \mathrm{~cm} \\
\Downarrow \\
D_{n} \lesssim 1.1 \cdot 10^{-25} \mathrm{e} \mathrm{~cm} \quad \Rightarrow \quad \theta \lesssim 3 \cdot 10^{-10}
\end{gathered}
$$

The strong CP problem: why is θ so small?

- Cosmology

$$
\Omega_{\Lambda}=\frac{\rho_{\Lambda}}{\rho_{c}} \simeq 0.7 \quad \Rightarrow \quad \rho_{\Lambda} \simeq 10^{-46} \mathrm{GeV}^{4}
$$

The gravitational prediction: $\rho_{\wedge} \sim M_{\mathrm{Pl}}^{4} \sim 10^{76} \mathrm{GeV}^{4}$

- Parameters of the SM

$$
\begin{gathered}
\begin{array}{cc}
m_{e} & m_{\mu} \\
m_{\nu_{e}} & m_{\nu_{\mu}}
\end{array} \underbrace{m_{\nu_{\tau}}}_{\left(\alpha_{Q E D}, \sin \theta_{W}\right)} \begin{array}{c}
m_{u} \quad m_{c}
\end{array} m_{\left(\alpha_{Q C D}\right)}^{m_{d} \quad m_{s}} m_{(\mu, \lambda)} m_{b} \\
21
\end{gathered}, \underbrace{m_{h}, \lambda}_{\text {parameters ! }}, \underbrace{U_{C K M}}_{\theta_{\mathbf{1}, \mathbf{2}, \mathbf{3}}, \delta_{C P}}
$$

-Why only one Higgs boson?

- The Higgs field was introduced just to make the model renormalizable (unitary)
- There exist many fermions and vector bosons, so why only one scalar? Why, for instance, not a dedicated scalar for each fermion?

Interpretation of the LHC Higgs data

SM as an effective field theory:

$$
\mathcal{L}=\mathcal{L}_{S M}+\frac{c}{\Lambda_{U V}} \mathcal{O}_{5}+\sum_{i} \frac{c_{i}}{\Lambda_{U V}^{4}} \mathcal{O}_{i}
$$

The $125-\mathrm{GeV}$ Higgs boson is SM-like

$$
\begin{gathered}
H_{125} \simeq H_{S M} \\
\Downarrow \\
\Lambda_{U V} \gg v=246 \mathrm{GeV}
\end{gathered}
$$

No new physics in the TeV energy/mass range!

Interpretation of the LHC Higgs data

SM as an effective field theory:

$$
\mathcal{L}=\mathcal{L}_{S M}+\frac{c}{\Lambda_{U V}} \mathcal{O}_{5}+\sum_{i} \frac{c_{i}}{\Lambda_{U V}^{4}} \mathcal{O}_{i}
$$

The $125-\mathrm{GeV}$ Higgs boson is SM-like

$$
\begin{gathered}
H_{125} \simeq H_{S M} \\
\Downarrow \\
\Lambda_{U V} \gg v=246 \mathrm{GeV}
\end{gathered}
$$

No new physics in the TeV energy/mass range!
n-Higgs doublet model (nHDM) in the alignment limit: $\Lambda_{U V} \sim 300 \mathrm{GeV}$

Fundamental (renormalizable) extensions of the SM

© Extra gauge symmetries

- GUTs, e.g. $\operatorname{SU}(5)$: unification of gauge couplings, ...
- $L-R$ symmetry, $S U(2)_{L} \times S U(2)_{R} \times U(1)$: spontaneous parity violation
- $S U(2)_{L} \times U(1) \times U(1)^{\prime}:$ just extra Z^{\prime}
- Extra fermions
- vector-like quarks
© Extra Higgs bosons
- SM-like Higgs-boson discovery by ATLAS and CMS at the LHC announced on 4 July 2012

$$
m_{h}=125.09 \pm 0.21 \text { (stat.) } \pm 0.11 \text { (syst.) GeV }
$$

- SM single Higgs doublet is rather unnatural, why only one?
- Higgs-boson representation:

$$
\rho \equiv \frac{m_{W}^{2}}{m_{Z}^{2} \cos ^{2} \theta_{W}}, \quad \mathrm{SM} \quad \Rightarrow \quad \rho=1+\mathcal{O}(\alpha)
$$

for general Higgs multiplets:

$$
\rho=\frac{\sum_{i}\left[T_{i}\left(T_{i}+1\right)-T_{i 3}^{2}\right] v_{i}^{2}}{\sum_{i} 2 T_{i 3}^{2} v_{i}^{2}}
$$

data: $\rho=1.0002\left\{\begin{array}{l}+0.0024 \\ -0.0009\end{array} \quad \Rightarrow \quad T=\frac{1}{2}\right.$
Doublets (nHDM) and
© Extra Higgs bosons

