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- Inflation solves puzzles of the standard Big-Bang cosmology.

- Dynamics of the reheating period, which follows the inflation is
often underestimated or oversimplified.

- It is usually assumed that the inflaton decay rate, I, is constant.

- Hereafter we are going to discuss relations between inflation

and reheating dynamics focusing on possible interactions
between the Higgs boson and inflaton.

- Dynamics of reheating influences the dark matter sector,
especially in the context of the freeze-in DM production.
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The a-attractor T-model
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Interactions
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The Higgs portal

homogeneous, classical o° /‘I,'
background field i
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The Higgs portal
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Kinematic suppression

effective mass

The inflaton decay rate can be written as
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The time-averaged Boltzmann equations
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The time-averaged Boltzmann equations
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The time-averaged Boltzmann equations

nx+3an D¢+S¢ ++Dho
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The time-averaged Boltzmann equations
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The time-averaged Boltzmann equations
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Non-instantaneous reheating
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Gravitational DM production

1 1
Loy = —ZXWX‘“’ + gmiXuX“ + Lint

h
— MV v o uv
Ling = Mo <To *Tx + Tsxr)
DM SM DM
\\
\
RN
T 1 1N 1
Mp, h;w Mp, MPl’/ hw, Mpy
/
’
K
DM SM DM
dNX 32
b H (S¢ + Ssm)

where Nx = nxa® >



mx N&¥(a,,)  so h2

Qirav h2 ~ 3
Pec arh S(th)

Log1[gno]

QF*p? = QPp? = 0.1108 4+ 0.0012

.

6l P
_7t ]
—8h ]
—9lL i
~ — mh,#o:
g o
ol5 [
16

Logyo[mx/GeV]

23



Heavy DM particles are produced
by the freeze-in from the SM sector
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- The a-attractor T-model potential for the inflaton field has been

adopted:
P | ‘ A ‘(,)|>> Mpy
V(¢)= A* tanh®” <0> ~ 2n ,
vV 6 MP] /\4 /\;) ‘C)|<< MPI
Pl

- The reheating has been triggered by
Lint = ghoMp10|h|*

- It has been shown that both duration of reheating and evolution
of radiation energy density, pr, are sensitive to the shape of the
inflaton potential (n).

- The role of kinematical suppression emerging from L;,: has
been investigated. It has been shown that the non-zero mass of
the Higgs boson leads to the elongation of the reheating period,
changes the pr(a) and T(a) evolution, and favors reduced T,,.x.
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- It has been shown that purely gravitational production of DM is
possible.

- Purely gravitation reheating needs to be investigated.
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The a-attractor T-model

Time averaging:
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Particle production in a classical inflaton background

For the interactions proportional to the ¢ = ¢ - P term, the
lowest-order non-vanishing S-matrix element takes the form

SO =3P, (1] / d* xplt) e Ly (i)
AT
where

i) = |0y, |f) = a}a}|0).

If the envelope ¢(t) varies on the time-scale much longer than the
time-scale relevant for processes of particle creation, the S-matrix
element can be written as

5,(1) = t)ZPkMO—M(k) x (271)*8(kw — 2E¢)8%(pr, + ps,)-
P
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