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Resonance beyond the B-W: σself
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Breit-Wigner resonance (2MDM ≈M) DM self-interaction.
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Resonance beyond the B-W: 〈σvrel〉(x)
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SM

Breit-Wigner resonance (2MDM ≈M) annihilation.

σvrel =
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Resonance beyond the B-W: 〈σvrel〉(x)
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Is the BW approximation applicable ?

σ ∝ 1

(s−M2)2 + Γ2M2

s ≈M2



Resonance beyond the B-W: 〈σvrel〉(x)

DM

SMDM R

SM

� vrel � 1 and 2MDM ≈M =⇒ s ≈ 4M2
DM +M2

DMv
2
rel ≈M

2

� The BW propagator is an approximation that follows from
re-summation of an in�nite series of 2-point Green's functions, so in
general

ΓM → Γ(s)M ≡ =Σ(s)

=Σ(s) =
1

2

∑
f

∫
dΠf |M(R→ f)|2(2π)4δ(4)(kR −

∑
qf )

� Is the BW approximation applicable ?



Resonance beyond the B-W: 〈σvrel〉(x)

σvrel ∝
M2ΓiΓf

|s−M2 + iΓM |2

↓
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Resonance beyond the B-W: 〈σvrel〉(x)
dY
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Thermally averaged annihilation cross-section 〈σvrel〉/〈σvrel〉x=20. 〈σvrel〉 saturates at x ∼ η
2
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2
� for

temperatures orders of magnitude smaller than with the naive constant width Γ(M
2
). The short-dashed lines refer

to the constant width approximation γDM(vrel) = γDM(2|δ|1/2) = η|δ|1/2 (corresponding to ΓDM(M
2
)), which

can be obtained for δ < 0, whereas for δ > 0 long-dashed curves were obtained for γDM = 0.



Resonance beyond the B-W: 〈σvrel〉(x)

dY

dx
= −λ0

x2R(x)(Y 2 − Y 2
EQ) with R(x) ∝ 〈σvrel〉(x)

At low x, 〈σvrel〉(x) is larger for the naive constant width approximation
than for velocity dependent one.

⇓

Velocity dependent width implies higher asymptotic DM yield.



Early kinetic decoupling and coupled

Boltzmann equations

DM

SMDM R

SM

Resonance enhancement of DM annihilation and unsuppressed σself/MDM

⇓
Suppressed DM-SM interactions (to get ΩDM ∼ 0.1)

and tiny σ(DMSM → DMSM)

⇓

� Possibility of DM early kinetic decoupling at Tkd � TWIMP
kd ∼ MeV,

� No problems with direct detection.



Early kinetic decoupling and coupled

Boltzmann equations

� If dark matter decouples kinetically, when it is non-relativistic and its
thermal distribution is maintained by self-scatterings, then the DM
temperature TDM evolves according to TDM ∝ R

−2,

� The temperature of the radiation-dominated SM thermal bath, scales
as T ∝ R−1.

TDM =

{
T, if T ≥ Tkd
T 2/Tkd, if T < Tkd,

where T stands for the SM temperature.



Early kinetic decoupling and coupled

Boltzmann equations
The DM relic density can be obtained by solving the Boltzmann equation

dY (x)
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]
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The thermal average of the annihilation cross-section is calculated at

xDM =
MDM

TDM
=

x2

xkd

with xkd ≡ m/Tkd.



Early kinetic decoupling and coupled

Boltzmann equations

xDM =

(
x

xkd

)
·x 〈σvrel〉(x) ∝ x

⇓

R(xDM ) ∼
(
x

xkd

)
R(x)� R(x).

⇓

The asymptotic yield expected in the early decoupling scenario is

substantially reduced by more e�cient annihilation.



Early kinetic decoupling and coupled

Boltzmann equations
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Evolution of the dark matter yield Y (x) (blue) for dark matter in kinetic equilibrium with the SM and for

simultaneous chemical and kinetic decoupling Ykd at xkd = xd (red). The decoupling temperature xd adopted for

the Ykd(x) (red) was determined by the decoupling of Y (x) (the blue curve).



