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Deconstruction and spontaneous symmetry breaking

〈0|OU(x)OU(0)|0〉 =
∫

d4p

(2π)2
e−ipxρU(p2)

• Scaling:
OU(x) → O′U(x′) = s−dUOU(x) for x → x′ = sx

• The spectral density:

ρU(p2) =
∫

d4x eipx〈0|OU(x)OU(0)|0〉 ⇒ ρU(p2) = AdUθ(p0)θ(p2)(p2)dU−2

• The phase space:

dΦU(pU) = AdUθ(p0)θ(p2
U)(p2

U)dU−2 d4pU
(2π)4

with AdU =
16π5/2

(2π)2dU

Γ(dU + 1
2)

Γ(dU − 1)Γ(2dU)

• Unparticles behave as a collection of dU massless particles ⇒ continuous spectrum
in t → uOU .

More about Unparticles, June 24rd, 2008, ”‘TeV scale physics and dark matter” 2



Deconstruction of unparticles

Källen-Lehman representation of the Feynman propagator:

i∆U
F (p2) =

∫
d4xeipx〈0|T{OU(x)OU(0)}|0〉 =

∫ ∞

0

dm2

2π
ρ(m2)

i

p2 −m2 + iε

with ρU(m2) = AdUθ(m2)(m2)dU−2. Deconstruction (Stephanov’07):

OU →
∞∑

n=0

Fnϕn with m2
n = ∆2n

Then

i∆U
F (p2) =

∫
d4xeipx〈0|T{OU(x)OU(0)}|0〉 =

∞∑
n=0

iF 2
n

p2 −m2
n + iε

if F 2
n =

AdU
2π ∆2(m2

n)dU−2 then

i
AdU

2π

∞∑
n=0

(m2
n)dU−2

p2 −m2
n + iε

∆2 →
∆→0

i
AdU

2π

∫
(m2)dU−2dm2

p2 −m2 + iε
=

∫
dm2

2π
ρ(m2)

i

p2 −m2 + iε
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So, the undeconstructed result has been confirmed. Now, let’s focus on the
non-trivial phase:

Im

{ ∞∑
n=0

F 2
n

p2 −m2
n + iε

}
= −

∑
n

F 2
nπδ(p2 −m2

n) →
∆→0

−
AdU

2
θ(p2)(p2)dU−2

So, each peak becomes lower as F 2
n ∼ ∆2 → 0, but their density increases.

• Each mode ϕn breaks the scale invariance.

• In the limit

lim
N→∞

N∑
n=0

the scale invariance is recovered.
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The deconstruction for t → uOU decay

i
λ

ΛdU
U

ūγµ(1− γ5)t ∂µOU −→ i
λ

ΛdU
U

ūγµ(1− γ5)t
∞∑

n=0

Fn∂µϕn

⇓

Γ(t → uϕn) =
λ2

Λ2dU
U

mtE
2
u

2π
F 2

n with Eu =
m2

t −m2
n

2mt
and F 2

n =
AdU

2π
∆2(m2

n)dU−2

Number of states |ϕn〉 in the interval (Eu, Eu + dEu): dN = dEu
2mt
∆2

⇓
dΓ
dEu

=
2mt

∆2
Γ(t → u + ϕn) =

λ2

Λ2dU
U

AdU
m2

t

2π2
E2

u(m2
t − 2mtEu)(dU−2)θ(mt − 2Eu)

The same as the Georgi’s result!
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Spontaneous symmetry breaking with unparticles and Higgs boson physics

(Delgado, Espinosa, Quiros’07)

UV : 1

M
dBZ−2

U
|H|2 OBZ
⇓

IR : cU

(
Λ

dBZ−dU
U

M
dBZ−2

U
|H|2

)
OU ≡ κU |H|2 OU

Deconstruction (OU →
∑

n Fnϕn, m2
n = ∆2n) ⇒

Vtot = m2|H|2 + λ|H|4 + δ V

for

δ V =
1
2

∞∑
n=0

m2
nϕ2 + κU |H|2

∞∑
n=0

Fnϕn

〈ϕn〉 = −κUv2Fn

m2
n

for 〈|H|2〉 = v2, F 2
n =

AdU

2π
∆2(m2

n)dU−2

So,

〈OU〉 =
∞∑

n=0

Fn〈ϕn〉 −→ −κUv2AdU

2π

∫ ∞

0

dm2

(m2)3−dU
= −∞
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• The IR divergence!

• A possible regularization δ V ′ = ζ|H|2
∑

ϕ2
n is not scale invariant.

