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Multi-component generic dark matter

Motivations:

e Naturality

e No satisfactory single-component model
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e Two separate dark sectors, y; and %;, common dark sector ¢ and SM ¢

e Stabilizing symmetry: Zo x 7,
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We limit our-self to a model that contains three odd particle y, ¥ and ¢:

A(Z27Z/2) X 7o )
A7 7)) a0 &) | o) -SM

X
gb----dgqbcbqb gb----éxx ¢----<¢><x gb----éﬁ @;é@;
X

XX(XX; 99) ¢ ¢ Annihilation
XX € XX 6 > xx(XX) Conversion
DD > XX, X & XD, Xb <> X, Semi-annihilation
b <> XX Semi-decay

where ¢, @' belong to the visible sector.

Korea Institute for Advanced Study, Seoul, March 9th 2017



o X oy

4 P4

/ ~
----a X -+ cross term

N S

X ¢ X Ry X
b ’
-----q: X + cross term,
X b X pNe X ¢ X TS0
¢ P X X X X
¢ /,, ~ ¢ P
-—--u ) + cross term, -———— 0 + cross term
\\\ -
X
¢
¢

ae .
D

5 6 ¢ 9 X X X
¢ X ¢ X X ¢ X
: j: .
-_———— X -+ cross term, -———- X -+ cross term
7 X ¢ X X ¢ X
X X X .
X
Aot oot ==
- \ X
& ¢ ¢ T~ ¢ e

Figure 1: The Feynman diagrams of annihilation, conversion, semi-annihilation, and
decay.
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I11

3-component

mg > My + My,
myg > mx+mq3,

My > m;(—l—mqg.

@
(0,0)

m>~<

Figure 2: 2- and 3-component dark matter scenarios, we consider m, to be fixed,
the gray region represent parameter space where the all three dark sector particles are
stable, whereas the regions I, |l and |ll represent the 2-component scenarios with ¢, y

and x are unstable, respectively.
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e All the thermally averaged cross sections of the order of the electroweak scale, i.e.

2
abed (;

UMgl) A 2f2< ,B,8) ~ Uofzbcd(&aﬁaf)a

(o

2

where 0y = Cz;—m ~ 10711 GeV™? and m is the mass of dark matter candidate

which is order electroweak scale ~ 100 GeV. fupea(a, 8,€) is a dimensionless
function which parametrizes the couplings of each annihilation diagrams in terms

of o, 8 and &.
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abed

e \We parameterize all the thermally average cross sections (a**““vpg) in terms of

fade(aaﬁvg):
fxx¢¢’ ~ f~>~<¢¢/ X Oz2
fqb¢q§qb’ X (Oé + 5)67
odras ™ Iaipan ™ Sy & x (o + B)§;
Froxd ~ Txoxd ~ Foonz < (@ + B)E,
x (o + &%),
x (aff +£2).

fxx%i xxxx X

f¢¢xx ¢¢XX

e Decay width of the ¢ is approximately F¢—>x>< ~ £2 x O(1) GeV when the decay
processes are kinematically allowed otherwise it is zero.

o V;(z) =42 \where x =

e SM is in thermal equilibrium, so Yy(x) ~ Yy(z).
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Case-l: mg=my + my

BMP-1: m; = 300 GeV, my = 150 GeV and m, = 100 GeV

(my, mg, mgz) = (100, 150,300)GeV,a = 1,3 =0,§ = 0.1 (my, my,mg) = (100, 150,300)GeV,a = 1,3 =0,{ = 1 (my, my, mg) = (100, 150,300)GeV,a = 1,3 = 0,£ = 10

— 1] : ‘ ‘ ‘ 1] : ‘ ‘ ‘
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Y3/ Yo Y3/Y0 Y3/Y0
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10°%L === /v . 10-0F === /v 10-0F === Ox/¥o

1 5 10 1 5 1

Figure 3: The left, middle and right plots are for the values of parameter £ = 0.1, 1
and 10, respectively. The values of other parameters are kept fixed o =1 and 8 = 0.
Hereafter z is defined as x = m;/T.

e In this 2CDM scenario it is interesting to observe the decoupling of the g/g from
the thermal bath. Note that we consider 5 = gqbqggg/gswl = 0 and hence there is

no direct annihilation of the q§q~5 to SM fields. The only way the qg disappears
into the SM states, is through the semi-annihilation processes ¢ <+ ¢x and
b <> dy. Therefore when any of the two remaining states y or ¥ decouples from
the equilibrium, then the gz; also decouples.