- SM-like Higgs-boson discovery by ATLAS and CMS at the LHC announced on 4 July 2012

$$
m_{h}=125.09 \pm 0.21(\text { stat. }) \pm 0.11 \text { (syst.) GeV }
$$

- SM single Higgs doublet is rather unnatural, why only one?
- Higgs-boson representation:

$$
\rho \equiv \frac{m_{W}^{2}}{m_{Z}^{2} \cos ^{2} \theta_{W}}, \quad \mathrm{SM} \quad \Rightarrow \quad \rho=1+\mathcal{O}(\alpha)
$$

for general Higgs multiplets:

$$
\rho=\frac{\sum_{i}\left[T_{i}\left(T_{i}+1\right)-T_{i 3}^{2}\right] v_{i}^{2}}{\sum_{i} 2 T_{i 3}^{2} v_{i}^{2}}
$$

data: $\rho=1.0002\left\{\begin{array}{l}+0.0024 \\ -0.0009\end{array} \Rightarrow \quad T=\frac{1}{2}\right.$
Doublets (nHDM) and extra singlets (real or complex) are favored.

- Scalar $S U(2)$ singlets:
- real $\Rightarrow \mathrm{DM}$
- complex \Rightarrow pseudo-Goldstone DM with suppressed DM-nucleon coupling
- Scalar SU(2) doublets: extra sources of CPV from the scalar potential and from Yukawas (for baryogenesis)

n-singlet models

Real singlet scalar $S(D M) \oplus S M$

$$
V=-\mu_{\phi}^{2}|\phi|^{2}+\lambda_{\phi}|\phi|^{4}-\mu_{S}^{2} S^{2}+\lambda_{S} S^{4}+\kappa S^{2}|\phi|^{2}
$$

- ϕ is the SM Higgs doublet
- Z_{2} symmetry $S \rightarrow-S, S$ is DM candidate
B.G. and J. Wudka, "Pragmatic approach to the little hierarchy problem: the case for Dark Matter and neutrino physics," Phys. Rev. Lett. 103, 091802 (2009)
A. Drozd, B.G. and J. Wudka, "Multi-Scalar-Singlet Extension of the Standard Model - the Case for Dark Matter and an Invisible Higgs Boson," JHEP O4, oo6 (2012)

Complex singlet $(D M) \oplus S M$

$$
\begin{gathered}
S \xrightarrow{U(1)} e^{i \alpha} S \\
V=-\mu_{\phi}^{2}|\phi|^{2}+\lambda_{\phi}|\phi|^{4}-\mu_{S}^{2}|S|^{2}+\lambda_{S}|S|^{4}+\kappa|S|^{2}|\phi|^{2}+\mu^{2}\left(S^{2}+S^{* 2}\right) \\
S=\frac{1}{\sqrt{2}}\left(v_{S}+\phi_{S}+i A\right)
\end{gathered}
$$

Symmetries:

- weak basis choice: $\langle S\rangle=\frac{v_{s}}{\sqrt{2}}$,
- dark charge conjugation $C: S \rightarrow S^{\star} \quad \Rightarrow \quad$ stability of $\Im S$ and
- $U(1)$ softly broken by $\mu^{2}\left(S^{2}+S^{* 2}\right) \quad \Rightarrow \quad$ pseudo-Goldstone boson,
- $U(1)$ softly broken by $\mu^{2}\left(S^{2}+S^{* 2}\right) \quad \Rightarrow \quad$ residual symmetry:

$$
S \xrightarrow{z_{2}}-S .
$$

D. Azevedo, M. Duch, B.G., D. Huang, M. Iglicki and R. Santos, "Testing scalar versus vector dark matter," Phys. Rev. D 99, no.1, 015017 (2019), "One-loop contribution to dark-matter-nucleon scattering in the pseudo-scalar dark matter model," JHEP 01, 138 (2019)