Since the scaling invariance is anyway violated by the vacuum expectation value 6= 0
through |H|2OU so we adopt

δ V ′ = ζ|H|2
∑

n

ϕ2
n

as the IR regulator. Then

vn = 〈ϕn〉 = − κUv2

2(m2
n + ζv2)

Fn

The minimization for H reads:

m2 + λv2 + κU
∑

n

Fnvn + ζ
∑

n

v2
n = 0

Inserting vn one gets in the continuum limit (∆ → 0):

m2 + λv2 − λU(µ2)2−dUv2(dU−1) = 0
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for λU ≡
dU
4

ζdU−2Γ(dU − 1)Γ(2− dU) and (µ2
U)2−dU ≡ κ2

U
AdU

2π

Veff = m2|H|2−2dU−1

dU
λU(µ2

U)2−dU |H|2dU + λ|H|4

Even if m2 = 0 one can get the vacuum expectation value 6= 0 (ΛU provides the
scale):

v2 =
(

λU
λ

) 1
2−dU

µ2
U for µ2

U =
(

AdU

2π

) 1
2−dU

(
Λ2
U

M2
U

)dSM−2
2−dU

Λ2
U
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The equation of state - hand-waving arguments

(in progress with Jose Wudka)
The trace anomaly of the energy momentum tensor for a gauge theory with massless
fermions:

θµ
µ =

β

2g
N [Fµν

a Fa µν] (1)

where β denotes the beta function and N stands for the normal product.
Non-trivial IR fixed point at g = g?, so in the IR we assume

β = γ(g − g?), γ > 0

in which case the running coupling reads

g(µ) = g? + cµγ; β[g(µ)] = γcµγ

where c is an integration constant and µ is the renormalization scale.
From the thermal average of (1) choosing the renormalization scale µ = T and

using 〈θµ
µ〉 = ρU − 3pU , we get

ρU − 3pU =
β

2g?
〈N [Fµν

a Fa µν]〉 = AT 4+γ
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ρU − 3pU = AT 4+γ

⇓

ρU = σT 4 + A

(
1 +

3
γ

)
T 4+γ and pU = σ

T 4

3
+

A

γ
T 4+γ

where σ is an integration constant.
⇓

pU = 1
3ρU

(
1−Bρ

γ/4
U

)
for B ≡ A

σ1+γ/4

One can expect that A ∝ Λ−γ
U , therefore we obtain

ρNP = π2

30T
4 ×

{
gIR + f

(
T
ΛU

)γ

for T <∼ ΛU
gBZ for T >∼ ΛU

where gBZ = 2(n2
c − 1 + 7

8ncnf) for SU(nc) with nf flavours in the BZ sector.

• From the continuity at T = ΛU , the constant f could be determined: f = gBZ−gIR.

• We will assume gBZ ∼ gIR.
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ρNP = π2

30T
4 ×

{
gIR + f

(
T
ΛU

)γ

for T <∼ ΛU
gBZ for T >∼ ΛU

Deconstruction (Stephanov’07):

OU →
∞∑

n=0

Fnϕn with m2
n = ∆2n

The above result fits the following guess for the effective number of degrees of
freedom:

gU(T ) ∝
∫ T 2

0
dM2ρ(M2)θ(Λ2

U −M2)∫ Λ2
U

0
dM2ρ(M2)

where ρ(M2) ∝ (M2)(dU−2). Then

gU(T ) ∝
(

T

ΛU

)2(dU−1)

=⇒ In the presence of just one unparticle operator one can argue that γ = 2(dU − 1).
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Freeze-out and thaw-in

♣ Brief history of the Universe in the presence of unparticles (no mass-gap).

• T � MU : the BZ sector in form of massless particles (no unparticles yet), thermal
equilibrium with the SM is maintained (assumption), so T = TBZ = TSM

• T <∼ MU :

– The BZ sector starts to decouple, as the average energy is no longer sufficient
to create mediators.

– However, the thermal equilibrium may still be maintained (T = TBZ = TSM)
depending on the strength of effective couplings between the SM and the extra
sector (which at higher temperature, T >∼ ΛU , is made of the BZ matter, while
below ΛU of unparticles).

Let’s denote by Tf the decoupling temperature at which

Γ(SM ↔ NP ) ' H

where H is the Hubble parameter

H2 =
8π

3M2
Pl

ρtot(T ) for ρtot = ρSM + ρNP
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There are 2 interesting cases:

• MU > Tf > ΛU :

– Tf is determined by the condition

Γ(SM ↔ BZ) ' H

– For T > Tf the SM and the BZ sectors evolve in thermal equilibrium, but even
for T < Tf their temperatures remain equal (T = TBZ = TSM) since ΛU > v.

