
Self-interacting dark matter
in U(1)-extended Standard Model

Bohdan Grzadkowski

University of Warsaw

Workshop on Multi-Higgs Models, Lisbon, September 7th, 2016



Outline

� A model of vector dark matter

� Problems of ΛCDM vs. self-interacting dark matter

� Model independent resonance enhancement of σself

� Model independent resonance annihilation

� Early kinetic decoupling

� Resonant self-interaction of vector dark matter

� Summary

? M. Duch, BG, �Enhancing dark-matter self-interaction by s-channel resonance�, in progress

? M. Duch, BG, M. McGarrie, �A stable Higgs portal with vector dark matter�, JHEP 1509 (2015) 162,

arXiv:1506.08805



A model of vector dark matter
The model:

� extra U(1) gauge symmetry (AµX),

� a complex scalar �eld S, whose vev generates a mass for the U(1)'s
vector �eld, S = (0,1,1, 1) under U(1)Y ×SU(2)L×SU(3)c×U(1)

� SM �elds neutral under U(1),

� to ensure stability of the new vector boson, a Z2 symmetry is assumed

to forbid U(1)-kinetic mixing between U(1) and U(1)Y . The extra
gauge boson AµX and the scalar S �eld transform under Z2 as follows

AµX → −A
µ
X , S → S∗, where S = φeiσ, so φ→ φ, σ → −σ.
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A model of vector dark matter

The scalar potential

V = −µ2
H |H|

2 + λH |H|
4 − µ2

S |S|
2 + λS |S|

4 + κ|S|2|H|2.

The vector bosons masses:

MW =
1

2
gv, MZ =

1

2

√
g2 + g′2v and M

Z
′ = gxvx,

where

〈H〉 =

(
0
v√
2

)
and 〈S〉 =

vx√
2

Positivity of the potential implies

λH > 0, λS > 0, κ > −2
√
λHλS



A model of vector dark matter

The mass squared matrixM2 for the �uctuations (φH , φS) and their

eigenvalues

M2 =

(
2λHv

2 κvvx
κvvx 2λSv

2
x

)
M2
± = λHv

2 + λSv
2
x ±

√
λ2
Sv

4
x − 2λHλSv

2v2
x + λ2

Hv
4 + κ2v2v4

x

M2
diag =

(
M2
h1

0

0 M2
h2

)
, R =

(
cosα − sinα
sinα cosα

)
(
h1

h2

)
= R−1

(
φH
φS

)
where Mh1

= 125.7 GeV is the mass of the observed Higgs particle.



A model of vector dark matter

sin 2α =
sign(λSM − λH) 2M2

12√
(M2

11 −M
2
22)2 + 4(M2

12)2
, cos 2α =

sign(λSM − λH)(M2
11 −M

2
22)√

(M2
11 −M

2
22)2 + 4(M2

12)2
.

There are 5 real parameters in the potential: µH , µS , λH , λS and κ.
Adopting the minimization conditions µH , µS could be replaced by v and

vx. The SM vev is �xed at v = 246.22 GeV. Using the condition

Mh1
= 125.7 GeV, v2

x could be eliminated in terms of

v2, λH , κ, λS , λSM = M2
h1
/(2v2):

v2
x = v2 4λSM (λH − λSM )

4λS(λH − λSM )− κ2

Eventually there are 4 independent parameters:

(λH , κ, λS , gx),

where gx is the U(1) coupling constant.



A model of vector dark matter

� Bottom part of the plot (λH <
λSM = M2

h1
/(2v2) = 0.13): the

heavier Higgs is the currently

observed one.

� Upper part (λH > λSM ) the

lighter state is the observed one.

� White regions in the upper and

lower parts are disallowed by the

positivity conditions for v2
x and

M2
h2
, respectively.



A model of vector dark matter

Contour plots for the vacuum expectation value of the extra scalar

vx ≡
√

2〈S〉 (left panel) and of the mixing angle α (right panel) in the

plane (λH , κ).