Early kinetic decoupling and coupled

Boltzmann equations
De�ne DM �temperature�:

TDM ≡
2

3

〈
~p 2

2MDM

〉
for 〈O(~p)〉 ≡ 1

nDM

∫
d3p

(2π)3O(~p)f(~p)

TDM ≈ T for a situation close to thermal equilibrium and
ε ≡ (T − TDM )/T is a parameter that measures the deviation of f(~p) from
a thermal distribution.
The Boltzmann equation:

L̂[f ] = C[f ]

The second moment of the Boltzmann equation:∫
d3p

(2π)3

~p 2

p0 L̂[f ] =

∫
d3p

(2π)3

~p 2

p0 C[f ]

T. Bringmann and S. Hofmann, �Thermal decoupling of WIMPs from �rst
principles,� JCAP 0704, 016 (2007), Erratum: [JCAP 1603, no. 03, E02
(2016)]



Early kinetic decoupling and coupled

Boltzmann equations
dY
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= − s
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where the temperature parameter y is de�ned as

y ≡ MDMTDM

s2/3
, for sharp splitting: y ∝

{
x, if T ≥ Tkd
MDM
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∼ const., if T < Tkd,

T. Bringmann and S. Hofmann, �Thermal decoupling of WIMPs from �rst
principles,� JCAP 0704, 016 (2007), Erratum: [JCAP 1603, no. 03, E02
(2016)]



Early kinetic decoupling and coupled

Boltzmann equations
dY
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Early kinetic decoupling and coupled

Boltzmann equations
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Dark matter yield Y (left panel) and corresponding DM temperatures (right panel) in di�erent kinetic decoupling

scenarios. The blue curves show the solution of the set of BE, whereas the green ones refer to the �sharp splitting�

at xkd = 90. For the red curves dark matter remains in the kinetic equilibrium during its whole evolution. Dashed

curves present the corresponding results for the standard Breit-Wigner approximation (with γ � δ).



Generic conclusions on the BW

approximation

Remarks:

� The presence of velocity-dependent width implies that Y decouples at
lower x (as compared to the case with constant width Γ(M2)) and
the asymptotic DM yield is much larger.

� The asymptotic yield expected in the early decoupling scenario is
substantially reduced by more e�cient annihilation,
R(xDM ) ∼ x

xkd
R(x)� R(x).

� Both e�ects cancel to same extend, so that the increase by the
velocity depended width is reduced by ∼ 50%.



U(1) VDM model

The model:

� extra U(1) gauge symmetry (AµX),

� a complex scalar �eld S, whose vev generates a mass for the U(1)'s
vector �eld, S = (0,1,1, 1) under U(1)Y ×SU(2)L×SU(3)c×U(1)

� SM �elds neutral under U(1),

� to ensure stability of the new vector boson, a Z2 symmetry is assumed
to forbid U(1)-kinetic mixing between U(1) and U(1)Y . The extra
gauge boson AµX and the scalar S �eld transform under Z2 as follows

AµX → −A
µ
X , S → S∗, where S = φeiσ, so φ→ φ, σ → −σ.

T. Hambye, JHEP 0901 (2009) 028,
O. Lebedev, H. M. Lee, and Y. Mambrini, Phys.Lett. B707 (2012) 570,
A. Falkowski, C. Gross and O. Lebedev, JHEP 05 (2015) 057
· · ·



U(1) VDM model

The scalar potential

V = −µ2
H |H|

2 + λH |H|
4 − µ2

S |S|
2 + λS |S|

4 + κ|S|2|H|2.

The vector bosons masses:
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〈H〉 =
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2

)
and 〈S〉 =

vx√
2

Positivity of the potential implies

λH > 0, λS > 0, κ > −2
√
λHλS



U(1) VDM model

The mass squared matrixM2 for the �uctuations (φH , φS) and their
eigenvalues

M2 =

(
2λHv

2 κvvx
κvvx 2λSv

2
x
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M2
± = λHv

2 + λSv
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x ±
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0 M2
h2

)
, R =

(
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sinα cosα

)
(
h1

h2

)
= R−1

(
φH
φS

)
where Mh1

= 125.7 GeV is the mass of the observed Higgs particle.