• ΛU > Tf :

– Till T = ΛU the SM and unparticles still have the same temperature.
– For ΛU >∼ T >∼ Tf still the equilibrium is maintained (assumption, in general this

depends on dU). The decoupling temperature Tf must be now determined by

Γ(SM ↔ OU) ' H

– Till T ∼ v temperatures of SM and unparticles remain equal, at T ∼ v they
split.

=⇒ The unparticle cosmic background should be there.
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♣ The Banks-Zaks phase.

LBZ =
1

MU

(
φ†φ

)
(q̄BZqBZ)

Then

ΓBZ ∝
T 3

M2
U

and H ∝ T 2

MPl
=⇒ decoupling for T <∼ Tf−BZ

♣ The unparticle phase.

LU = cU
ΛdBZ−dU
U
Mk
U

OUOSM for k = dSM + dBZ − 4

The most relevant operators for scalar unparticles are

Ls = c
(s)
U

Λ1−dU

MU

(
φ†φ

)
OU , Lf = c

(f)
U

Λ3−dU

M3
U

(¯̀φe
)
OU , Lv = c

(v)
U

Λ3−dU

M3
U

(BµνB
µν)OU

Ls =⇒ ΓU ∝
Λ3
U

M2
U

(
T

ΛU

)2dU−3

and H ∝ T 2

MPl
=⇒ Tf−U
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ΓU
H
∝ T 2dU−5 =⇒

{
dU > 5

2 decoupling for T < Tf−U freeze-out
dU < 5

2 decoupling for T > Tf−U thaw-in

Figure 1: Regions of

(MU, ΛU) for decoupling

in BZ phase.

Figure 2: Regions of

(MU, ΛU) for decoupling

in U phase for dU = 3
2.

Figure 3: Regions of

(MU, ΛU) for decoupling

in U phase for dU = 3.

BZ - phase U - phase
red Tf-BZ < ΛU Tf-U < v

green ΛU < Tf-BZ < MU v < Tf-U < ΛU
purple Tf-BZ > MU Tf-U > ΛU
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BBN constraints

Big-Bang Nucleosynthesis =⇒ ∆ρrad
ρtot

∣∣∣
T=TBBN

< 7% (95% CL)

⇓
∆ρU
ρtot

∣∣∣∣
T=TBBN

< 7%

Assume ΛU > Tf-U > v = 246 GeV.

• d
(s)
U > 5

2 decoupling for T < Tf-U

ρU =
π2

30
gIR T 4

(
gγ

gSM

gν + gγe

gγe

)4/3

︸ ︷︷ ︸
1.2·10−2

and ρSM =
π2

30
gγν T 4

⇓
∆ρU
ρtot

∣∣∣∣
T=TBBN

< 7% =⇒ gIR <∼ 20

To be compared with e.g. gBZ = 2(n2
c − 1 + 7

8ncnf), for nc = 3 and nf = 10,
gBZ ' 60.
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• d
(s)
U < 5

2 decoupling for T > Tf−U
An operator responsible for keeping the equilibrium down (below T ∼ mH where
Ls becomes irrelevant) to TBBN is needed:

Lv = c
(v)
U

Λ3−dU

M3
U

(BµνB
µν)OU with d

(v)
U <

1
2

– Note that Lv could be generated radiatively through OU −H mixing (from Ls).
Assuming the equilibrium down to the BBN temperature TBBN ∼ 0.1 MeV we
obtain

ρU =
π2

30
gIR T 4 and ρSM =

π2

30
gγν T 4

⇓
∆ρU
ρtot

∣∣∣∣
T=TBBN

< 7% =⇒ gIR <∼ 0.2
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Summary

• Rough arguments for the equation of state for unparticles: pU = 1
3ρU

[
1−Bρ

δ/4
U

]
• Rough arguments for the energy density for unparticles ”derived”:

ρNP =
π2

30
T 4 ×


[
gIR + (gBZ − gIR)

(
T
ΛU

)δ
]

for T <∼ ΛU

gBZ for T >∼ ΛU

• Unparticles in equilibrium: freeze-out and thaw-in.

• BNN bounds on the number of degrees of freedom for unparticles.

Things to be done:

• Formal (more) derivation of the equation of state.

• Formal (more) derivation of the Boltzmann equation.

• Cosmological consequences of the mass-gap.
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