Direct detection

The DM direct detection signals are naturally suppressed in the pGDM model.

$$
V \supset \frac{A^{2}}{2 v_{S}}\left(\sin \alpha m_{1}^{2} h_{1}+\cos \alpha m_{2}^{2} h_{2}\right),
$$

$$
i \mathcal{M}=-i \frac{\sin 2 \alpha f_{N} m_{N}}{2 v v_{S}}\left(\frac{m_{1}^{2}}{q^{2}-m_{1}^{2}}-\frac{m_{2}^{2}}{q^{2}-m_{2}^{2}}\right) \bar{u}_{N}\left(p_{4}\right) u_{N}\left(p_{2}\right) \rightarrow 0
$$

Properties of nHDM

A Theory of Spontaneous T Violation*

T. D. Lee
Department of Physics, Columbia University, New York, New York 10027
(Received 11 April 1973)

Abstract

A theory of spontaneous T violation is presented. The total Lagrangian is assumed to be invariant under the time reversal T and a gauge transformation (e.g., the hypercharge gauge), but the physical solutions are not. In addition to the spin-1 gauge field and the known matter fields, in its simplest form the theory consists of two complex spin-0 fields. Through the spontaneous symmetry-breaking mechanism of Goldstone and Higgs, the vacuum expectation values of these two spin-0 fields can be characterized by the shape of a triangle and their quantum fluctuations by its vibrational modes, just like a triangular molecule. T violations can be produced among the known particles through virtual excitations of the vibrational modes of the triangle which has a built-in T-violating phase angle. Examples of both Abelian and non-Abelian gauge groups are discussed. For renormalizable theories, all spontaneously T-violating effects are finite. It is found that at low energy, below the threshold of producing these vibrational quanta, T violation is always quite small.

I. INTRODUCTION

In this paper we discuss a theory of spontaneous T violation. To illustrate the theory, we shall first discuss a simple model in which the weakinteraction Lagrangian, as well as the strong- and electromagnetic-interaction Lagrangians, is assumed to be invariant under (1) the time reversal T and (2) a gauge transformation, e.g., that of the hypercharge Y. Yet the physical solutions are required to exhibit both T violation and Y nonconservation. In its construction, the model is similar to those gauge-group spontaneous symmetry-violating theories ${ }^{1-4}$ that have been extensively discussed in the literature. The only difference is that one now has, in addition, the spontaneous violation of a discrete summetrv ${ }^{5}$ As we shall see

$$
\phi_{k}-e^{i \Lambda} \phi_{k}
$$

and

$$
\begin{equation*}
\boldsymbol{B}_{\mu} \rightarrow \boldsymbol{B}_{\mu}+f^{-1} \frac{\partial \boldsymbol{\Lambda}}{\partial x_{\mu}}, \tag{1}
\end{equation*}
$$

where f is the hypercharge coupling constant and the subscript $k=1$ and 2. As usual, T is assumed to commute with Y,

$$
\begin{equation*}
T Y T^{-1}=Y \tag{2}
\end{equation*}
$$

This gives then a well-defined difference between T and either $C T$ or $C P T$. Since T is an antiunitary operator, we can always choose the phase of ϕ_{k} such that

$$
\begin{equation*}
T \phi_{\mathrm{k}} T^{-1}=\phi_{k} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& V\left(\Phi_{1}, \Phi_{2}\right) \\
& =-\frac{1}{2}\left\{m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2}+\left[m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}+\text { H.c. }\right]\right\} \\
& +\frac{1}{2} \lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right) \\
& +\left\{\frac{1}{2} \lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\left[\lambda_{6}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\lambda_{7}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right]\left(\Phi_{1}^{\dagger} \Phi_{2}\right)+\text { H.c. }\right\}
\end{aligned}
$$

In a general basis, the vacuum may be complex:

$$
\Phi_{j}=e^{i \xi_{j}}\binom{\varphi_{j}^{+}}{\left(v_{j}+\eta_{j}+i \chi_{j}\right) / \sqrt{2}}, \quad j=1,2
$$

