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U(1) VDM model

The model:

� extra U(1) gauge symmetry (AµX),

� a complex scalar �eld S, whose vev generates a mass for the U(1)'s
vector �eld, S = (0,1,1, 1) under U(1)Y ×SU(2)L×SU(3)c×U(1)

� SM �elds neutral under U(1),

� to ensure stability of the new vector boson, a Z2 symmetry is assumed
to forbid U(1)-kinetic mixing between U(1) and U(1)Y : ���

�XXXXBµνV
µν .

AµX and the scalar S �eld transform under Z2 as follows

AµX → −A
µ
X , S → S∗, where S = φeiσ, so φ→ φ, σ → −σ.
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U(1) VDM model

The scalar potential

V = −µ2
H |H|

2 + λH |H|
4 − µ2

S |S|
2 + λS |S|

4 + κ|S|2|H|2.

The vector bosons masses:

MW =
1

2
gv, MZ =

1

2

√
g2 + g′2v and M

Z
′ = gxvx,

where

〈H〉 =

(
0
v√
2

)
and 〈S〉 =

vx√
2

Positivity of the potential implies

λH > 0, λS > 0, κ > −2
√
λHλS



U(1) VDM model

The scalar �elds shall be expanded around corresponding vev's as follows

S =
1√
2

(vx+φS + iσS) , H0 =
1√
2

(v+φH + iσH) where H =

(
H+

H0

)
.

The mass squared matrixM2 for the �uctuations (φH , φS) and their
eigenvalues

M2 =

(
2λHv

2 κvvx
κvvx 2λSv

2
x

)
M2
± = λHv

2 + λSv
2
x ±

√
λ2
Sv

4
x − 2λHλSv

2v2
x + λ2

Hv
4 + κ2v2v4

x

M2
diag =

(
M2
h1

0

0 M2
h2

)
, R =

(
cosα − sinα
sinα cosα

)
(
h1

h2

)
= R−1

(
φH
φS

)
where Mh1

= 125.7 GeV is the mass of the observed Higgs particle.



U(1) VDM model

There are 5 real parameters in the potential: µH , µS , λH , λS and κ.
Adopting the minimization conditions µH , µS could be replaced by v and
vx. The SM vev is �xed at v = 246.22 GeV. Using the condition
Mh1

= 125.7 GeV, v2
x could be eliminated in terms of

v2, λH , κ, λS , λSM = M2
h1
/(2v2):

v2
x = v2 4λSM (λH − λSM )

4λS(λH − λSM )− κ2

Eventually there are 4 independent parameters:

(λH , κ, λS , gx),

where gx is the U(1) coupling constant. Another choice:

(M
Z
′ ,Mh2

, sinα, gx),



U(1) VDM model

Vacuum stability

V = −µ2
H |H|

2 + λH |H|
4 − µ2

S |S|
2 + λS |S|

4 + κ|S|2|H|2

2-loop running of parameters adopted

λH(Q) > 0, λS(Q) > 0, κ(Q) + 2
√
λH(Q)λS(Q) > 0
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U(1) VDM model

The mass of the Higgs boson is known experimentally therefore within the

SM the initial condition for running of λH(Q) is �xed

λH(mt) = M2
h1
/(2v2) = λSM = 0.13

For VDM this is not necessarily the case:

M2
h1

= λHv
2 + λSv

2
x −

√
λ2
Sv

4
x − 2λHλSv

2v2
x + λ2

Hv
4 + κ2v2v2

x.

VDM:

� Larger initial values of λH such that λH(mt) > λSM are allowed
delaying the instability (by shifting up the scale at which λH(Q) < 0).

� Even if the initial λH is smaller than its SM value, λH(mt) < λSM ,
still there is a chance to lift the instability scale if appropriate initial
value of the portal coupling κ(mt) is chosen.

β
(1)
λH

= β
SM (1)
λH

+ κ2



Resonance beyond the B-W

R

DM

DM

DM

DM

Breit-Wigner resonance (s ≈M2) DM self-interaction.

σself '
32πω

sβ2
i

M2Γ2
i

(s−M2)2 + Γ2M2 ,

σself

m
' 8πω

m3

η2

(δ + v2
rel/4)2 + γ2

η ≡ Γi
Mβi

, δ ≡ 4m2

M2 − 1, γ ≡ Γ

M
and ω =

(2J + 1)

(2S + 1)2



Resonance beyond the B-W

R

DM

DM

SM

SM

Breit-Wigner resonance (s ≈M2) annihilation.