Korea Institute for Advanced Study, Seoul, March 9th 2017 11



Case-ll: my = m, +m¢~)

BMP-1I: m; = 125 GeV, my = 250 GeV and m, = 100 GeV

(my, myg, mg) = (100,250, 125)GeV,a = 1, 8 = 0,£ = 0.1 (my, my,mg) = (100,250,125)GeV,a=1,3=0,{ = 1 (my, my,mgz) = (100,250,125)GeV,a =1, =0,{ = 10

10—]0, 10—10, 10—10,

10-151 10-151 10715+

10-200 10-20L

1020F === /v ‘ \ A
1 5 10 S0 100

Figure 4: The left, middle and right plots are for the values of parameter ¢ = 0.1, 1
and 10, respectively. The values of other parameters are kept fixed a =1 and 3 = 0.

(my, mg,mg) = (100, 250,125)GeV, a0 = 1, = 0.1,€ = 0.1 (my, mg, mg) = (100,250, 125)GeV,a = 1,8 = 0.1, = 1 (my, mg, mg) = (100,250,125)GeV, v = 1,8 = 0.1,€ = 10
1 : : : : z 1 ‘ : - 1

105+ 1075+ 1075+

107101 107101 10-10L

10715 1075 10715}

10-20[- 10-20L 107201

Figure 5: As above, but with 5 = 0.1.
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Case-lll: m, = my + mg

BMP-1lI: mj = 25 GeV, my = 50 GeV and m, = 100 GeV

(my, mg,mgz) = (100,50,25)GeV, a0 = 1, 8 = 0,§ = 0.1 (my, mg,mg) = (100,50,25)GeV,a =1, =0,§ =1 (my, mg,mgz) = (100,50,25)GeV, a0 = 1, 8 = 0, = 10

1075+ 107+ 107+

10710t 107101 10-10L

10—15_ 10_15— 10_15'

10-200 10-20L 10720¢

Figure 6: The left, middle and right plots are for the values of parameter £ = 0.1, 1
and 10, respectively. The values of other parameters are kept fixed « =1 and 5 = 0.

(my, mg,mg) = (100,50,25)GeV, a0 = 1, 8 = 0.1,§ = 0.1 (my, my,mgz) = (100,50,25)GeV,a = 1,8 = 0.1, = 1 (my, mg,mgz) = (100,50,25)GeV, a0 = 1,8 =0.1,§ = 10
1 : : : : 1 ; : : : 1 ;
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Figure 7: As above, but with 5 = 0.1.
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Three-component dark matter scenario

BMP-IV: m 5 = 50 GeV, my =75 GeV and m, = 100 GeV

(my, mg, mgz) = (100,75,50)GeV,a =1, =0.1,{ = 1 (my, mg,mgz) = (100,75,50)GeV,a = 1,8 =1, = 1 (my, mg,mgz) = (100,75,50)GeV, a0 = 1, = 10, = 1
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Figure 8: The left, middle and right plots are for the values of parameter 5 = 0.1, 1
and 10, respectively. The values of other parameters are kept fixed a« =1 and £ = 1.
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Three-component dark matter scenario

BMP-V: mj = 50 GeV, my = 50 GeV and m, = 100 GeV

(my, mg, mgz) = (100,50,50)GeV,a =1, =0.1,{ = 1 (my, mg,mgz) = (100,50,50)GeV,a =1, =1,{ =1 (my, mg,mg) = (100,50,50)GeV,a0 = 1,5 =10, = 1
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Figure 9: The left, middle and right plots are for the values of parameter 5 = 0.1, 1
and 10, respectively. The values of other parameters are kept fixed a« =1 and £ = 1.
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Vector-fermion two-component dark matter

Gsmy =SU@B)xSUR2), xU(l)y Gps=U(l)x
S=(1,1,0,2), x=1(1,1,0,1).
SM fields are neutral under the dark-sector gauge group Gps.
L=Lsy+ Lps+ Lint,

where Lgys is the SM Lagrangian, Lpg is the dark-sector Lagrangian,

1 x
= 1T TR+ (DuS) DS + u5lSI” = AslS|*

Lps = 1 i

1
+x (i) —mp)x — \ﬁ(yS*XTCX +H.c),

and L;,: is the interaction Lagrangian between the SM and the dark-sector,

Lins = —r|S|2|H|2.
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Charge conjugation symmetry C:
X =N -X,, S =N S*, X N XS = —iv9x 7,

where 5 is the gamma matrix. It is instructive to write the scalar potential for our
model,

V(H,S) = —pg H* + Au|H|* — 15]S)? + As|S|* + s|H|?|S|%.
T. Hambye, JHEP 0901 (2009) 028,

M. Duch, BG, M. McGarrie, JHEP 1509 (2015) 162,
S. Weinberg, Phys. Rev. Lett. 110, 24, (2013) 241301

Tree-level positivity or stability of scalar potential implies the following constraints:

Ag >0, Asg >0, K>-=-2vVAglg
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Minimization conditions for the scalar potential:

(2)\Hv2 — 2y + mvg)v = 0, (2)\51}2 — 2% + /1712)% = 0,

where (HT) = (0,v/4/2) and (S) = v,/V/2 are the vevs of respective fields.

require k2 > 4\g g and the values of vevs are:

2 Adspy = 26pg o ANEpg — 2Ry

4)\H)\S — K2 ’ v 4)\H>\S — K2

We expand the Higgs doublet and the singlet around their vevs as follow:

1 ( ort 1 |
H‘ﬁ(v+h+m0>’ S_\ﬁ(w”bﬂg)’

where 70:=

unitary gauge to give masses to Z, W+ and X.

we

and o are the Goldstone modes and they will be gauged away in the

Korea Institute for Advanced Study, Seoul, March 9th 2017
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The mass squared matrix for the scalar fluctuations (h, ¢)

M2 — <2>\HU2 KJU’Ux)

KUV, 2)\51132j

M? can be diagonalized by the orthogonal rotational matrix R, such that,

2 8
Mgiag — R-IM2R — (mhl 02 )  where R — (cosa sin a) |

0 mp, Sin@  COS

where (hy, hs) are the two Higgs physical states in the mass eigen bases with masses
(mj, ,mj, ), defined in terms of (h, ¢)

(i) =% (0
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sign()\SM — )\H) 2./\/1%2
VIMZ = MZ,)% + 4(M3,)?
There are 5 real parameters in the potential: ug, g, Ag, As and . Adopting the
minimization conditions p g, s could be replaced by v and v,. The SM vev is fixed

at v = 246.22 GeV. Using the condition M}, = 125.7 GeV, v could be eliminated in
terms of v, Mg, K, A, Asy = My, /(207):

sin 2a = cos2q = - - -

o o Msav(Ag — Aswmr)

Y T O — Asar) — K2

Eventually there are 4 independent parameters:

()\Ha K, )\Sa ga:),

where g, is the U(1)x coupling constant.
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e Bottom part of the plot (A\yg < Agn = Mﬁl/(2v2) = 0.13): the heavier Higgs is
the currently observed one.

e Upper part (Ag > Agas) the lighter state is the observed one.

e White regions in the upper and lower parts are disallowed by the positivity conditions
for v* and MQQ, respectively.
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Contour plots for the vacuum expectation value of the extra scalar v, = /2(S).
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Vacuum stability

V= —py|H? + Ag|H[* = 155]S)* + As[S|* + &[S|?|H|

2-loop running of parameters adopted

Ar(Q) >0, As(Q) >0, £(Q) +2vAr(Q)As(Q) > 0

1- (solid) and 2- (dashed) loop, g,[my]= 0.3, Ag[m;]= 0.14, As[m]= 0.1,k[m]=-0.06 1- (solid) and 2- (dashed) loop, gx[m¢]= 0.3, Ay[m{= 0.14, As[ms= 0.1, k[m;]=-0.06
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The mass of the Higgs boson is known experimentally therefore within the SM the
initial condition for running of Ay (Q) is fixed

)\H(mt) = M}%l/(Q”UQ) = >\SM =0.13

For VDM this is not necessarily the case:

ME = Apv”® + Agvl £ \/)\%Ué — 22 g Asv202 + A4 0t + k2020l

VDM:

e Larger initial values of Ay such that Ag(m:) > Agns are allowed delaying the
instability (by shifting up the scale at which Ay (Q) < 0).

e Even if the initial Ay is smaller than its SM value, Ag(m;) < Agas, still there is a
chance to lift the instability scale if appropriate initial value of the portal coupling
k(my¢) is chosen.

5(1) ﬁ)\M (1) 4k
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After the SSB the dark fermionic sector Lagrangian can be rewritten as,

Lr=; (xv“%x + X°Y*0ux°) — (XX + x°X°) — y;x (x“x + xx°)

2
— %X(m“x—icv“x) g( X + Xx°) .
Mass eigenstates
1

\f(XﬂLX) —EA—@(X—Xc)a

with m4 = mp £ yv,.
In the new bases we can rewrite the above dark fermionic Lagrangian as,

) 5 — 1 - 1 -
Lr= %(@MW“%ML + oy o) — §m+¢+¢+ - §m—¢—¢—

- %gx (v b + ooy ) X — %@#ﬁ + ¢ ).