Spontaneous or explicit violation of CP is possible

Physical/observable input parameter set:

$$
\begin{aligned}
& \mathcal{P} \equiv\left\{M_{H^{ \pm}}^{2}, M_{1}^{2}, M_{2}^{2}, M_{3}^{2}, e_{1}, e_{2}, e_{3}, q_{1}, q_{2}, q_{3}, q\right\} \\
& e_{i} \propto H_{i} W^{+} W^{-}, H_{i} Z Z \\
& q_{i} \propto H_{i} H^{+} H^{-} \\
& e_{1}^{2}+e_{2}^{2}+e_{3}^{2}=v^{2} \equiv v_{1}^{2}+v_{2}^{2}
\end{aligned}
$$

Weak-bases transformation:

$$
\binom{\bar{\Phi}_{1}}{\bar{\Phi}_{2}}=\underbrace{e^{i \psi}\left(\begin{array}{cc}
\cos \theta & e^{-i \tilde{\xi}} \sin \theta \\
-e^{i \chi} \sin \theta & e^{i(\chi-\tilde{\xi})} \cos \theta
\end{array}\right)}_{U(2)}\binom{\Phi_{1}}{\Phi_{2}}
$$

Flavor-Changing Neutral Currents in nHDM

$$
\begin{gathered}
\mathcal{L} \supset-\sum_{\alpha=1}^{n} \sum_{i, j=1}^{3}\left(\tilde{\Gamma}_{i j}^{\alpha} \bar{u}_{i R} \tilde{\phi}^{\alpha \dagger} Q_{j L}+\Gamma_{i j}^{\alpha} \bar{d}_{i R} \phi^{\alpha \dagger} Q_{j L}+\text { H.c. }\right) \\
\mathcal{M}_{i j}^{u}=\sum_{\alpha=1}^{n} \tilde{\Gamma}_{i j}^{\alpha} \frac{v_{\alpha}}{\sqrt{2}}, \quad \mathcal{M}_{i j}^{d}=\sum_{\alpha=1}^{n} \Gamma_{i j}^{\alpha} \frac{v_{\alpha}}{\sqrt{2}}
\end{gathered}
$$

$n=2$

$$
\mathcal{M}_{i j}^{u}=\tilde{\Gamma}_{i j}^{1} \frac{V_{1}}{\sqrt{2}}+\tilde{\Gamma}_{i j}^{2} \frac{v_{2}}{\sqrt{2}}, \quad \mathcal{M}_{i j}^{d}=\Gamma_{i j}^{1} \frac{V_{1}}{\sqrt{2}}+\Gamma_{i j}^{2} \frac{v_{2}}{\sqrt{2}}
$$

$$
\begin{gathered}
Z_{2}: \phi_{2} \rightarrow-\phi_{2}, u_{i R} \rightarrow-u_{i R} \\
\mathcal{M}_{i j}^{u}=\stackrel{\zeta_{i j}}{v_{y}} \frac{\tilde{\Gamma}_{i j}^{2}}{\sqrt{2}} \frac{v_{2}}{\sqrt{2}}, \quad \mathcal{M}_{i j}^{d}=\Gamma_{i j}^{1} \frac{v_{1}}{\sqrt{2}}+\Gamma_{i j} \frac{v_{2}}{\sqrt{2}} \\
\text { no: FCNC }
\end{gathered}
$$

The Inert Higgs Doublet model (IDM)

$Z_{2}: \phi_{2} \rightarrow-\phi_{2}$ unbroken, i.e. $v_{2}=0:$

$$
\begin{aligned}
& V\left(\Phi_{1}, \Phi_{2}\right)= \\
& -\frac{1}{2}\left\{m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2}+\left[\overline{\left.m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}+H . C .\right]}\right\}\right. \\
& +\frac{1}{2} \lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right) \\
& +\left\{\frac{1}{2} \lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\frac{\left[\lambda_{6}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\lambda_{1}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right]\left(\Phi_{1}^{\dagger} \Phi_{2}\right)}{}+\text { H.c. }\right\} \\
& \Phi_{2}=e^{i \ll 2}\binom{\varphi_{2}^{+}}{\left(\mathbb{Y}+\eta_{2}+i \chi_{2}\right) / \sqrt{2}}, \\
& \Downarrow
\end{aligned}
$$