σvrel =
64πω

M2

ηγf

(δ + v2
rel/4)2 + γ2

〈σvrel〉(x) =
x3/2

2
√
π

∫ ∞
0

dvv2e−xv
2
/4σv, x ≡ m

T

P. Gondolo and G. Gelmini, Nucl. Phys. B 360, 145 (1991),
K. Griest and D. Seckel, Phys. Rev. D 43, 3191 (1991),

M. Ibe, H. Murayama and T. Yanagida, Phys. Rev. D 79, 095009 (2009)



Resonance beyond the B-W

R

DM

DM

SM

SM

Is the BW approximation applicable ?

σ ∝ 1

(s−M2)2 + Γ2M2

s ≈M2



Resonance beyond the B-W

R

DM

DM

SM

SM

� The BW propagator is an approximation that follows from
re-summation of an in�nite series of 2-point Green's functions, so in
general

ΓM → Γ(s)M ≡ =Σ(s)

=Σ(s) =
1

2

∑
f

∫
dΠf |M(R→ f)|2(2π)4δ(4)(kR −

∑
qf )

� vrel � 1 and 2m ≈M =⇒ s ≈ 4m2 +m2v2
rel ≈M

2
(
δ ≡ 4m

2

M
2 − 1

)
� Is the BW approximation applicable ?



Resonance beyond the B-W

σvrel ∝
M2ΓiΓf

|s−M2 + iΓM |2

↓

σvrel ∝
M2ΓiΓf

|s−M2 + i=Σ(s)|2

σvrel ∝
γiγf

(δ + v2
rel/4)2 + [γSM + γDM(vrel)]

2

γSM�γDM≈
γiγf

(δ + v2
rel/4)2 + η2v2

rel/4

where η ≡ Γi
Mβi

, βi ≡
(

1− 4m
2

M
2

)1/2
and γi,f =

Γi,f
M



Resonance beyond the B-W

dY

dx
= −λ0

x2R(x)(Y 2 − Y 2
EQ) Y ≡ nDM

s
x ≡ m

T

R(x) =
〈σvrel〉(x)

〈σvrel〉0

Γ(x) = nEQ(x)〈σvrel〉(x)

Γ(x) ∼ H(x)→ xf ∼ 20− 30

Y∞ ∝
xf

〈σvrel〉(xf )

〈σv〉 [cm3/s]
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Resonance beyond the B-W

dY

dx
= −λ0

x2R(x)(Y 2 − Y 2
EQ) Y ≡ nDM

s
x ≡ m

T

R(x) =
〈σvrel〉(x)

〈σvrel〉0
=
x3/2

2
√
π

∫ ∞
0

dvrelv
2
rele
−xv2rel/4 δ2

(δ + v2
rel/4)2 + η2v2

rel/4
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Thermally averaged annihilation cross-section 〈σvrel〉(x) for negative (left panel) and positive (right panel) value of

δ. The solid lines were obtained using the resonance propagator with energy-dependent width and dashed lines refer

to constant width approximation. In the right panel all dashed lines coincide.



Resonance beyond the B-W

dY

dx
= −λ0

x2R(x)(Y 2 − Y 2
EQ) with R(x) ∝ 〈σvrel〉(x)

At low x, 〈σvrel〉(x) for the velocity dependent width is smaller than for the
naive constant width Γ(M2).

⇓

Velocity dependent width implies higher asymptotic DM yield.



Early kinetic decoupling of DM and

coupled Boltzmann equations

R

DM

DM

SM

SM

Resonance enhancement of DM annihilation

⇓
Suppressed DM DM → SM SM resonant annihilation
(to get ΩDM ∼ 0.1) and tiny σ(DMSM → DMSM)

⇓

� Possibility of DM early kinetic decoupling at Tkd � TWIMP
kd ∼ MeV,

� Suppressed cross-sections for direct detection.



Early kinetic decoupling of DM and

coupled Boltzmann equations

� If dark matter decouples kinetically, when it is non-relativistic and its
thermal distribution is maintained by self-scatterings, then the DM
temperature TDM evolves according to TDM ∝ a

−2,

� The temperature of the radiation-dominated SM thermal bath, scales
as T ∝ a−1.

TDM =

{
T, if T ≥ Tkd
T 2/Tkd, if T < Tkd,

where T stands for the SM temperature.