A model of vector dark matter
Vacuum stability

V = −µ2
H |H|

2 + λH |H|
4 − µ2

S |S|
2 + λS |S|

4 + κ|S|2|H|2

2-loop running of parameters adopted

λH(Q) > 0, λS(Q) > 0, κ(Q) + 2
√
λH(Q)λS(Q) > 0
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A model of vector dark matter
The mass of the Higgs boson is known experimentally therefore within the

SM the initial condition for running of λH(Q) is �xed

λH(mt) = M2
h1
/(2v2) = λSM = 0.13

For VDM this is not necessarily the case:

M2
h1

= λHv
2 + λSv

2
x ±

√
λ2
Sv

4
x − 2λHλSv

2v2
x + λ2

Hv
4 + κ2v2v4

x.

VDM:

� Larger initial values of λH such that λH(mt) > λSM are allowed

delaying the instability (by shifting up the scale at which λH(Q) < 0).

� Even if the initial λH is smaller than its SM value, λH(mt) < λSM ,

still there is a chance to lift the instability scale if appropriate initial

value of the portal coupling κ(mt) is chosen.

β
(1)
λH

= β
SM (1)
λH

+ κ2



A model of vector dark matter
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Problems of ΛCDM vs. self-interacting

dark matter
�The core-cusp problem� (also known as the cuspy halo problem) e.g. de

Block et al.2001: There is a discrepancy between the observed dark matter

density pro�les of low-mass galaxies and the density pro�les predicted by

cosmological N-body simulations.

The measured rotation curve of F568-3 compared to model predictions with

cored (blue solid curve) or a cuspy dark matter halo with an NFW pro�le.



Problems of ΛCDM vs. self-interacting

dark matter
� �The too big to fail problem� Bolyan-Kolchin al. 2013: Simulations of

galaxies show that satellite galaxies (e.g. Large and Small Magellanic

Clouds) are too dense compared to what we observe around the MW.

� �The missing satellites problem� e.g. Klypin et al.1999: The number

of Dark Matter sub-halos in Milky Way sized haloes is over-predicted

by roughly one order magnitude.



Problems of ΛCDM vs. self-interacting

dark matter

Problems

� �The core-cusp

problem�

� �The too big to

fail problem�

� �The missing

satellites problem�

⇒ Solutions
σself
MDM

6= 0

D. N. Spergel and P. J. Steinhardt, Phys. Rev. Lett. 84, 3760 (2000)

· · ·



Problems of ΛCDM vs. self-interacting

dark matter

⇓
Upper bounds on self-interaction cross-section: σself

MDM
<∼ 1 cm2

g



Problems of ΛCDM vs. self-interacting

dark matter

Problems

� �The core-cusp

problem�

� �The too big to

fail problem�

� �The missing

satellites problem�

⇒ Solutions

0.1 cm2

g <∼
σself
MDM

<∼ 10 cm2

g

Observation

Bullet cluster

⇒ Limit
σself
MDM

<∼ 1 cm2

g



Problems of ΛCDM vs. self-interacting

dark matter

Large cross-section

0.1 cm2

g <∼
σself
MDM

<∼ 1 cm2

g ∼ barn

GeV
� pb

GeV



Model independent resonance

enhancement of σself

DM

DMDM R

DM

Breit-Wigner resonance (2MDM ≈M) DM self-interaction.

σself =
32πω

sβ2

M2Γ2B2

(s−M2)2 + Γ2M2 ,

σself

MDM

∣∣∣∣
vrel≈0

' 8πω

M3
DM

η2

δ2 + γ2

η ≡ ΓB

Mβ
, δ ≡ 4M2

DM

M2 − 1, γ ≡ Γ

M
and ω =

(2J + 1)

(2S + 1)2



Model independent resonance

annihilation

DM

SMDM R

SM

Breit-Wigner resonance (2MDM ≈M) annihilation.