DM candidates: η_{2}, χ_{2}

The Higgs alignment

$H_{125} \simeq H_{S M}$
\Downarrow
$e_{1} \simeq v$
\Downarrow

$$
2 H D M: e_{1}=v, e_{2}=e_{3}=0 \quad\left(e_{1}^{2}+e_{2}^{2}+e_{3}^{2}=v^{2}\right)
$$

$$
\begin{gathered}
\Downarrow \\
e_{1}=v \cos \left(\alpha_{2}\right) \cos \left(\alpha_{1}-\beta\right)=v,
\end{gathered}
$$

where $\tan \beta=v_{2} / v_{1}$.

$$
\begin{gathered}
\Downarrow \\
\alpha_{1}=\beta, \quad \alpha_{2}=0
\end{gathered}
$$

Weak-basis CPV invariants

$$
\begin{aligned}
\Im J_{1} & =\frac{1}{v^{5}} \sum_{i, j, k} \epsilon_{i j k} M_{i}^{2} e_{i} e_{k} q_{j} \\
& =\frac{1}{v^{5}}\left[M_{1}^{2} e_{1}\left(e_{3} q_{2}-e_{2} q_{3}\right)+M_{2}^{2} e_{2}\left(e_{1} q_{3}-e_{3} q_{1}\right)+M_{3}^{2} e_{3}\left(e_{2} q_{1}-e_{1} q_{2}\right)\right] \\
\Im J_{2} & =\frac{2}{v^{9}} \sum_{i, j, k} \epsilon_{i j k} e_{i} e_{j} e_{k} M_{i}^{4} M_{k}^{2} \\
& =\frac{2 e_{1} e_{2} e_{3}}{v^{9}}\left(M_{1}^{2}-M_{2}^{2}\right)\left(M_{2}^{2}-M_{3}^{2}\right)\left(M_{3}^{2}-M_{1}^{2}\right) \\
\Im J_{30} & =\frac{1}{v^{5}} \sum_{i, j, k} \epsilon_{i j k} q_{i} M_{i}^{2} e_{j} q_{k}
\end{aligned}
$$

$C P$ is conserved if and only if $\Im J_{1}=\Im J_{2}=\Im J_{30}=0$

Alignment: e_1=v, e_2=e_3=0

$$
\begin{aligned}
\Im J_{1} & =0 \\
\Im J_{2} & =0, \\
\Im J_{30} & =\frac{q_{2} q_{3}}{v^{4}}\left(M_{3}^{2}-M_{2}^{2}\right)
\end{aligned}
$$

- $e_{1}=v$ implies no CP violation in the couplings to gauge bosons ($\Im J_{1}=\Im J_{2}=0$), the only possible CP violation may appear in cubic scalar couplings q_{2} and q_{3}.
- The necessary condition for CP violation is that both $\left(\mathrm{H}_{2} \mathrm{H}^{+} \mathrm{H}^{-}\right)$ and $\left(\mathrm{H}_{3} \mathrm{H}^{+} \mathrm{H}^{-}\right)$couplings must exist together with a non-zero $Z_{2} H_{3}$ vertex $\left(\propto e_{1}\right)$.
- If $\lambda_{6}=\lambda_{7}=0\left(Z_{2}\right.$-symmetric 2 HDM$)$, then $\Im J_{30}=0$, so no CPV!
B.G., O. M. Ogreid and P. Osland, "Measuring CP violation in Two-Higgs-Doublet models in light of the LHC Higgs data", JHEP 11, 084 (2014)

2HDM conclusions

- Violation of CP in the scalar potential
- Weak-basis invariance of observables
- Flavor-Changing Neutral Currents $\left(Z_{2}: \phi_{2} \rightarrow-\phi_{2}\right)$
- Symmetries of the potential (e.g. Z_{2} extended to Yukawa invariance)
- Inert Doublet Model (IDM): exactly Z_{2}-symmetric ($\phi_{2} \rightarrow-\phi_{2}$) 2HDM, DM candidates, no CPV
- No CPV in the potential in Z_{2}-symmetric models in the alignment limit