U(1) VDM model

sin 2α =
sign(λSM − λH) 2M2

12√
(M2

11 −M
2
22)2 + 4(M2

12)2
, cos 2α = · · · .

There are 5 real parameters in the potential: µH , µS , λH , λS and κ.
Adopting the minimization conditions µH , µS could be replaced by v and
vx. The SM vev is �xed at v = 246.22 GeV. Using the condition
Mh1

= 125.7 GeV, v2
x could be eliminated in terms of

v2, λH , κ, λS , λSM = M2
h1
/(2v2):

v2
x = v2 4λSM (λH − λSM )

4λS(λH − λSM )− κ2

Eventually there are 4 independent parameters:

(λH , κ, λS , gx),

where gx is the U(1) coupling constant.



U(1) VDM model

� Bottom part of the plot (λH <
λSM = M2

h1
/(2v2) = 0.13): the

heavier Higgs is the currently
observed one.

� Upper part (λH > λSM ) the
lighter state is the observed one.

� White regions in the upper and
lower parts are disallowed by the
positivity conditions for v2

x and
M2
h2
, respectively.



U(1) VDM model

Contour plots for the vacuum expectation value of the extra scalar

vx ≡
√

2〈S〉 (left panel) and of the mixing angle α (right panel) in the

plane (λH , κ).



U(1) VDM model

Vacuum stability

V = −µ2
H |H|

2 + λH |H|
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S |S|
2 + λS |S|

4 + κ|S|2|H|2

2-loop running of parameters adopted
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U(1) VDM model

The mass of the Higgs boson is known experimentally therefore within the

SM the initial condition for running of λH(Q) is �xed

λH(mt) = M2
h1
/(2v2) = λSM = 0.13

For VDM this is not necessarily the case:

M2
h1

= λHv
2 + λSv

2
x ±

√
λ2
Sv

4
x − 2λHλSv

2v2
x + λ2

Hv
4 + κ2v2v4

x.

VDM:

� Larger initial values of λH such that λH(mt) > λSM are allowed
delaying the instability (by shifting up the scale at which λH(Q) < 0).

� Even if the initial λH is smaller than its SM value, λH(mt) < λSM ,
still there is a chance to lift the instability scale if appropriate initial
value of the portal coupling κ(mt) is chosen.

β
(1)
λH

= β
SM (1)
λH

+ κ2



U(1) VDM model
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Resonant self-interaction of VDM

In the VDM model, the self-interaction cross-section (Z ′Z ′ → Z ′Z ′) at
relative velocity v0 can be written in the vicinity of the resonance as

σself

M
Z
′

∣∣∣∣
v=v0

≈
g4
xMZ

′

8π

R4
2i

[4M2
Z
′(1 + v2

0/4)−M2
hi

]2 + Γ2
hi

(v0)M2
hi

,

where R is the scalar mixing matrix (R21 = sinα and R22 = cosα). The
velocity-dependent width equals

Γhi(v0) = R2
1iΓSM + ηMhi

v0/2,

where ΓSM is the SM value of the Higgs width.



Resonant self-interaction of VDM

σself

M
Z
′

∣∣∣∣
v=v0

≈
g4
xMZ

′

8πM4
h2

cos4 α

(δ + v2
0/4)2 + γ(v0)2 ,

where δ = (4M2
Z
′ −M2

h2
)/M2

h2
and γ(v) = Γh2

(v)/Mh2
. On the other

hand the annihilation rate into the SM is proportional to sinα.

σself

M
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∣∣∣∣
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<
g4
x

32πη2v2
0M

3
Z
′

= 1.1× 103
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)2(
100 GeV

M
Z
′

)3

GeV−3

"cusp-core" problem, · · · → σself
M
Z
′

∣∣∣∣
v=v0

∼ 4.6× 10−1 − 4.6× 104 GeV−3

(10−4 − 10 cm2g−1)



Gauge dependance and unitarity

violation in VDM annihilation
Gauge dependance

σ ∝ 1

(δ + v2/4)2 + (γnon−DM + γDM(v))2 ,

where γnon−DM = =Σnon−DM(m2
h2

)/mh2
(non-DM contributions to the

width) and γDM(v) = =ΣDM(s)/mh2
(DM contributions to the imaginary

part of the self-energy) with s ≈ 4M2
Z
′ +M2

Z
′v2 .