σvrel =
64πω

M2βi

γ2

(δ + v2
rel/4)2 + γ2BiBf

〈σvrel〉(x) =
x3/2

2
√
π

∫ ∞
0

dvv2e−xv
2
/4σv

P. Gondolo and G. Gelmini, Nucl. Phys. B 360, 145 (1991),

K. Griest and D. Seckel, Phys. Rev. D 43, 3191 (1991),

M. Ibe, H. Murayama and T. Yanagida, Phys. Rev. D 79, 095009 (2009)



Model independent resonance

annihilation
dY

dx
= −λ0

x2R(x)(Y 2 − Y 2
EQ)

R(x) =
〈σvrel〉(x)

〈σvrel〉0
=
x3/2

2
√
π

∫ ∞
0

dvv2e−xv
2
/4 δ2 + γ2

(δ + v2/4)2 + γ2

δ=-10-3, γ=10-4

δ=-10-4, γ=10-3

δ=10-4, γ=10-3

δ=10-3, γ=10-4

100 1000 104 105

1

5
10

50
100

x=m/T

R
r=
〈σ

v r
el
〉/
〈σ

v r
el
〉 x

=
20

δ=-10-3, γ=10-4

δ=-10-4, γ=10-3

δ=10-4, γ=10-3

δ=10-3, γ=10-4

10 100 1000 104 105

0.001

0.010

0.100

1

10

x=m/T

R
0=

〈σ
v r

el
〉/
〈σ

v r
el
〉 0

Thermally averaged annihilation cross section 〈σvrel〉 normalized to its

value at decoupling 〈σvrel〉x=20 (left) and to the low-temperature limit

〈σvrel〉0 (right).



Model independent resonance

annihilation

Y

YEQ

Y∞
(0)

Y∞
(1)

10 100 1000 104

10-12

10-10

10-8
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x=m/T

Y
[x
]

δ=10-4, γ=10-3

xfxd

Evolution of the dark matter yield Y (x) for a wide resonance in unphysical

region and a narrow resonance.



Model independent resonance

annihilation

1

Y∞
≡ λ0

xf

xf ≈
[
(δ2 + γ2)

π − 2 arctan(δ/γ)

γ

]−1

≈


(πγ)−1, if γ � |δ|
(2δ)−1, if δ � γ

γ(2πδ2)−1, if − δ � γ

Ωh2 = 2.74× 108MDM

GeV
Y∞ = 0.99× 10−27 cm3 s−1 xf√

g∗〈σvrel〉0

〈σvrel〉0 ≈
xf
25

(
100

g∗

)1/2(0.12

Ωh2

)
2× 10−26 cm3 s−1



Model independent resonance

annihilation
� parameters: 〈σvrel〉0 (present annihilation), η (resonance DM

coupling), δ (resonance location), γ (resonance width)

� constraints: Ωh2, σself/MDM and Fermi-LAT upper limits on 〈σvrel〉0

the goal: minimize 〈σvrel〉0 for a given (large) σself
MDM

≈ 8πω

M
3
DM

η
2

δ
2
+γ

2

〈σvrel〉0
2× 10−26 cm3 s−1

>∼
560

ξη
√
ω

(
MDM

100 GeV

)3/2
(
σself/MDM

1 cm2/g

)1/2

×
(

100

g∗

)1/2(0.12

Ωh2

)

where 2 ≤ ξ ≤ π, η ≡ ΓB(R→DM DM)
Mβ and ω = (2J+1)

(2S+1)
2



Early kinetic decoupling

Dark matter annihilation rate is enhanced by the resonance, therefore

coupling of the mediator to the SM particles needs to be suppressed in

order to be consistent with the observed abundance.

⇓
Temperature of the kinetic decoupling Tkd (too weak DM-SM elastic

scattering in order to maintain equilibrium) can be, in the resonant

case, higher than in the typical WIMP scenario.