For CPV in the potential the Z_{2} must be abandoned, so FCNC appear

Minimal models with CPV and DM

- minimal: real or complex singlet $(\mathrm{DM}) \oplus 2 \mathrm{HDM}(\mathrm{CPV})$

Minimal models with CPV and DM

- minimal: real or complex singlet (DM) $\oplus 2 \mathrm{HDM}(\mathrm{CPV})$
- next to minimal: $\underbrace{\text { inert doublet (DM) } \oplus 2 \mathrm{HDM}(\mathrm{CPV})}_{3 H D M}$

Real singlet $(\mathrm{DM}) \oplus 2 \mathrm{HDM}(\mathrm{CPV})$

$Z_{2} \times Z_{2}^{\prime}\left(\phi_{2} \rightarrow-\phi_{2}, \varphi \rightarrow-\varphi\right)$ symmetry, Z_{2} softly broken

$$
\begin{aligned}
V\left(\phi_{1}, \phi_{2}, \varphi\right)= & -\frac{1}{2}\left\{m_{11}^{2} \phi_{1}^{\dagger} \phi_{1}+m_{22}^{2} \phi_{2}^{\dagger} \phi_{2}+\left[m_{12}^{2} \phi_{1}^{\dagger} \phi_{2}+\text { H.c. }\right]\right\} \\
& +\frac{1}{2} \lambda_{1}\left(\phi_{1}^{\dagger} \phi_{1}\right)^{2}+\frac{1}{2} \lambda_{2}\left(\phi_{2}^{\dagger} \phi_{2}\right)^{2} \\
& +\lambda_{3}\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{2}^{\dagger} \phi_{2}\right)+\lambda_{4}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{2}^{\dagger} \phi_{1}\right)+\frac{1}{2}\left[\lambda_{5}\left(\phi_{1}^{\dagger} \phi_{2}\right)^{2}+\text { H.c. }\right] \\
& +\mu_{\varphi}^{2} \varphi^{2}+\frac{1}{24} \lambda_{\varphi} \varphi^{4}+\varphi^{2}\left(\eta_{1} \phi_{1}^{\dagger} \phi_{1}+\eta_{2} \phi_{2}^{\dagger} \phi_{2}\right) . \\
& \varphi-\text { DM candidate }
\end{aligned}
$$

B.G. and P. Osland, "Tempered Two-Higgs-Doublet Model", Phys.Rev.D82, 125026 (2010)

Singlet Complex Scalar \oplus General 2HDM

$$
S \xrightarrow{U(1)} e^{i \alpha} S
$$

The $U(1)$ softly broken $\left(Z_{2}: S \rightarrow-S\right)$:

$$
\begin{aligned}
V= & -\frac{1}{2}\left[m_{11}^{2}\left|\Phi_{1}\right|^{2}+m_{22}^{2}\left|\Phi_{2}\right|^{2}+\left(m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}+\text { H.C. }\right)\right]+\frac{\lambda_{1}}{2}\left|\Phi_{1}\right|^{4}+\frac{\lambda_{2}}{2}\left|\Phi_{2}\right|^{4} \\
& +\lambda_{3}\left|\Phi_{1}\right|^{2}\left|\Phi_{2}\right|^{2}+\lambda_{4}\left|\Phi_{1}^{\dagger} \Phi_{2}\right|^{2}+\left[\frac{1}{2} \lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{6}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left|\Phi_{1}\right|^{2}+\lambda_{7}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left|\Phi_{2}\right|^{2}+\right. \\
& -\mu_{s}^{2}|S|^{2}+\frac{\lambda_{s}}{2}|S|^{4}+\left(\mu^{2} S^{2}+\text { H.C. }\right)+|S|^{2}\left[\kappa_{1}\left|\Phi_{1}\right|^{2}+\kappa_{2}\left|\Phi_{2}\right|^{2}+\left(\frac{\kappa_{3}}{2} \Phi_{1}^{\dagger} \Phi_{2}+\text { H.C. }\right)\right] \\
& \Phi_{1}=\binom{\phi_{1}^{+}}{\frac{v_{1}+\eta_{1}+i \chi_{1}}{\sqrt{2}}}, \quad \Phi_{2}=\binom{\phi_{2}^{+}}{\frac{v_{2}+\eta_{2}+i \chi_{2}}{\sqrt{2}}}, \quad S=\frac{v_{s}+s+i A}{\sqrt{2}}
\end{aligned}
$$

