Semisymmetries of Two-Higgs-doublet models Bohdan Grzadkowski April 22, 2024 University of Warsaw "New Physics Directions in the LHC era and beyond", 23rd April, 2024, Heidelberg, Germany #### **Table of contents** - 1. The Two-Higgs Doublet Model (2HDM) in the bilinear notation - 2. Basis transformations - 3. Global symmetries of 2HDM - 4. Running of parameters of 2HDM - 5. New 2HDM symmetries/semisymmetries - 6. The r_0 symmetry/semisymmetry - 7. Symmetries/Semisymmetries and 1-loop CW effective potential - 8. The toy model - 9. Summary and conclusions #### based on - P.M. Ferreira , B.G., O.M. Ogreid, P. Osland, "New Symmetries of the Two-Higgs-Doublet Model", *Eur.Phys.J.C* 84 (2024) 3, 234, e-Print: 2306.02410 - · work in progress #### The Two-Higgs Doublet Model (2HDM) in the bilinear notation $$V = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - [m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.}] + \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} \lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + [\lambda_{6} (\Phi_{1}^{\dagger} \Phi_{1}) + \lambda_{7} (\Phi_{2}^{\dagger} \Phi_{2})] \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right\},$$ where m_{12}^2 and $\lambda_{5,6,7}$ might be complex. An alternative notation uses four gauge-invariant bilinears constructed from the doublets (Velhinho 1994, Nagel 2004, Ivanov 2005, Maniatis 2006, Nishi 2006): $$\begin{array}{lll} r_0 & \equiv & \frac{1}{2} \left(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_1 + \boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_2 \right), \\ \\ r_1 & \equiv & \frac{1}{2} \left(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_2 + \boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_1 \right) = \operatorname{Re} \left(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_2 \right), \\ \\ r_2 & \equiv & -\frac{i}{2} \left(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_2 - \boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_1 \right) = \operatorname{Im} \left(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_2 \right), \\ \\ r_3 & \equiv & \frac{1}{2} \left(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_1 - \boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_2 \right). \end{array}$$ #### The Two-Higgs Doublet Model (2HDM) in the bilinear notation The potential of may be written as $$V = M_\mu \, r^\mu \, + \Lambda_{\mu\nu} \, r^\mu \, r^\nu \, , \label{eq:V}$$ where $$r^{\mu} \equiv (r_{0}, r_{1}, r_{2}, r_{3}) = (r_{0}, \vec{r}),$$ $$M^{\mu} \equiv (m_{11}^{2} + m_{22}^{2}, 2\text{Re}(m_{12}^{2}), -2\text{Im}(m_{12}^{2}), m_{22}^{2} - m_{11}^{2}) = (M_{0}, \vec{M}),$$ $$\Lambda^{\mu\nu} \equiv \begin{pmatrix} \frac{1}{2}(\lambda_{1} + \lambda_{2}) + \lambda_{3} & -\text{Re}(\lambda_{6} + \lambda_{7}) & \text{Im}(\lambda_{6} + \lambda_{7}) & \frac{1}{2}(\lambda_{2} - \lambda_{1}) \\ -\text{Re}(\lambda_{6} + \lambda_{7}) & \lambda_{4} + \text{Re}(\lambda_{5}) & -\text{Im}(\lambda_{5}) & \text{Re}(\lambda_{6} - \lambda_{7}) \\ \text{Im}(\lambda_{6} + \lambda_{7}) & -\text{Im}(\lambda_{5}) & \lambda_{4} - \text{Re}(\lambda_{5}) & -\text{Im}(\lambda_{6} - \lambda_{7}) \\ \frac{1}{2}(\lambda_{2} - \lambda_{1}) & \text{Re}(\lambda_{6} - \lambda_{7}) & -\text{Im}(\lambda_{6} - \lambda_{7}) & \frac{1}{2}(\lambda_{1} + \lambda_{2}) - \lambda_{3} \end{pmatrix}$$ $\Lambda^{\mu\nu} \equiv \begin{pmatrix} \Lambda_{00} & \vec{\Lambda} \\ \vec{\Lambda}^T & \Lambda \end{pmatrix}$ 4 #### **Basis transformations** Weak-basis transformation, U(2): $$\begin{pmatrix} \Phi_1' \\ \Phi_2' \end{pmatrix} = \underbrace{e^{i\psi} \begin{pmatrix} \cos\theta & e^{-i\tilde{\xi}}\sin\theta \\ -e^{i\chi}\sin\theta & e^{i(\chi-\tilde{\xi})}\cos\theta \end{pmatrix}}_{U(2)} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix}$$ The Higgs kinetic terms remain invariant #### **Basis transformations** $$V = M_{\mu} r^{\mu} + \Lambda_{\mu\nu} r^{\mu} r^{\nu}$$ The basis rotation matrix $$R_{ij}(U) \equiv \frac{1}{2} \mathrm{Tr} \left(U^{\dagger} \sigma_i U \sigma_j \right),$$ where σ_i (i = 1, 2, 3) are the Pauli matrices. The basis transformations: $$\vec{r} \rightarrow \vec{r}' = R \vec{r}$$ $\vec{M} \rightarrow \vec{M}' = R \vec{M}$ $\vec{\Lambda} \rightarrow \vec{\Lambda}' = R \vec{\Lambda}$ $\Lambda \rightarrow \Lambda' = R \Lambda R^T$ whereas r_0 , M_0 and Λ_{00} do not change under basis transformations – they are basis invariants. #### Global symmetries of 2HDM Higgs-family symmetries, unitary transformations mix both doublets, $$\Phi_i \to \Phi_i' = \sum_{j=1}^2 U_{ij} \Phi_j, \qquad U \in U(2)$$ e.g. Z_2 : $$\Phi_1 \, ightarrow \, \Phi_1 \ \ , \ \ \Phi_2 \, ightarrow \, - \, \Phi_2 \, ,$$ prevents the occurrence of tree-level flavour-changing neutral currents (FCNC). • generalized CP (GCP), transformations: $$\Phi_i \to \Phi_i' = \sum_{j=1}^2 X_{ij} \Phi_j^*, \qquad X \in U(2)$$ e.g. "standard" CP transformation (CP1): $$\Phi_i \rightarrow \Phi_i^*$$ 7 #### Global symmetries of 2HDM In the bilinear formalism, both Higgs-family and GCP field transformations are represented by rotations in the 3-dimensional space defined by the vector \vec{r} , namely $$\vec{r} \rightarrow \vec{r}' = S \vec{r}$$, where $S \in O(3)$ defines a rotation of \vec{r} . $$S_{Z_2} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} , S_{CP1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$ 8 #### **Global symmetries of 2HDM** CP2: $$\Phi_1 \to \Phi_2^*$$, $\Phi_2 \to -\Phi_1^*$ $$S_{CP2} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$, A parity transformation about the three axes. | S | m_{11}^2 | m_{22}^{2} | m_{12}^{2} | λ_1 | λ_2 | λ_3 | λ_4 | λ_{5} | λ_{6} | λ_7 | |---------------|------------|--------------|--------------|-------------|-------------|-------------|-------------------------|-----------------|---------------|---------------| | CP1 | | | real | | | | | real | real | real | | Z_2 | | | 0 | | | | | | 0 | 0 | | U(1) | | | 0 | | | | | 0 | 0 | 0 | | CP2 | | m_{11}^{2} | 0 | | λ_1 | | | | | - λ_6 | | CP3 | | m_{11}^{2} | 0 | | λ_1 | | | λ_{134} | 0 | 0 | | <i>SO</i> (3) | | m_{11}^2 | 0 | | λ_1 | | $\lambda_1 - \lambda_3$ | 0 | 0 | Ο | **Table 1:** Relations between 2HDM scalar potential parameters for each of the six symmetries discussed, $\lambda_{134} \equiv \lambda_1 - \lambda_3 - \lambda_4$. The 1-loop β -functions for the quadratic couplings $$\begin{split} \beta_{m_{11}^2} &= 3\lambda_1 m_{11}^2 + (2\lambda_3 + \lambda_4) \, m_{22}^2 - 3 \, \left(\lambda_6^* \, m_{12}^2 + \text{h.c.}\right) \, - \, \frac{1}{4} \, (9g^2 + 3g'^2) \, m_{11}^2 \\ &+ \beta_{m_{11}^2}^F, \\ \beta_{m_{22}^2} &= (2\lambda_3 + \lambda_4) \, m_{11}^2 + 3\lambda_2 \, m_{22}^2 - 3 \, \left(\lambda_7^* \, m_{12}^2 + \text{h.c.}\right) \, - \, \frac{1}{4} \, (9g^2 + 3g'^2) \, m_{22}^2 \\ &+ \beta_{m_{22}^2}^F, \\ \beta_{m_{12}^2} &= -3 \, \left(\lambda_6 \, m_{11}^2 + \lambda_7 \, m_{22}^2\right) + (\lambda_3 + 2\lambda_4) \, m_{12}^2 + 3\lambda_5 \, m_{12}^{2\,*} \, - \, \frac{1}{4} \, (9g^2 + 3g'^2) m_{12}^2 \\ &+ \beta_{m_{12}^2}^F, \end{split}$$ and 1-loop β functions for the quartic ones, $$\begin{array}{rclcrcl} \beta_{\lambda 1} & = & 6\lambda_{1}^{2} + 2\lambda_{3}^{2} + 2\lambda_{3}\lambda_{4} + \lambda_{4}^{2} + |\lambda_{5}|^{2} + 12|\lambda_{6}|^{2} \\ & & + \frac{3}{8}(3g^{4} + g'^{4} + 2g^{2}g'^{2}) - \frac{3}{2}\lambda_{1}(3g^{2} + g'^{2}) + \beta_{\lambda_{1}}^{F}, \\ \beta_{\lambda_{2}} & = & 6\lambda_{2}^{2} + 2\lambda_{3}^{2} + 2\lambda_{3}\lambda_{4} + \lambda_{4}^{2} + |\lambda_{5}|^{2} + 12|\lambda_{7}|^{2} \\ & & + \frac{3}{8}(3g^{4} + g'^{4} + 2g^{2}g'^{2}) - \frac{3}{2}\lambda_{2}(3g^{2} + g'^{2}) + \beta_{\lambda_{2}}^{F}, \\ \beta_{\lambda_{3}} & = & (\lambda_{1} + \lambda_{2})(3\lambda_{3} + \lambda_{4}) + 2\lambda_{3}^{2} + \lambda_{4}^{2} + |\lambda_{5}|^{2} + 2\left(|\lambda_{6}|^{2} + |\lambda_{7}|^{2}\right) + 8\operatorname{Re}\left(\lambda_{6}\lambda_{7}^{*}\right) \\ & & + \frac{3}{8}(3g^{4} + g'^{4} - 