Early kinetic decoupling of DM and

coupled Boltzmann equations
De�ne DM �temperature�:

TDM ≡
2

3

〈
~p 2

2m

〉
for 〈O(~p)〉 ≡ 1

nDM

∫
d3p

(2π)3O(~p)f(~p)

The Boltzmann equation:
L̂[f ] = C[f ]

The second moment of the Boltzmann equation:∫
d3p

(2π)3

~p 2

p0 L̂[f ] =

∫
d3p

(2π)3

~p 2

p0 C[f ]

T. Bringmann and S. Hofmann, �Thermal decoupling of WIMPs from �rst
principles,� JCAP 0704, 016 (2007), Erratum: [JCAP 1603, no. 03, E02
(2016)]



Early kinetic decoupling of DM and

coupled Boltzmann equations
dY

dx
= −sY

2

Hx

[
〈σvrel〉x=m

2
/(s

2/3
y)
−
Y 2
EQ

Y 2 〈σvrel〉x

]
dy

dx
= − 1

Hx

{
2mc(T )(y − yEQ) +

−syY

[
(〈σvrel〉 − 〈σvrel〉2)

x=m
2
/(s

2/3
y)
−
Y 2
EQ

Y 2 (〈σvrel〉 − 〈σvrel〉2)x

]}
where the temperature parameter y is de�ned as

y ≡ mTDM

s2/3
, for sharp splitting: y ∝

{
x, if T ≥ Tkd
m
Tkd
∼ const., if T < Tkd,

T. Bringmann and S. Hofmann, �Thermal decoupling of WIMPs from �rst
principles,� JCAP 0704, 016 (2007), Erratum: [JCAP 1603, no. 03, E02
(2016)]



Early kinetic decoupling of DM and

coupled Boltzmann equations
dY

dx
= − s

Hx

[
Y 2〈σvrel〉x=m

2
/(s

2/3
y)
− Y 2

EQ〈σvrel〉x
]

dy

dx
= − 1

Hx

{
2mc(T )(y − yEQ) +

−syY

[
(〈σvrel〉 − 〈σvrel〉2)

x=m
2
/(s

2/3
y)
−
Y 2
EQ

Y 2 (〈σvrel〉 − 〈σvrel〉2)x

]}
where the temperature parameter y is de�ned as

y ≡ mTDM

s2/3
and yEQ ≡

mT

s2/3

the scattering rate c(T ) as

c(T ) =
1

12(2π)3)m4T

∑
f

∫
dkk5ω−1g|M|2

t=0;s=m
2
+2mω+M

2
SM

〈σvrel〉2 =
x3/2

2
√
π

∫ ∞
0

dvrelσvrel

(
1 +

1

6
v2

relx

)
v2

rel exp−v
2
relx/4



Early kinetic decoupling of DM and

coupled Boltzmann equations

YEQ
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Dark matter yield Y (left panel) and corresponding DM temperatures (right panel) in di�erent kinetic decoupling

scenarios. The blue curves show the solution of the set of BE, whereas the green ones refer to the �sharp splitting�

at xkd = 90. For the red curves dark matter remains in the kinetic equilibrium during its whole evolution. Dashed

curves present the corresponding results for the standard Breit-Wigner approximation (with γ � δ).



Generic conclusions on the BW

approximation

Remarks:

� The presence of velocity-dependent width implies that Y decouples at
lower x (as compared to the case with constant width Γ(M2)) and
the asymptotic DM yield is much larger.

� The asymptotic yield expected in the early decoupling scenario is
substantially reduced by more e�cient annihilation,
R(xDM ) ∼ x

xkd
R(x)� R(x).

� Both e�ects cancel to same extend, so that the increase by the
velocity depended width is reduced by ∼ 50%.



Self-interacting dark matter

Small scale WIMP problems:

� Core/cusp problem

� Missing satellites

� "Too big to fail"

Solution (Spergel and Steinhardt, 2000):

σself

mDM

>∼ 0.1
cm2

g

(
∼ 0.1

barn

GeV
� pb

GeV

)



Self-interacting dark matter
Upper bounds on self-interaction cross-section

Bullet cluster:

σself

mDM

<∼ 1.0
cm2

g

σself

mDM
∼ 1.0

cm2

g



Numerical results confronted with

Fermi-LAT data
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Result of the scan in the parameter space over M
Z
′ , δ and sinα. For each point in the plot we �t α to satisfy the

relic abundance constraint and then calculate the annihilation 〈σvrel〉v0
and self-interaction σself/MZ

′

cross-section at the dispersive velocity v0 equal to 10 km/s (left panel) and 1 km/s (right panel). The maximal

value of η in the VDM model, η = 3/16, was chosen.



Numerical results confronted with

Fermi-LAT data
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Regions in the (δ,M
Z
′ ) parameter space constrained by Fermi-LAT, CMB and BBN. The self-interaction

cross-section needed for the small scale problems is also shown. Below black dotted, dash-dotted or dashed lines relic

density without considering kinetic decoupling is larger by factor 1.2, 1.5 or 2 respectively.