In the general 2HDM with pGDM the tree-level DM-quark amplitude also vanishes at the zero momentum transfer limit.
N. Darvishi and B.G."Pseudo-Goldstone dark matter model with CP violation," JHEP 06, 092 (2022)

Inert doublet $(D M) \oplus 2 \mathrm{HDM}(\mathrm{CPV})$

$Z_{2} \times Z_{2}^{\prime}\left(\phi_{2} \rightarrow-\phi_{2}, \eta \rightarrow-\eta\right)$ symmetry, Z_{2} softly broken:

$$
V\left(\Phi_{1}, \Phi_{2}, \eta\right)=V_{12}\left(\Phi_{1}, \Phi_{2}\right)+V_{3}(\eta)+V_{123}\left(\Phi_{1}, \Phi_{2}, \eta\right)
$$

where

$$
\begin{aligned}
V_{12}\left(\Phi_{1}, \Phi_{2}\right) & =-\frac{1}{2}\left\{m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2}+\left[m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}+\text { H.c. }\right]\right\} \\
& +\frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right) \\
& +\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\frac{1}{2}\left[\lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\text { H.c. }\right], \\
V_{3}(\eta) & =m_{\eta}^{2} \eta^{\dagger} \eta+\frac{\lambda_{\eta}}{2}\left(\eta^{\dagger} \eta\right)^{2}, \\
V_{123}\left(\Phi_{1}, \Phi_{2}, \eta\right) & =\lambda_{1133}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\eta^{\dagger} \eta\right)+\lambda_{2233}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\left(\eta^{\dagger} \eta\right) \\
& +\lambda_{1331}\left(\Phi_{1}^{\dagger} \eta\right)\left(\eta^{\dagger} \Phi_{1}\right)+\lambda_{2332}\left(\Phi_{2}^{\dagger} \eta\right)\left(\eta^{\dagger} \Phi_{2}\right) \\
& +\frac{1}{2}\left[\lambda_{1313}\left(\Phi_{1}^{\dagger} \eta\right)^{2}+\text { H.c. }\right]+\frac{1}{2}\left[\lambda_{2323}\left(\Phi_{2}^{\dagger} \eta\right)^{2}+\text { H.c. }\right]
\end{aligned}
$$

B.G., O.M. Ogreid, P. Osland, "Natural Multi-Higgs Model with Dark Matter and CP Violation", Phys.Rev.D80, 055013 (2009)

Summary and conclusions

- The SM is not perfect (DM, $\Lambda, \theta, B A, 21$, etc.)
- The SM should be extended: extra scalar doublets and singlets are likely/favored
- Extra scalars (real or complex singlets, $S U(2)$-doublets) \Rightarrow DM
- Complex scalar with soft breaking of a global symmetry (e.g. $U(1)) \Rightarrow$ pGDM with suppressed $D M$ - nucleus coupling.
- $2 H D M, n H D M \Rightarrow$ CP violation (explicit or spontaneous)
- No CPV in Z_{2} symmetric 2HDM in the alignment limit ($e_{1}=1, e_{2}=e_{3}=0$) \Rightarrow generic 2 HDM with FCNC in Yukawa interactions
- Minimal "pragmatic" models (CPV \& DM):
- minimal: real or complex singlet (DM) $\oplus 2 \mathrm{HDM}(\mathrm{CPV})$, but FCNC
- next to minimal: inert doublet (DM) $\oplus 2 \mathrm{HDM}$ (CPV), but FCNC
- $3 H D M$ e.g. inert doublet $(\mathrm{DM}) \oplus 2 \mathrm{HDM}(\mathrm{CPV}), N_{f}=N_{h}=3$

Backup slides

3HDM of Weinberg:

- CPV in $H^{ \pm}$interactions.
- Natural flavour conservation by a Z_{2}
VOLUME 37. NUMBER 11 PHYSICAL REVIEWVLETTERS IS SEPTEMBER 1976


```
For }\Delta>200\textrm{MeV}\mathrm{ one gets
```



```
    \simeq1:0.5:10-2.
```



```
        < 1:0.5:3\times10-3.
```