⇓
If dark matter decouples kinetically when it is non-relativistic, then the

DM temperature TDM evolves according to TDM ∝ a
−2, contrary to

the radiation-dominated SM thermal bath, for which TSM ∝ a
−1



Early kinetic decoupling

TDM =

{
TSM , if T ≥ Tkd
T 2
SM/Tkd, if T < Tkd.

dY

dx
= −λ0

x2R(xDM )(Y 2 − Y 2
EQ) with xDM =

x2

xkd

X. Chen, M. Kamionkowski and X. Zhang, Phys. Rev. D 64, 021302

(2001))

T. Bringmann and S. Hofmann, JCAP 0704 (2007) 016

· · ·



Early kinetic decoupling

YKD

Y
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Evolution of dark matter yield Y (x) for dark matter in thermal equilibrium

with the SM (blue curve) and in the case of simultaneous chemical and

kinetic decoupling xkd = xd (red curve).



Early kinetic decoupling

H(Tkd) ∼ Γscat(Tkd)⇒ xkd

〈σvrel〉0
2× 10−26 cm3 s−1

>∼
3.8√
η
√
ω

(
MDM

100 GeV

)3/4
(
σself/MDM

1 cm2/g

)1/4

×
(

100

g∗

)1/2(0.12

Ωh2

)

where

η ≡ ΓB(R→ DM DM)

Mβ
and ω =

(2J + 1)

(2S + 1)2



Resonant self-interaction of vector dark

matter

Z ′

Z ′

Z ′

Z ′

hi
Z ′

Z ′

Z ′

hi

Z ′

Z ′

Z ′ Z ′

hi

Z ′

Z ′ self-interaction in di�erent channels.

σself

M
Z

′
= g4

x

M
Z

′

8π

R4
2i

(4M2
Z

′ −M2
hi

)2 + Γ2
hi
M2
hi

,



Resonant self-interaction of vector dark

matter

Minimal 〈σvrel〉0 in the VDM

η =
Γh2
Mh2

1

β̄
<∼

3

16

⇓

〈σvrel〉0
2× 10−26 cm3 s−1

>∼
9 · 103

ξ

(
M
Z

′

100 GeV

)3/2
(
σself/MZ

′

1 cm2/g

)1/2

·
(

100

g∗

)1/2(0.12

Ωh2

)
where 2 ≤ ξ ≤ π.



Resonant self-interaction of vector dark

matter

With early kinetic decoupling

〈σvrel〉0
2× 10−26 cm3 s−1

>∼ 15 ·x1/2
kd

(
M
Z

′

100 GeV

)3/4
(
σself/MZ

′

1 cm2/g

)1/4

·
(

100

g∗

)1/2(0.12

Ωh2

)

with xkd ∼ 10− 20



Resonant self-interaction of vector dark

matter
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Dark matter annihilation cross-section in the W+W− channel consistent

with Ωh2 and desired σself/MZ
′ speci�ed in the legend. Left panel does

not take into account the early kinetic decoupling while the right one does

for xkd = 15.



Summary
� A model of vector U(1) dark matter (VDM) was introduced and

discussed. The model contains a second neutral Higgs boson h2.

� Problems of ΛCDM were reviewed.

� A possibility of enhancing the dark-matter self-interaction

cross-section (σself/MDM ) by s-channel resonance was considered in a

model independent way.

� Dark matter annihilation in the vicinity of a resonance was discussed in

details. Approximate analytical and exact numerical solutions of the

Boltzmann equation were found. Early kinetic decoupling of dark

matter was considered.

� For a given σself/MDM a lower limit for the annihilation cross-section

〈σvrel〉0 has been derived. In the VDM model the self-interaction cross

section σself/MZ
′ of the order of (10−2 − 10−1) cm2/g could be

achieved if dark matter was heavy enough, M
Z

′ ∼ 104 GeV.