The dark fermionic mass eigenstates 11 are Majorana fermions and the mass difference
between the two Majorana states (i) is defined as,

Amy = my — m_ = 2yv,
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Note that the above Lagrangian has a discrete symmetry Zs x ZJ, under which
the SM fields are even whereas the dark sector fields transform as follows

Symmetry || X, | ¥ | Yo | ¢
Z — | | = | T
Z — | = | + |+

Table 1: Discrete symmetries: Zy X Z

A(Zo, Zé) X N
A(Zo,75) || x(+,—) o(—,—) o(+,+) - SM

X —29x (Vv Y + p_yH 1y ) X,
b
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Figure 10: The vector dark matter X, and Majorana fermion dark matter vy
annihilation diagrams. Above V and (f)f denote the SM vector bosons (W= and Z)
and the SM (anti)fermions (quarks and leptons).
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Figure 11: Semi-annihilation diagrams for the dark particles.
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Figure 12: Dark matter conversion processes.
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Input parameters and strategies

e potential: 5 (g, s, Ag, A\s, k), vector DM: 1 (g,), fermionic DM: 2 (mp, y),
o v=246 GeV and M}, =125 GeV,

e we adopt: k,sina, mx, gz, M+, then My, wg, s, A, Ag and mp, y are calculable.

mx — gxUy M4 — Mp + YUy
Strategies:

A: y <1 (my ~m_) = slow ¥4+ annihilation (so ¥+ dominate the DM
abundance) = Y, controlled by semi-annihilation which is sensitive to g, and
to the whole dark sector. To have semi-annihilation controlled exclusively by g,
one should assume m4 + m_ > mx + M}y, and small mixing sina ~ 0.1. Strong
dependance on g, is expected. It would be a three-component DM.

B: y > 1andsina ~ 0.1 with mx < My, = fast 11+ annihilation and X may
dominate the DM abundance — nx controlled by semi-annihilation which is
sensitive to g, and to the whole dark sector. In addition my +m_ < mx + My,
to allow for disappearance of X in the semi-annihilation.

Korea Institute for Advanced Study, Seoul, March 9th 2017 31



Two-component dark matter scenario.

B: y>1andsina ~ 0.1 with mx < My, = fast 11+ annihilation and X may
dominate the DM abundance — nx controlled by semi-annihilation which is
sensitive to g, and to the whole dark sector. In addition my +m_ < mx + My,
to allow for disappearance of X in the semi-annihilation.

k=107%sina=5x10"%, gx =0.01, A\ =0.129, \g ~107°, y=0.3 o L L s L o L » . »
k=10""sina=5x10"",9x=10"", Ag=0.129, A\¢ =10"", y=3x 10" k=10""sina=5x10"",9x=10"" Ag=0.129, \¢ =10"", y=3x 10
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-17 1 1 TR L L s 1 L\
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x=mx/T x=mx/T x=mx/T

Figure 13: Evolution of dark sector vyields for the strategy A with
m4 +m_ >mx + My,.

Korea Institute for Advanced Study, Seoul, March 9th 2017 32



Three-component dark matter scenario.

A: y << 1 (m+ ~ m_)

—

slow 414+ annihilation (so ¥4 dominate the DM

abundance) = Y, controlled by semi-annihilation which is sensitive to g, and
to the whole dark sector. To have semi-annihilation controlled exclusively by g,
one should assume m4 + m_ > mx + My, and small mixing sina ~ 0.1. Strong
dependance on g, is expected. It would be a three-component DM.
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Qy_h*=0.0016 \\
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Three-component dark matter scenario.

A: y <1 (my ~m_) = slow ¥4+ annihilation (so ¥+ dominate the DM
abundance) = Y, controlled by semi-annihilation which is sensitive to g, and
to the whole dark sector. To have semi-annihilation controlled exclusively by g,
one should assume m4 + m_ > mx + M}y, and small mixing sina ~ 0.1. Strong
dependance on g, is expected. It would be a three-component DM.
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Figure 15: Evolution of dark sector vyields for the strategy A with
my +m_ < mx + Mp,.
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Three-component dark matter scenario

A: y <1 (my ~m_)

—

slow 1414 annihilation (so ¥4 dominate the DM
abundance) = Y, controlled by semi-annihilation which is sensitive to g, and
to the whole dark sector. To have semi-annihilation controlled exclusively by g,
one should assume m4 + m_ > mx + M}y, and small mixing sina ~ 0.1. Strong

dependance on g, is expected. It would be a three-component DM.
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Figure 16: Evolution of dark sector yields and corresponding thermaly averaged cross

sections.
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Summary

Two-sector dark matter generic scenario based on the stabilizing Zs x 71 symmetry
was considered.

Sensitivity of the leading component to the presence of the other dark elements
was determined and discussed.

The vector-fermion model based on extra U(1) symmetry was introduced and the
set of three Boltzmann equations for the system was discussed. Its numerical
solutions were presented. Cross-sections were generated by CalcHEP while the
Boltzmann equations were solved adopting a dedicated code.

The project is still in progress.
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