Summary

� The U(1) vector dark matter (VDM) was introduced and discussed
(extra neutral Higgs boson h2).

� Breit-Wigner approximation was modi�ed by adopting s-dependent
width (∼ =Σ(s)), e�ects are large.

� Correct DM abundance implies early kinetic decoupling of DM with
important numerical consequences. Similar e�ects are present for the
real-scalar DM, see T. Binder, T. Bringmann, M. Gustafsson and
A. Hryczuk, presented at Planck 2017 in Warsaw.

� When the Fermi-LAT limits are taken into account, heavy ∼ 1 TeV
DM is favored and only very limited enhancement of
σself/m� 1 cm2/g is possible.



U(1) VDM model

� Bottom part of the plot (λH <
λSM = M2

h1
/(2v2) = 0.13): the

heavier Higgs is the currently
observed one.

� Upper part (λH > λSM ) the
lighter state is the observed one.

� White regions in the upper and
lower parts are disallowed by the
positivity conditions for v2

x and
M2
h2
, respectively.



U(1) VDM model

Contour plots for the vacuum expectation value of the extra scalar vx ≡
√
2〈S〉 (left panel) and of the mixing angle

α (right panel) in the plane (λH , κ).



Numerical results
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Result of the scan in the parameter space over M
Z
′ , δ and sinα. Colouring with respect to δ the dispersive velocity

v0 equal to 10 km/s (left panel) and 1 km/s (right panel). The maximal value of η in the VDM model, η = 3/16,

was chosen.



Numerical results

100 500 1000 5000 10
4

10
-26

10
-24

10
-22

10
-20

10
-18

MZ'[GeV]

〈σ
v
〉 v
0
[c
m
3
/s
]

α

10
-5

10
-4

10
-3

10
-2

100 500 1000 5000 10
4

10
-26

10
-24

10
-22

10
-20

10
-18

MZ'[GeV]

〈σ
v
〉 v
0
[c
m
3
/s
]

α

10
-5

10
-4

10
-3

10
-2

Result of the scan in the parameter space over M
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velocity v0 equal to 10 km/s (left panel) and 1 km/s (right panel). The maximal value of η in the VDM model,

η = 3/16, was chosen.



Gauge dependance
Direct calculation in the Rξ gauge leads to

ΣDM(s) = R2
22
g2
x

8π2

[(
s2

4M2
Z
′
− s+ 3M2

Z
′

)
B0(s,M2

Z
′ ,M2

Z
′)+

+
m4
h2
− s2

4M2
Z
′
B0(s, ξM2

Z
′ , ξM2

Z
′)

]
,

where B0(s,m2,m2) is a Passarino-Veltman function, while ξ is the
gauge-�xing parameter.

=ΣDM(s) = R2
22
g2
x

8π

[(
s2

4M2
Z
′
− s+ 3M2

Z
′

)
θ
Z
′β
Z
′ +

m4
h2
− s2

4M2
Z
′
θξβξ

]
,

where β
Z
′ ≡ (1− 4M2

Z
′/s)1/2, βξ ≡ (1− 4ξ2M2

Z
′/s)1/2,

θ
Z
′ ≡ θ(s− 4M2

Z
′), θξ ≡ θ(s− 4ξ2M2

Z
′) and θ(x) is the Heaviside

function.



Gauge dependance
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Here we illustrate consequences of gauge dependence of the resonance propagator. Results shown correspond to

selected values of ξ speci�ed in the legend. The unitary gauge (ξ →∞) is denoted as UG, the NON-REL curve

shows results obtained within a non-relativistic approximation. We show the cross-section for Z
′
Z
′ → W
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as a

function of
√
s, vicinities of v0 = 10 km/s and 1 km/s are magni�ed. For the width calculation η = 3/16 was

adopted.



Gauge dependance
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Gauge dependance
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selected values of ξ speci�ed in the legend. The unitary gauge (ξ →∞) is denoted as UG, the NON-REL curve

shows results obtained within a non-relativistic approximation. We plot numerical solution of the Boltzmann

equations for the dark matter yield Y (x). For the width calculation η = 3/16 was adopted.



Unitarity

Unitarity is violated, in the tail (large s) of the Boltzmann distribution in
the thermal average where it is irrelevant for DM annihilation.

For instance if M
Z
′ = 100 GeV we �nd that for x >∼ 5αgxg unitarity is

satis�ed.
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Unitarity
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