 In view of the fact that, experimentally, \(\Delta\) ap-
 in viow of the fact 140 MeV , very nearly a pion
 pears to be about 140 Mev, very nearly a pion
 one may not be able to calculate the decay rates
 of \(D^{*} \rightarrow D \pi\) very accurately
 The author would like to thank the Alexander
 von Humboldt Foundation for financial support
 *Alexander von Humboldt Foundation Fellow, ${ }^{1} \mathrm{~V}$. Lith, in Proceedings of the International Neutrino Conference, Anchen, West Germany, 1976 (to be pub1 ished.
Neutrino Rujulat, in Proceedings of the International Neutrino Conferconce, Aachen, West Germany, 1976 (to be published).
(1976).
${ }^{5} \mathrm{~S}$. Ono, to be published.
${ }^{\mathrm{D} A} \mathrm{~A} . \mathrm{Be}$. Yrohtenberg, Phys. Rev. D 12,3760 (1975). nal, Nucl. Phys. B37. Sliver, 552 (1972).
${ }^{2}$ 'S. Ono, Phys. Rev. D 9, 2005, 2670 (1974).

Gauge Theory of CP Nonconservation*

It is proposed that $C P$ nonconservation arises purely from the exchange of Higgs bos-
\qquad
Ever since the discovery ${ }^{1}$ that $C P$ conservation is not exact, the mystery has been why it is so feebly violated. ${ }^{2}$ In many proposed theories, ${ }^{3}$ one must arrange to have $C P$ to be approximately conserved, by making the appropriate constants in However one would prefer a more natural explanation.
Renormalizable gauge theories ${ }^{4}$ of the weak and electromagnetic interactions provide a mechanism which could violate CP conservation with
about the right strength: the Higgs boson. The
the Fermi coupling constant), so that the exchange of a Higgs boson of mass m_{H} produces an effective Fermi interaction with coupling of order $G_{F} m^{2} / m_{H^{2}}$. For reasonable mass values, ${ }^{5}$ this is exchance to appear as a natural explanation for exchange to appear as a natural explanation for a why $C P$ conservation is strongly violated in the Higgs exchange, and nowhere else. In this paper I wish to present a realistic gauge theory, in which CP nonconservation automatically arises in just this way.*

- explanation of weak mixing angles through horizontal symmetries

$$
\begin{gathered}
\mathcal{L} \supset-\sum_{i, j=1}^{3} \sum_{\alpha=1}^{N_{H}}\left(\tilde{\Gamma}_{i j}^{\alpha} \bar{u}_{i R} \tilde{H}^{\alpha \dagger} Q_{j L}+\Gamma_{i j}^{\alpha} \bar{d}_{i R} H^{\alpha \dagger} Q_{j L}+\text { H.c. }\right) \\
H^{\alpha} \rightarrow \mathcal{H}_{\beta}^{\alpha} H^{\beta}, \quad u_{i R} \rightarrow \mathcal{U}_{i}^{j} u_{j R}, \quad d_{i R} \rightarrow \mathcal{D}_{i}^{j} d_{j R}, \quad Q_{i L} \rightarrow \mathcal{Q}_{i}^{j} Q_{j L} \\
\Downarrow \\
\text { constraints on fermion mass-matrices: } \\
\mathcal{M}_{i j}^{u}=\sum_{\alpha=1}^{N_{H}} \tilde{\Gamma}_{i j} \frac{v_{\alpha}}{\sqrt{2}}, \quad \mathcal{M}_{i j}^{d}=\sum_{\alpha=1}^{N_{H}} \Gamma_{i j}^{\alpha} \frac{v_{\alpha}}{\sqrt{2}} \\
U_{R}^{\dagger} \mathcal{M}^{u} U_{L}=\operatorname{diag}\left(m_{u}, m_{c}, m_{t}\right) \quad D_{R}^{\dagger} \mathcal{M}^{d} D_{L}=\operatorname{diag}\left(m_{d}, m_{s}, m_{b}\right) \\
\text { If } \mathcal{M}^{u, d} \text { constrained, then } U^{C K M} \equiv U_{L}^{\dagger} D_{L}=U^{C K M}\left(m_{q} / m_{q^{\prime}}\right)
\end{gathered}
$$