2g^{2}g'^{2}) - \frac{3}{2}\lambda_{3}(3g^{2} + g'^{2}) + \beta_{\lambda_{3}}^{F}, \\ \beta_{\lambda_{4}} & = & (\lambda_{1} + \lambda_{2})\lambda_{4} + 4\lambda_{3}\lambda_{4} + 2\lambda_{4}^{2} + 4|\lambda_{5}|^{2} + 5\left(|\lambda_{6}|^{2} + |\lambda_{7}|^{2}\right) + 2\operatorname{Re}\left(\lambda_{6}\lambda_{7}^{*}\right) \\ & & + \frac{3}{2}g^{2}g'^{2} - \frac{3}{2}\lambda_{4}(3g^{2} + g'^{2}) + \beta_{\lambda_{4}}^{F}, \\ \beta_{\lambda_{5}} & = & (\lambda_{1} + \lambda_{2} + 4\lambda_{3} + 6\lambda_{4})\lambda_{5} + 5\left(\lambda_{6}^{2} + \lambda_{7}^{2}\right) + 2\lambda_{6}\lambda_{7} \\ & & - \frac{3}{2}\lambda_{5}(3g^{2} + g'^{2}) + \beta_{\lambda_{5}}^{F}, \\ \beta_{\lambda_{6}} & = & (6\lambda_{1} + 3\lambda_{3} + 4\lambda_{4})\lambda_{6} + (3\lambda_{3} + 2\lambda_{4})\lambda_{7} + 5\lambda_{5}\lambda_{6}^{*} + \lambda_{5}\lambda_{7}^{*} \\ & & - \frac{3}{2}\lambda_{6}(3g^{2} + g'^{2}) + \beta_{\lambda_{6}}^{F}, \\ \beta_{\lambda_{7}} & = & (6\lambda_{2} + 3\lambda_{3} + 4\lambda_{4})\lambda_{7} + (3\lambda_{3} + 2\lambda_{4})\lambda_{6} + 5\lambda_{5}\lambda_{7}^{*} + \lambda_{5}\lambda_{6}^{*} \\ & & - \frac{3}{2}\lambda_{7}(3g^{2} + g'^{2}) + \beta_{\lambda_{7}}^{F}, \end{array}$$ where the β_x^F terms contain all contributions coming from fermions. - If one imposes a Z_2 symmetry so that $\lambda_6 = \lambda_7 = 0$ one immediately obtains $\beta_{\lambda_6} = \beta_{\lambda_7} = 0$, confirming that the symmetry-based condition on λ 's are preserved under radiative corrections at the one-loop order. - For the Z_2 model $$\beta_{\lambda_5} = \left[\lambda_1 + \lambda_2 + 4\lambda_3 + 6\lambda_4 - \frac{3}{2} \left(3g^2 + g'^2\right)\right] \lambda_5$$ A fixed point of this RG equation – if at any scale λ_5 = 0, that coupling will remain equal to zero for all renormalization scales. Such fixed points of RG equations are usually fingerprints of symmetries, and indeed that is the case here: if λ_6 = λ_7 = 0, the extra constraint λ_5 = 0 takes us from a Z_2 -symmetric model to a U(1)-symmetric. We have noticed that $$\left\{ m_{11}^2 + m_{22}^2 = 0 \ , \ \lambda_1 - \lambda_2 = 0 \ , \ \lambda_6 + \lambda_7 = 0 \right\}$$ - · constitutes a fixed point of the 1-loop RG equations, - are basis transformation invariants. $$\begin{split} \beta_{\lambda_{1}-\lambda_{2}} &= 6 \left(\lambda_{1}^{2}-\lambda_{2}^{2}\right) + 12 \left(\left|\lambda_{6}\right|^{2}-\left|\lambda_{7}\right|^{2}\right) - \frac{3}{2}(\lambda_{1}-\lambda_{2})(3g^{2}+g'^{2}) \\ \beta_{\lambda_{6}+\lambda_{7}} &= 6 \left(\lambda_{1}\lambda_{6}+\lambda_{2}\lambda_{7}\right) + (3\lambda_{3}+2\lambda_{4})(\lambda_{6}+\lambda_{7}) + 6\lambda_{5}\left(\lambda_{6}^{*}+\lambda_{7}^{*}\right) \\ &\quad -\frac{3}{2}(\lambda_{6}+\lambda_{7})(3g^{2}+g'^{2}) \\ \beta_{m_{11}^{2}+m_{22}^{2}} &= 3(\lambda_{1}m_{11}^{2}+\lambda_{2}m_{22}^{2}) + (2\lambda_{3}+\lambda_{4})(m_{11}^{2}+m_{22}^{2}) \\ &\quad -3 \left[\left(\lambda_{6}^{*}+\lambda_{7}^{*}\right)m_{12}^{2} + \text{h.c.}\right] - \frac{1}{4}(9g^{2}+3g'^{2})(m_{11}^{2}+m_{22}^{2}) \end{split}$$ It turns out that $$\left\{ m_{11}^2 + m_{22}^2 = 0 \ , \ \lambda_1 - \lambda_2 = 0 \ , \ \lambda_6 + \lambda_7 = 0 \right\}$$ is also the 2-loop fixed point. #### Conclusion: Perhaps there is a symmetry behind the fixed point: $$\left\{ m_{11}^2 + m_{22}^2 = 0 \ , \ \lambda_1 - \lambda_2 = 0 \ , \ \lambda_6 + \lambda_7 = 0 \right\}$$ $$V = M_{\mu} r^{\mu} + \Lambda_{\mu\nu} r^{\mu} r^{\nu}$$ The rotation matrix $R_{ij}(U) = \text{Tr} \left(U^{\dagger} \sigma_i U \sigma_j \right) / 2$, and the basis transformations: $$\vec{r} \rightarrow \vec{r}' = R \vec{r}$$ $\vec{M} \rightarrow \vec{M}' = R \vec{M}$ $\vec{\Lambda} \rightarrow \vec{\Lambda}' = R \vec{\Lambda}$ $\Lambda \rightarrow \Lambda' = R \Lambda R^T$ whereas r_0 , M_0 and Λ_{00} do not change under basis transformations – they are basis invariants. $$\Lambda^{\mu\nu} = \begin{pmatrix} \Lambda_{00} & \vec{\Lambda} \\ \vec{\Lambda}^T & \Lambda \end{pmatrix}$$ Basis transformation invariants: $$I_{1,1} = \Lambda_{00} , \qquad \qquad I_{1,2} = \text{Tr} \Lambda$$ $I_{2,1} = \vec{\Lambda} \cdot \vec{\Lambda} , \qquad \qquad I_{2,2} = \text{Tr} \Lambda^2$ $I_{3,1} = \vec{\Lambda} \cdot \Lambda \vec{\Lambda} , \qquad \qquad I_{3,2} = \text{Tr} \Lambda^3$ $I_{4,1} = \vec{\Lambda} \cdot \Lambda^2 \vec{\Lambda} , \qquad \qquad I_{3,2} = \text{Tr} \Lambda^3$ To all orders of perturbation theory, $$\beta_{\vec{\Lambda}} = a_0 \vec{\Lambda} + a_1 \Lambda \vec{\Lambda} + a_2 \Lambda^2 \vec{\Lambda}$$ \cdot $\vec{\Lambda}$ = $\vec{0}$ is a fixed point to all orders of perturbation theory. where the a_i are polynomial expressions involving invariants, see A.V. Bednyakov, "On three-loop RGE for the Higgs sector of 2HDM", JHEP 11 (2018) 154, e-Print: 1809.04527 $$\beta_{M_0} = b_0 \, M_0 + b_1 \, \vec{\Lambda} \cdot \vec{M} + b_2 \, \vec{\Lambda} \cdot \left(\Lambda \vec{M} \right) + b_3 \, \vec{\Lambda} \cdot \left(\Lambda^2 \vec{M} \right)$$ • If $\vec{\Lambda} = \vec{0}$, then $M_0 = 0$ is a fixed point to all orders. $$\beta_{\vec{M}} \; = \; c_0 \; \vec{M} \; + \; c_1 \; \Lambda \; \vec{M} \; + \; c_2 \; \Lambda^2 \; \vec{M} \; + \; c_3 \; I_{M3} \; \vec{\Lambda} \; + \; c_4 \; I_{M4} \; \Lambda \; \vec{\Lambda} \; + \; c_5 \; I_{M5} \; \Lambda^2 \; \vec{\Lambda}$$ • If $\vec{\Lambda} = \vec{0}$, then $\vec{M} = \vec{0}$ is a fixed point to all orders where the c_i are polynomial expressions involving invariants, see A.V. Bednyakov Two all-order fixed points of the 2HDM RG equations: • $\{\vec{M} = \vec{0}, \vec{\Lambda} = \vec{0}\}.$ $$m_{11}^2 = m_{22}^2 \ , \ m_{12}^2 = 0 \ , \ \lambda_1 = \lambda_2 \ , \ \lambda_6 = -\lambda_7 \, .$$ These are exactly the CP2 symmetry conditions. • $\{M_0 = 0, \vec{\Lambda} = \vec{0}\}.$ $$M_0 \equiv m_{11}^2 + m_{22}^2 = 0$$, $\lambda_1 = \lambda_2$, $\lambda_6 = -\lambda_7$. These are the conditions mentioned before and they coincide with the CP2 symmetry conditions for the quartic couplings, but have different conditions for the quadratic ones. The conditions are basis invariant, so they are *not* a basis change of the previous ones. $$V = M_{\mu} \, r^{\mu} + \Lambda_{\mu\nu} \, r^{\mu} \, r^{\nu}$$ where $$\begin{array}{rcl} r_0 & \equiv & \frac{1}{2} \left(\Phi_1^\dagger \Phi_1 + \Phi_2^\dagger \Phi_2 \right) \\ r_1 & \equiv & \frac{1}{2} \left(\Phi_1^\dagger \Phi_2 + \Phi_2^\dagger \Phi_1 \right) = \operatorname{Re} \left(\Phi_1^\dagger \Phi_2 \right) \\ r_2 & \equiv & -\frac{i}{2} \left(\Phi_1^\dagger \Phi_2 - \Phi_2^\dagger \Phi_1 \right) = \operatorname{Im} \left(\Phi_1^\dagger \Phi_2 \right) \\ r_3 & \equiv & \frac{1}{2} \left(\Phi_1^\dagger \Phi_1 - \Phi_2^\dagger \Phi_2 \right) \end{array}$$ $$V = M_0 r_0 + \Lambda_{00} r_0^2 - \vec{M} \cdot \vec{r} - 2 (\vec{\Lambda} \cdot \vec{r}) r_0 + \vec{r} \cdot (\vec{\Lambda} \cdot \vec{r})$$ • $$\{\vec{M} = \vec{0}, \vec{\Lambda} = \vec{0}\}$$. These are exactly the CP2 $(\vec{r} \rightarrow -\vec{r})$. • $$\{M_0 = 0, \vec{\Lambda} = \vec{0}\}$$ These are new, perhaps $r_0 \stackrel{?}{\rightarrow} -r_0$ $$\Phi_1 = \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} \phi_5 + i\phi_6 \\ \phi_7 + i\phi_8 \end{pmatrix},$$ The transformation implies $$r_0 \rightarrow -r_0 \qquad \qquad r_i \rightarrow +r_i$$ $$\begin{split} & \Phi_1 \rightarrow -\Phi_2^* & \Phi_1^\dagger \rightarrow \Phi_2^T, \\ & \Phi_2 \rightarrow \Phi_1^*, & \Phi_2^\dagger \rightarrow -\Phi_1^T. \end{split}$$ Higgs kinetic terms $$\mathcal{L}_k = (D_\mu \Phi_1)^\dagger (D^\mu \Phi_1) + (D_\mu \Phi_2)^\dagger (D^\mu \Phi_2) \,,$$ where $$D^{\mu} = \partial^{\mu} + \frac{ig}{2} \sigma_i W_i^{\mu} + i \frac{g'}{2} B^{\mu},$$ $\mathcal{L}_{\textbf{k}}$ remains invariant if the above transformation of $\Phi_{1,2}$ is supplemented by $$\begin{split} \partial_{\mu} & \rightarrow -i \partial_{\mu}, \\ B_{\mu} & \rightarrow i B_{\mu}, \\ W_{1\mu} & \rightarrow i W_{1\mu}, \quad W_{2\mu} & \rightarrow -i W_{2\mu}, \quad W_{3\mu} & \rightarrow i W_{3\mu}. \end{split}$$ Gauge kinetic terms $$\mathcal{L}^{B} \quad = \quad -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}W_{i\mu\nu}W_{i}^{\mu\nu}, \label{eq:LB}$$ where $B^{\mu\nu}$ = $\partial^{\nu}B^{\mu} - \partial^{\mu}B^{\nu}$ and $W_{i}^{\mu\nu}$ = $\partial^{\nu}W_{i}^{\mu} - \partial^{\mu}W_{i}^{\nu}$ + $g\epsilon_{ijk}W_{j}^{\mu}W_{k}^{\nu}$. Under r_{0} transformation $$\begin{split} B^{\mu\nu} &\to B^{\mu\nu}, \\ W_1^{\mu\nu} &\to W_1^{\mu\nu}, \quad W_2^{\mu\nu} &\to -W_2^{\mu\nu}, \quad W_3^{\mu\nu} &\to W_3^{\mu\nu} \end{split}$$ $$\Phi_1 = \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} \phi_5 + i\phi_6 \\ \phi_7 + i\phi_8 \end{pmatrix}$$ $$V_{\text{CW}}^{(1-loop)}(\phi_a) = \frac{1}{2} \int \frac{d^4 p_E}{(2\pi)^4} \text{Tr} \left[\ln(p_E^2 + M_S^2) \right] = -\frac{1}{2} \int \frac{d^4 p_E}{(2\pi)^4} \left[\text{Tr} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \left(\frac{M_S^2}{p_E^2} \right)^n \right]$$ $$\left(\mathsf{M}_{\mathcal{S}}^{2}\right)_{ab} \equiv \frac{\partial^{2} V}{\partial \phi_{a} \partial \phi_{b}}$$ $$a, b = 1, \dots, 8$$ Q.-H. Cao, K. Cheng, and C. Xu, "Global Symmetries and Effective Potential of 2HDM in Orbit Space", Phys.Rev.D 108 (2023) 055036, arXiv:2305.12764 [hep-ph]. $$r_0 o -r_0 \qquad r_i o +r_i$$ Is $V_{ ext{CW}}^{(1-loop)}(\phi_a)$ invariant under the r_0 transformation? At the new fixed point M_0 = 0 and $\vec{\Lambda}$ = 0 (m_{11} + m_{22} = 0, λ_1 = λ_2 and λ_6 = $-\lambda_7$): $$n=1: \qquad {\rm Tr}(M_S^2)=4[5\Lambda_{00}+{\rm tr}(\Lambda)]r_0 \stackrel{r_0}{\longrightarrow} -{\rm Tr}(M_S^2)=-4[5\Lambda_{00}+{\rm tr}(\Lambda)]r_0$$ $$\Lambda^{\mu\nu} \equiv \begin{pmatrix} \frac{1}{2}(\lambda_1 + \lambda_2) + \lambda_3 & -\operatorname{Re}(\lambda_6 + \lambda_7) & \operatorname{Im}(\lambda_6 + \lambda_7) & \frac{1}{2}(\lambda_2 - \lambda_1) \\ -\operatorname{Re}(\lambda_6 + \lambda_7) & \lambda_4 + \operatorname{Re}(\lambda_5) & -\operatorname{Im}(\lambda_5) & \operatorname{Re}(\lambda_6 - \lambda_7) \\ \operatorname{Im}(\lambda_6 + \lambda_7) & -\operatorname{Im}(\lambda_5) & \lambda_4 - \operatorname{Re}(\lambda_5) & -\operatorname{Im}(\lambda_6 - \lambda_7) \\ \frac{1}{2}(\lambda_2 - \lambda_1) & \operatorname{Re}(\lambda_6 - \lambda_7) & -\operatorname{Im}(\lambda_6 - \lambda_7) & \frac{1}{2}(\lambda_1 + \lambda_2) - \lambda_3 \end{pmatrix}$$ $$\Lambda^{\mu\nu} \equiv \begin{pmatrix} \Lambda_{00} & \vec{\Lambda} \\ \vec{\Lambda}^T & \Lambda \end{pmatrix}$$ $$r_0 \rightarrow -r_0$$ $r_i \rightarrow +r_i$ $$V_{\text{CW}}^{(1-loop)}(\phi_a) = -\frac{1}{2} \int \frac{d^4 p_E}{(2\pi)^4} \left[\text{Tr} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \left(\frac{\mathsf{M}_S^2}{p_E^2} \right)^n \right]$$ For M_0 = 0 and $\vec{\Lambda}$ = 0 (m_{11}^2 + m_{22}^2 = 0, λ_1 = λ_2 and λ_6 = $-\lambda_7$): $$n = 1$$: Tr $\left[M_S^2\right]$ odd $$n = 2$$: Tr $[(M_S^2)^2]$ even : $$n = 2k$$: Tr $\lceil (M_S^2)^{2k} \rceil$ even $$n = 2k + 1$$: Tr $[(M_S^2)^{2k+1}]$ odd : Conclusion: The r_0 symmetry is explicitly broken by n = 2k + 1 contributions to $V_{\text{CW}}^{(1-loop)}(\phi_a)$. $$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi_1 \partial^{\mu} \phi_1 + \partial_{\mu} \phi_2 \partial^{\mu} \phi_2) - V(\phi_1, \phi_2),$$ with $$V(\phi_1\,\phi_2) = \frac{1}{2} m_1^2 (\phi_1^2 - \phi_2^2) + m_{12}^2 \phi_1 \phi_2 + \frac{1}{2} \lambda_1 (\phi_1^4 + \phi_2^4) + \lambda_3 (\phi_1 \phi_2)^2 + \lambda_6 (\phi_1^2 - \phi_2^2) \phi_1 \phi_2 \,.$$ The model is invariant under the following r_0 -like transformation $$\mathbf{x}^{\mu} ightarrow \mathbf{i} \mathbf{x}^{\mu}, \qquad \phi_1 ightarrow \mathbf{i} \phi_2, \qquad \phi_2 ightarrow -\mathbf{i} \phi_1$$ It is possible to choose a (ϕ_1, ϕ_2) basis such that $\lambda_6 = 0$. The mass² matrix $$\left(M_S^2 \right)_{ij} = \begin{pmatrix} m_1^2 + 6\lambda_1\phi_1^2 + 2\lambda_3\phi_2^2 & m_{12}^2 + 4\lambda_3\phi_1\phi_2 \\ & -m_1^2 + 6\lambda_1\phi_2^2 + 2\lambda_3\phi_1^2 \end{pmatrix}$$ One can express the potential in terms of bilinear variables: $$r_0 \equiv \frac{1}{2}(\phi_1^2 + \phi_2^2)$$ $r_1 \equiv \phi_1 \phi_2$ $r_2 \equiv \frac{1}{2}(\phi_1^2 - \phi_2^2)$. Upon the r_0 transformation $$(r_0, r_1, r_2) \xrightarrow{r_0} (-r_0, r_1, r_2)$$ The potential could be written as $$V(r^\mu) = M_\mu r^\mu + \Lambda_{\mu\nu} r^\mu r^\nu$$ for μ, ν = 0, 1, 2 with M_{μ} = (0, m_{12}^2, m_1^2) and $$\Lambda_{\mu\nu} = \begin{pmatrix} \Lambda_{00} & 0 & 0 \\ 0 & \Lambda_{11} & \Lambda_{12} \\ 0 & \Lambda_{21} & \Lambda_{22} \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_3 & 0 \\ 0 & 0 & \lambda_1 \end{pmatrix} \,.