ΣDM(s) = R2
22

g2
x

32π2

[(
s2

4M2
Z
′
− s+ 3M2

Z
′

)
B0(s,M2

Z
′ ,M2

Z
′)+

+
m4
h2
− s2

4M2
Z
′
B0(s, ξM2

Z
′ , ξM2

Z
′)

]
,

where B0(s,m2,m2) is a Passarino-Veltman function, while ξ is the
gauge-�xing parameter.



Gauge dependance and unitarity

violation in VDM annihilation
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Gauge dependance and unitarity

violation in VDM annihilation
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shows results obtained within a non-relativistic approximation. We plot numerical solution of the Boltzmann

equations for the dark matter yield Y (x).



Gauge dependance and unitarity

violation in VDM annihilation

Unitarity

Z ′LZ
′
L →W+

LW
−
L εµL(p) ∼ pµ

MV
+ · · ·

M(s, t) ∼ s2

s−M2 + i=Σ(s)
+ · · ·

� if =Σ(s) = 0 then M(s, t) ∼ O(s2)× 0 +O(s)× 0 + const + · · ·

� if =Σ(s) 6= 0 then M(s, t) ∼ O(s2)× 0 +O(s) + const + · · ·

Uniartity is violated: M ∼ O(s) · · ·



Gauge dependance and unitarity

violation in VDM annihilation
Unitarity
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Gauge dependance and unitarity

violation in VDM annihilation

Unitarity
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∫ ∞
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Gauge dependance and unitarity

violation in VDM annihilation
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Numerical results

100 500 1000 5000 104
10-26

10-24

10-22

10-20

10-18

MZ'[GeV]

〈σ
v
〉 v
0
[c
m
3
/s
]

σself/MZ' [cm
2/g]

10-14

10-11

10-8

10-5

10-2

10

100 500 1000 5000 104
10-26

10-24

10-22

10-20

10-18

MZ'[GeV]

〈σ
v
〉 v
0
[c
m
3
/s
]

σself/MZ' [cm
2/g]

10-9

10-6

10-3

1

103

Result of the scan in the parameter space over M
Z
′ , δ and sinα. For each point in the plot we �t α to satisfy the

relic abundance constraint and then calculate the annihilation 〈σvrel〉v0
and self-interaction σself/MZ

′

cross-section at the dispersive velocity v0 equal to 10 km/s (left panel) and 1 km/s (right panel). The maximal

value of η in the VDM model, η = 3/16, was chosen.
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Result of the scan in the parameter space over M
Z
′ , δ and sinα. Colouring with respect to δ the dispersive velocity

v0 equal to 10 km/s (left panel) and 1 km/s (right panel). The maximal value of η in the VDM model, η = 3/16,

was chosen.
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Result of the scan in the parameter space over M
Z
′ , δ and sinα. Colouring with respect to α the dispersive

velocity v0 equal to 10 km/s (left panel) and 1 km/s (right panel). The maximal value of η in the VDM model,

η = 3/16, was chosen.



Summary
� Breit-Wigner approximation was modi�ed by adopting s-dependent

width (∼ =Σ(s)), e�ects are large.

� If non-DM contribution to the resonance width is non-negligible, then
the DM abundance implies early kinetic decoupling with important
numerical consequences.

� A possibility of enhancing the dark-matter self-interaction
cross-section (σself/MDM ) by s-channel resonance was considered in a
model independent way.

� To illustrate generic results a model of vector U(1) dark matter
(VDM) was introduced and discussed (extra neutral Higgs boson h2).

� Within VDM model a gauge dependence and unitarity violation of the
resonance enhancement was discussed.

� When the Fermi-LAT limits are taken into account, heavy ∼ 1 TeV
DM is favored and only very limited enhancement of σself/MDM

O(10−5) GeV−3 is possible.


