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Resonance beyond the B-W: o s
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Breit-Wigner resonance (2Mpy; ~ M) DM self-interaction.
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Breit-Wigner resonance (2Mpy; =~ M) annihilation.
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Resonance beyond the B-W: (owv,)(x)
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Resonance beyond the B-W: (owv,)(x)
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Resonance beyond the B-W: (owv,)(x)
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Early kinetic decoupling and coupled
Boltzmann equations
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Resonance enhancement of DM annihilation and unsuppressed oy ¢/Mpas




Early kinetic decoupling and coupled
Boltzmann equations

® |f dark matter decouples kinetically, when it is non-relativistic and its
thermal distribution is maintained by self-scatterings, then the DM
temperature Tp), evolves according to Thj; o R?,

® The temperature of the radiation-dominated SM thermal bath, scales




Early kinetic decoupling and coupled
Boltzmann equations

The DM relic density can be obtained by solving the Boltzmann equation
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Early kinetic decoupling and coupled

Boltzmann equations
6=-107", y=107%, M=1TeV
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Early kinetic decoupling and coupled

Boltzmann equations
Define DM “temperature™:

2 3
TDME§<2XZDM> o )= [ SLowse

Tpyr = T for a situation close to thermal equilibrium and
€ = (T — Tpys)/T is a parameter that measures the deviation of f(p) from
a thermal distribution.

The Boltzmann equation:




Early kinetic decoupling and coupled

Boltzmann equations
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where the temperature parameter vy is defined as



Early kinetic decoupling and coupled

Boltzmann equations
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Early kinetic decoupling and coupled
Boltzmann equations
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Generic conclusions on the BW
approximation

Remarks:

® The presence of velocity-dependent width implies that Y decouples at
lower z (as compared to the case with constant width I'(A/?)) and
the asymptotic DM yield is much larger.

= The asymptotic yield expected in the early decoupling scenario is




U(1) VDM model

The model:

extra U(1) gauge symmetry (A%.),

a complex scalar field S, whose vev generates a mass for the U(1)'s
vector field, S = (0,1,1,1) under U(1)y x SU(2);, x SU(3). x U(1)

SM fields neutral under U(1),

to ensure stability of the new vector boson, a Z, symmetry is assumed
to forbid U (1)-kinetic mixing between U(1) and U(1)y. The extra




U(1) VDM model

The scalar potential

V =~y |HI + Ag|H|* - u3]S|* + As|S|* + s|SI*| HI*.

The vector bosons masses:

1 1/
My = EQ'U, My = ) g2 +912,U and Mz’ = 9z Vs>




U(1) VDM model

The mass squared matrix M? for the fluctuations (¢, ds) and their
eigenvalues

ME = (2)\HU2 mwz)

KUV, 2)\5'0926

Mi = g’ + Asvg + \/)\251);1 — 2>\H)\Sv2vz + X0t 4 H2'l)2’l);l




U(1) VDM model

sign(Agar — Apr) 2M7,
VM — M)+ 4ME)?

There are 5 real parameters in the potential: gy, pg, Ay, Ag and k.
Adopting the minimization conditions p g, pg could be replaced by v and
v,. The SM vev is fixed at v = 246.22 GeV. Using the condition

My, =125.7 GeV, v2 could be eliminated in terms of

0%, A, Ky Mgy Agar = My, /(20°):

sin 2a0 =

, COS2a=---.




U(1) VD

® Bottom part of the plot (A\g <
Asar = M /(2v°) = 0.13): the
heavier Higgs is the currently
observed one.
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U(1) VDM model
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U(1) VDM model

Vacuum stability
V = —uh [ HI? + Mg H|* — u3ISI + AslSI* + £ISI*|HP?

2-loop running of parameters adopted

Au(@) >0, Ag(@) >0, w(Q)+2vVAu(Q)As(Q) >0




U(1) VDM model

The mass of the Higgs boson is known experimentally therefore within the
SM the initial condition for running of Ay (Q) is fixed

Ag(my) = Mi [(20%) = Agp = 0.13

For VDM this is not necessarily the case:

M —)\Hv +)\Sv :l:\/)\s'u —2)\H)\Sv v +)\H1J +/~c2v2v4
VDM:

® Larger initial values of A\ such that Az (m;) > Agj, are allowed




U(1) VDM model




Resonant self-interaction of VDM

In the VDM model, the self-interaction cross-section (2’2" — Z'Z') at
relative velocity vy can be written in the vicinity of the resonance as

4
Oself ~ gﬂUMZ' Rgz

where R is the scalar mixing matrix (Ry; = sina and Ry = cos ). The




Resonant self-interaction of VDM

4
Ogelf ~ 9 ﬂc‘]\4Zl COS4 o
~ 4 22 2>
M, v—ug 8 M, (6 +v5/4)" + v(vg)

where § = (4M;/ - M;i)/M,%2 and y(v) = Ty, (v)/Mp,. On the other
hand the annihilation rate into the SM is proportional to sin .




Gauge dependance and unitarity

violation in VDM annihilation
Gauge dependance

1

eReS 2 2 2
(5 +v /4) + (Vnon—DM + DM (U))

where Ypon—DM = %EHOH_DM(mi2)/mh2 (non-DM contributions to the
width) and ypp(v) = SXpai(s)/my, (DM contributions to the imaginary

part of the self-energy) with s ~ 4M§/ + M;/vz .




Gauge dependance and unitarity
violation in VDM annihilation
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Gauge dependance and unitarity
violation in VDM annihilation

Mz=1TeV, |6|=10"*, a=10"*
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Gauge dependance and unitarity
violation in VDM annihilation
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Gauge dependance and unitarity
violation in VDM annihilation

Unitarity
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Gauge dependance and unitarity
violation in VDM annihilation
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Gauge dependance and unitarity
violation in VDM annihilation

Mz =1TeV, |6 =107, a=10"*
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Numerical results
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Numerical results
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Numerical results




Summary

Breit-Wigner approximation was modified by adopting s-dependent
width (~ SX(s)), effects are large.

If non-DM contribution to the resonance width is non-negligible, then
the DM abundance implies early kinetic decoupling with important
numerical consequences.

A possibility of enhancing the dark-matter self-interaction
cross-section (og.¢/Mpas) by s-channel resonance was considered in a
model independent way.

To illustrate generic results a model of vector U (1) dark matter