$$ $$M_0$$ = 0 and $\vec{\Lambda}$ = 0 are implied by the r_0 symmetry $(m_1^2 + m_2^2 = 0, \lambda_1 = \lambda_2 \text{ and } \lambda_6 = -\lambda_7).$ $$Tr(M_5^2) = 4(3\lambda_1 + \lambda_3)r^0$$ Under the r_0 transformation the trace is odd: $$\operatorname{Tr}\left(M_{S}^{2}\right) \stackrel{r_{0}}{\longrightarrow} -\operatorname{Tr}\left(M_{S}^{2}\right) \, ,$$ Two local minima: $$(v_1^2 - v_2^2) = \frac{-m_1^2}{\lambda_1}, \qquad v_1 v_2 = \frac{-m_{12}^2}{(\lambda_1 + \lambda_3)}$$ where $\langle \phi_{1,2} \rangle \equiv v_{1,2}/\sqrt{2}$. **Figure 1:** Scalar potential of the toy model, m_1 = 10, m_{12} = 20, λ_1 = 1, λ_3 = 2. The eigenvalues of M_S^2 could be expressed through bilinears $$\begin{split} &M_1^2(r_\mu) = 2(3\lambda_1 + \lambda_3)r_0 + \sqrt{\Delta} \\ &M_2^2(r_\mu) = 2(3\lambda_1 + \lambda_3)r_0 - \sqrt{\Delta} \,, \end{split}$$ where $$\Delta = m_1^4 + m_{12}^4 + 4m_1^2(3\lambda_1 - \lambda_3)r_2 + 8m_{12}^2\lambda_3r_1 + 16\lambda_3^2r_0^2 + 12(3\lambda_1 + \lambda_3)(\lambda_1 - \lambda_3)r_2^2$$ $$M_1^2 \xrightarrow{r_0} -M_2^2$$ $$M_2^2 \xrightarrow{r_0} -M_1^2$$ The 1-loop effective potential $$V_{\text{CW}}^{\text{1-loop}}(r_{\mu}) = \frac{1}{64\pi^2} \sum_{i=1,2} M_i^4(r_{\mu}) \left[\log \frac{M_i^2(r_{\mu})}{\mu^2} - \frac{3}{2} \right].$$ $$V_{CW}^{\text{1-loop}}(r_0) \xrightarrow{r_0} V_{CW}^{\text{1-loop}}(-r_0) = V_{CW}^{\text{1-loop}}(r_0) - i\pi \left(M_1^4 + M_2^4\right),$$ (2) for $$M_1^4 + M_2^4 = 2 \left\{ [2(3\lambda_1 + \lambda_3) r_0]^2 + \Delta \right\} \ .$$ The 1-loop effective potential is not invariant under the r_0 transformation. # The model considered in this section indeed is stable under 1-loop RGE running. **Figure 2:** Diagrams which generate mass² beta functions: $\beta_{m_1^2}$ and $\beta_{m_2^2}$. $$r_0 \rightarrow -r_0$$ $r_i \rightarrow +r_i$ $$V_{\text{CW}}^{(1-loop)}(\phi_a) = -\frac{1}{2} \int \frac{d^4 p_E}{(2\pi)^4} \left[\text{Tr} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \left(\frac{\mathsf{M}_S^2}{p_E^2} \right)^n \right]$$ For M_0 = 0 and $\vec{\Lambda}$ = 0 (m_{11}^2 + m_{22}^2 = 0, λ_1 = λ_2 and λ_6 = $-\lambda_7$): $$n = 1$$: Tr $\left[M_S^2\right]$ odd $$n = 2$$: Tr $[(M_S^2)^2]$ even : $$n = 2k$$: Tr $[(M_S^2)^{2k}]$ even $$n = 2k + 1$$: Tr $[(M_S^2)^{2k+1}]$ odd : Conclusion: The r_0 symmetry is explicitly broken by n = 2k + 1 contributions to $V_{\text{CW}}^{(1-loop)}(\phi_a)$. #### **Summary and conclusions** - A set of constraints on 2HDM scalar parameters which is RG invariant to all orders with bosonic contributions to the β-functions and which can be invariant to at least two loops if fermions are also included, have been found. - · The constraints are $$m_{11}^2 + m_{22}^2 = 0$$, $\lambda_1 = \lambda_2$, $\lambda_6 = -\lambda_7$, - · The constraints are basis invariant. - The constraints are fixed points of RGE equations for corresponding quantities, however they do not imply presence of any known symmetry. - The constraints could be seeing as emerging from the " r_0 symmetry" (semisymmetry): $r_0 \rightarrow -r_0$ defined in terms of the bilinears $r_0 \equiv \frac{1}{2} \left(\Phi_1^\dagger \Phi_1 + \Phi_2^\dagger \Phi_2 \right)$. #### **Summary and conclusions** • The r_0 symmetry can not be obtained in terms of unitary transformation acting upon Higgs doubles, except for an unorthodox transformation (i.e. r_0 transformation) that involves $x_\mu \to i \ x_\mu$ and perhaps $p^\mu \to i \ p^\mu$. $$V_{\text{CW}}^{(1-loop)}(\phi_a) = -\frac{1}{2} \int \frac{d^4 p_E}{(2\pi)^4} \left[\text{Tr} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \left(\frac{\mathsf{M}_5^2}{p_E^2} \right)^n \right]$$ If change of sign of massless propagator (i.e. $p_E^2 \to -p_E^2$) is applied while calculating 1-loop CW potential, the r_0 parity of $\operatorname{Tr}\left(\frac{M_S^2}{p_E^2}\right)^n$ changes for n=2k+1 so that the total effective potential becomes r_0 invariant. # Backup slides $$\Lambda^3 = (\text{Tr}\Lambda)\Lambda^2 - \frac{1}{2} \left[(\text{Tr}\Lambda)^2 - \text{Tr}\Lambda^2 \right] \Lambda + \frac{1}{6} \left[(\text{Tr}\Lambda)^3 - 3\text{Tr}\Lambda \text{Tr}\Lambda^2 + 2\text{Tr}\Lambda^3 \right]$$ | Symmetry | m_{11}^2 | m_{22}^{2} | m_{12}^{2} | λ_1 | λ_2 | λ_3 | λ_4 | λ_{5} | λ_{6} | λ_7 | |-------------------------|------------|---------------|--------------|-------------|------------------------|-------------|-------------------------|-----------------|---------------|--------------| | r_0 | | $-m_{11}^{2}$ | | | λ_1 | | | | | $-\lambda_6$ | | oCP1 | | $-m_{11}^{2}$ | real | | λ_{1} | | | real | real | $-\lambda_6$ | | 0 <i>Z</i> ₂ | | $-m_{11}^{2}$ | 0 | | λ_{1} | | | | 0 | 0 | | OU(1) | | $-m_{11}^{2}$ | 0 | | λ_1 | | | 0 | 0 | 0 | | oCP2 | 0 | Ο | 0 | | λ_{1} | | | | | $-\lambda_6$ | | oCP3 | 0 | 0 | 0 | | $\lambda_{\mathtt{1}}$ | | | λ_{134} | 0 | 0 | | o <i>SO</i> (3) | 0 | Ο | 0 | | λ_1 | | $\lambda_1 - \lambda_3$ | 0 | 0 | 0 | **Table 2:** Relations between 2HDM scalar potential parameters for each of the new seven symmetries discussed, $\lambda_{134} \equiv \lambda_1 - \lambda_3 - \lambda_4$. #### Remarks: - · The two fixed points - $\{\vec{M} = \vec{0}, \vec{\Lambda} = \vec{0}\}$. - $\{M_0 = 0, \vec{\Lambda} = \vec{0}\}.$ imply the same quartic scalar couplings, i.e. CP2 invariant. - Yukawa couplings consistent with CP2 are known, see P. M. Ferreira and J. P. Silva, "A Two-Higgs Doublet Model With Remarkable CP Properties," Eur. Phys. J. C 69 (2010), 45-52, [arXiv:1001.0574 [hep-ph]]. - \cdot r_0 transformations of fermions are unknown, - in the following we will adopt CP2 invariant Yukawas to calculate fermionic contributions to beta functions. $$-\mathcal{L}_Y = \bar{q}_L(\Gamma_1\Phi_1 + \Gamma_2\Phi_2)n_R + \bar{q}_L(\Delta_1\tilde{\Phi}_1 + \Delta_2\tilde{\Phi}_2)p_R + \bar{l}_L(\Pi_1\Phi_1 + \Pi_2\Phi_2)l_R + \text{H.c.}$$ • For the CP2 symmetry: $$\Gamma_1 = \begin{pmatrix} a_{11} & a_{12} & 0 \\ a_{12} & -a_{11} & 0 \\ 0 & 0 & 0 \end{pmatrix} , \quad \Gamma_2 = \begin{pmatrix} -a_{12}^* & a_{11}^* & 0 \\ a_{11}^* & a_{12}^* & 0 \\ 0 & 0 & 0 \end{pmatrix} .$$ Similarly for Δ and Π matrices, with different coefficients b_{ij} and c_{ij} instead of a_{ij} . For the most general 2HDM $$\begin{split} \beta_{m_{11}^2}^{F,1L} &= \left[3\operatorname{Tr}(\Delta_1\Delta_1^\dagger) + 3\operatorname{Tr}(\Gamma_1\Gamma_1^\dagger) + \operatorname{Tr}(\Pi_1\Pi_1^\dagger) \right] \, m_{11}^2 \\ &- \left\{ \left[3\operatorname{Tr}(\Delta_1^\dagger\Delta_2) + 3\operatorname{Tr}(\Gamma_1^\dagger\Gamma_2) + \operatorname{Tr}(\Pi_1^\dagger\Pi_2) \right] \, m_{12}^2 + \text{h.c.} \right\} \,, \\ \beta_{m_{22}^2}^{F,1L} &= \left[3\operatorname{Tr}(\Delta_2\Delta_2^\dagger) + 3\operatorname{Tr}(\Gamma_2\Gamma_2^\dagger) + \operatorname{Tr}(\Pi_2\Pi_2^\dagger) \right] \, m_{22}^2 \\ &- \left\{ \left[3\operatorname{Tr}(\Delta_1^\dagger\Delta_2) + 3\operatorname{Tr}(\Gamma_1^\dagger\Gamma_2) + \operatorname{Tr}(\Pi_1^\dagger\Pi_2) \right] \, m_{12}^2 + \text{h.c.} \right\} \,, \end{split}$$ It turns out that $$\operatorname{Tr}(\Delta_1\Delta_1^\dagger) = \operatorname{Tr}(\Delta_2\Delta_2^\dagger) \ , \ \operatorname{Tr}(\Gamma_1\Gamma_1^\dagger) = \operatorname{Tr}(\Gamma_2\Gamma_2^\dagger) \ , \ \operatorname{Tr}(\Pi_1\Pi_1^\dagger) = \operatorname{Tr}(\Pi_2\Pi_2^\dagger) \, ,$$ as well as $$\operatorname{Tr}(\Delta_1\Delta_2^\dagger)=\operatorname{Tr}(\Gamma_1\Gamma_2^\dagger)\ =\ \operatorname{Tr}(\Pi_1\Pi_2^\dagger)\ =\ 0.