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U(1) VDM model

The model:
= extra U(1) gauge symmetry (A%),

® a complex scalar field S, whose vev generates a mass for the U(1)'s

vector field, S = (0,1,1,1) under U(1)y x SU(2);, x SU(3). x U(1)
= SM fields neutral under U(1),

® to ensure stability of the new vector boson, a Z, symmetry is assumed
to forbid U(1)-kinetic mixing between U(1) and U(l) B
A and th I field f d fol




U(1) VDM model

The scalar potential

V =~y |HI + Ag|H|* - u3]S|* + As|S|* + s|SI*| HI*.

The vector bosons masses:

1 1/
My = EQ'U, My = ) g2 +912,U and Mz’ = 9z Vs>




U(1) VDM model

The scalar fields shall be expanded around corresponding vev's as follows

H+
S = %(vx+¢s+i05) , H' = %(v+¢H+iaH) where H = (HO)'

The mass squared matrix M? for the fluctuations (05, dg) and their
eigenvalues

M = <2>\HU2 m)vz)

Kuvy,  2A Svg




U(1) VDM model

There are 5 real parameters in the potential: gy, pg, Ay, Ag and k.
Adopting the minimization conditions pp, pg could be replaced by v and
v,. The SM vev is fixed at v = 246.22 GeV. Using the condition

My, =125.7 GeV, v2 could be eliminated in terms of

UQ; )‘Ha K, )‘Sa )‘SM = Mil/(2U2):

2 _ 2 ADAsn(Ag — Agnr)

r =

(A — Asar) — K




U(1) VDM model

Vacuum stability
V = —uh [ HI? + Mg H|* — u3ISI + AslSI* + £ISI*|HP?

2-loop running of parameters adopted

Au(@) >0, Ag(@) >0, w(Q)+2vVAu(Q)As(Q) >0




U(1) VDM model

The mass of the Higgs boson is known experimentally therefore within the
SM the initial condition for running of Ay (Q) is fixed

Ag(my) = Mi [(20%) = Agp = 0.13

For VDM this is not necessarily the case:

M —)\Hv +)\Sv —\/)\S'u —2)\H)\Sv v +)\H1J +/~c2v202
VDM:

® Larger initial values of A\ such that Az (m;) > Agj, are allowed




Resonance beyond the B-W

DM DM

DM DM
Breit-Wigner resonance (s ~ M?) DM self-interaction.




Resonance beyond the B-W
DM SM

DM SM
Breit-Wigner resonance (s ~ M?) annihilation.




Resonance beyond the B-W

DM SM




Resonance beyond the B-W
DM SM

DM SM

= The BW propagator is an approximation that follows from
re-summation of an infinite series of 2-point Green's functions, so in




Resonance beyond the B-W
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Resonance beyond the B-W
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Resonance beyond the B-W
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Resonance beyond the B-W
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Early kinetic decoupling of DM and

coupled Boltzmann equations
DM SM




Early kinetic decoupling of DM and
coupled Boltzmann equations

® |f dark matter decouples kinetically, when it is non-relativistic and its
thermal distribution is maintained by self-scatterings, then the DM

temperature Tp), evolves according to Thj; o a2

® The temperature of the radiation-dominated SM thermal bath, scales




Early kinetic decoupling of DM and

coupled Boltzmann equations
Define DM “temperature:

2 3
Tou = 3 <§—m> o 00 = [ SLowse)

The Boltzmann equation:




Early kinetic decoupling of DM and
coupled Boltzmann equations
y  sy® Y50
F(Uvreox

<Jvrel>m:m2/(s2/3y) —

9 = Y2 ((J’Ure]> - <Uvre1>2)z

2
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Early kinetic decoupling of DM and
Wy Scoupled Boltzmann equations

2 2
E Har Y <0Urel>w=m2/(32/?’y) = YEQ <Gvrel>x
dy 1

- =~ {2me(D)(y — ypo) +

—syY

Y2 ((Jvrel> — <0Urel>2)w

where the temperature parameter y is defined as

Y&
((Uvre1> - <0"Ure1>2)z:m2/(s2/3y) B 3 ] }




Early kinetic decoupling of DM and
coupled Boltzmann equations
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Generic conclusions on the BW
approximation

Remarks:

® The presence of velocity-dependent width implies that Y decouples at
lower z (as compared to the case with constant width I'(A/?)) and
the asymptotic DM yield is much larger.

= The asymptotic yield expected in the early decoupling scenario is




Self-interacting dark matter

Small scale WIMP problems:
= Core/cusp problem

= Missing satellites

= "Too big to fail"




Self-interacting dark matter

Upper bounds on self-interaction cross-section

Bullet cluster:

Oself < 1.0
Mmpm g




Numerical results confronted with
Fermi-LAT data
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Numerical results confronted with
Fermi-LAT data

6>0, n,=3/16 <0, n=3/16
1072 1072 .

CMB excluded CMB excluded

BBN excluded BBN excluded

Tsei/m>1cm?/g Tser/m>1cm?/g



Summary

® The U(1) vector dark matter (VDM) was introduced and discussed
(extra neutral Higgs boson hy).

= Breit-Wigner approximation was modified by adopting s-dependent
width (~ IX(s)), effects are large.

® Correct DM abundance implies early kinetic decoupling of DM with
important numerical consequences. Similar effects are present for the
real-scalar DM, see T. Binder, T. Bringmann, M. Gustafsson and




U(1) VD

® Bottom part of the plot (A\g <
Asar = M /(2v°) = 0.13): the
heavier Higgs is the currently
observed one.
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U(1) VDM model
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Numerical results
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Numerical results




Gauge dependance

Direct calculation in the R, gauge leads to

2 2

g S ?) 2 2

Youm(s) = Ra2E || —=— — s+3M>% | By(s, M2/, M)+
DM() 22871'2 [<4M§/ Z) O( VA Z)
4 2
mhz—s

+ 2
4M,

Bo(s,gM;,gM;)] :

where Bo(s,mz,m2) is a Passarino-Veltman function, while ¢ is the




Gauge dependance
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Gauge dependance

Mz=1TeV, |6|=10"*
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Gauge dependance
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Unitarity
Unitarity is violated, in the tail (large s) of the Boltzmann distribution in
the thermal average where it is irrelevant for DM annihilation.

For instance if M, = 100 GeV we find that for = 2 5ag,g unitarity is
satisfied.

M=1TeV,6=10‘4,g=1ﬁrr




Unitarity

Mz =1TeV, |6 =107, a=10"*