$$ Hence, $$\beta_{m_{11}^2+m_{22}^2}^{F,1L} = \left[3 \operatorname{Tr} (\Delta_1 \Delta_1^\dagger) + 3 \operatorname{Tr} (\Gamma_1 \Gamma_1^\dagger) + \operatorname{Tr} (\Pi_1 \Pi_1^\dagger) \right] \left(m_{11}^2 + m_{22}^2 \right)$$ #### It could be shown that $$\beta_{m_{11}^2+m_{22}^2}^{F,1-loop} \propto \left(m_{11}^2 + m_{22}^2\right)$$ and $$\beta_{m_{11}^2+m_{22}^2}^{F,2-loop} \propto \left(m_{11}^2 + m_{22}^2\right)$$ So $m_{11}^2 + m_{22}^2 = 0$ is preserved by fermionic contributions up to 2 loops. The set of 11 independent physical parameters of 2HDM: $$\mathcal{P} \equiv \{\textit{M}_{H^{\pm}}^{2}, \textit{M}_{1}^{2}, \textit{M}_{2}^{2}, \textit{M}_{3}^{2}, \textit{e}_{1}, \textit{e}_{2}, \textit{e}_{3}, \textit{q}_{1}, \textit{q}_{2}, \textit{q}_{3}, \textit{q}\}$$ The kinetic Lagrangian: $$\mathcal{L}_{k} = (D_{\mu}\Phi_{1})^{\dagger}(D^{\mu}\Phi_{1}) + (D_{\mu}\Phi_{2})^{\dagger}(D^{\mu}\Phi_{2})$$ Coefficient $(\mathcal{L}_{k}, Z^{\mu} [H_{j} \overleftrightarrow{\partial_{\mu}} H_{i}]) = \frac{g}{2v \cos \theta_{W}} \epsilon_{ijk} e_{k}$ Coefficient $(\mathcal{L}_{k}, H_{i}Z^{\mu}Z^{\nu}) = \frac{g^{2}}{4 \cos^{2}\theta_{W}} e_{i} g_{\mu\nu}$ Coefficient $(\mathcal{L}_{k}, H_{i}W^{*\mu}W^{-\nu}) = \frac{g^{2}}{2} e_{i} g_{\mu\nu}$ $$q_{i} \equiv \text{Coefficient}(V, H_{i}H^{*}H^{-})$$ $$q \equiv \text{Coefficient}(V, H^{*}H^{*}H^{-})$$ CP-sensitive invariants in the bilinear notation $$I_{1} = \left(\vec{M} \times \vec{\Lambda}\right) \cdot \left(\Lambda \vec{M}\right)$$ $$I_{2} = \left(\vec{M} \times \vec{\Lambda}\right) \cdot \left(\Lambda \vec{\Lambda}\right)$$ $$I_{3} = \left[\vec{M} \times \left(\Lambda \vec{M}\right)\right] \cdot \left(\Lambda^{2} \vec{M}\right)$$ $$I_{4} = \left[\vec{\Lambda} \times \left(\Lambda \vec{\Lambda}\right)\right] \cdot \left(\Lambda^{2} \vec{\Lambda}\right)$$ Since the r_0 symmetry implies $\vec{\Lambda} = \vec{0}$ the invariants $I_{1,2,4}$ are automatically zero. However $$I_3$$ = $-16\lambda_5 \, m_{11}^2 \, {\rm Im}(m_{12}^2) \, {\rm Re}(m_{12}^2) \, \left[(\lambda_1 - \lambda_3 - \lambda_4)^2 - \lambda_5^2 \right] et 0$ explicit violation of CP Stationary-point equations: $$m_{11}^{2} = \frac{1}{2}\lambda_{1} \left(v_{2}^{2} - v_{1}^{2}\right),$$ $$\operatorname{Re} m_{12}^{2} = \frac{1}{2}v_{1}v_{2}\cos\xi\left(\lambda_{1} + \lambda_{3} + \lambda_{4} + \lambda_{5}\right),$$ $$\operatorname{Im} m_{12}^{2} = -\frac{1}{2}v_{1}v_{2}\sin\xi\left(\lambda_{1} + \lambda_{3} + \lambda_{4} - \lambda_{5}\right).$$ The neutral sector rotation matrix is then given by $$R = \begin{pmatrix} \frac{v_2 \cos \xi}{v} & \frac{v_1 \cos \xi}{v} & -\sin \xi \\ -\frac{v_1}{v} & \frac{v_2}{v} & 0 \\ \frac{v_2 \sin \xi}{v} & \frac{v_1 \sin \xi}{v} & \cos \xi \end{pmatrix},$$ yielding masses $$\begin{split} M_1^2 &= \frac{1}{2} v^2 \left(\lambda_1 + \lambda_3 + \lambda_4 + \lambda_5 \right), \quad M_2^2 = \lambda_1 v^2, \\ M_3^2 &= \frac{1}{2} v^2 \left(\lambda_1 + \lambda_3 + \lambda_4 - \lambda_5 \right), \quad M_{H^\pm}^2 = \frac{1}{2} \left(\lambda_1 + \lambda_3 \right) v^2 \end{split}$$ Assuming that M_2 is the SM-like Higgs boson, we obtain from unitarity and boundedness-from-below constraints: $$M_{H^{\pm}} \leq 711 \text{ GeV} \, ,$$ $M_3 \leq 712 \text{ GeV} \, ,$ $M_1 < 711 \text{ GeV}$ Input parameters: $$\mathcal{P} \equiv \{\textit{M}_{H^{\pm}}^{2}, \textit{M}_{1}^{2}, \textit{M}_{2}^{2}, \textit{M}_{3}^{2}, \textit{e}_{1}, \textit{e}_{2}, \textit{e}_{3}, \textit{q}_{1}, \textit{q}_{2}, \textit{q}_{3}, \textit{q}\}$$ Constraints implied by the r_0 symmetry: $$v^{2}(e_{1}q_{2} - e_{2}q_{1}) + e_{1}e_{2}(M_{2}^{2} - M_{1}^{2}) = 0, \quad v^{2}(e_{1}q_{3} - e_{3}q_{1}) + e_{1}e_{3}(M_{3}^{2} - M_{1}^{2}) = 0,$$ $$v^{2}(e_{2}q_{3} - e_{3}q_{2}) + e_{2}e_{3}(M_{3}^{2} - M_{2}^{2}) = 0, \quad q = \frac{1}{2v^{4}}(e_{1}^{2}M_{1}^{2} + e_{2}^{2}M_{2}^{2} + e_{3}^{2}M_{3}^{2}),$$ $$M_{H^{\pm}}^{2} = \frac{1}{2}(e_{1}q_{1} + e_{2}q_{2} + e_{3}q_{3}) + \frac{1}{2v^{2}}(e_{1}^{2}M_{1}^{2} + e_{2}^{2}M_{2}^{2} + e_{3}^{2}M_{3}^{2}),$$