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Motivations

e There exists a simple model of Abelian vector dark matter (VDM), that implies
an existence of two scalar degrees of freedom, hi (SM-like) and hy (non-SM-like),
that mix through their mass matrix, with an angle a.

e The VDM is similar to a model of scalar dark matter (SDM), in which a DM
candidate is an imaginary component (odd under stabilizing symmetry) of an extra
complex scalar field added to the SM. The real component (even under stabilizing
symmetry) develops a vacuum expectation value and mixes with the SM Higgs
doublet, so there are also two scalar degrees of freedom, h; (SM-like) and ho
(non-SM-like), that mix through their mass matrix, with an angle a.

e This project was an attempt to investigate if it is possible to distinguish the two
models. In other words we are seeking measurements that could be performed in
near future that could disentangle the two models.
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1 H™T
S=—(vs+ ¢s+iA) , H0:—2(v—|—(bH—|—7j0H) where H = (H(’)'

N L

V= —pud|H> + | H|* — 12|82 + As|S|* + k[S1* | H|? + (1S + H.c.)

Positivity: Ag >0, As >0, k> —2AgAg

Symmetries:

e 12 # 0 breaks U(1) softly to residual Z5 : S — -8,

e rephase S such that Im p? = 0 (basis choice),

o V > u?(S?+ S*?), then symmetry S < 5 (ps — ¢ps and A — —A) emerges,

e global minimum at (S) = % with vg being real, so C' is unbroken and A is a

stable DM candidate, m% oc u?, if u?> — 0 then A becomes a Goldstone boson of
broken U (1),
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The model:

extra U(1)x gauge symmetry (A% ), DM candidate: A%,

a complex scalar field .S, whose vev generates a mass for the U(1)'s vector field,

S = (O, ]_, ]_, 1) under U(l)y X SU(Q)L X SU(g)c X U(l)X

SM fields neutral under U (1),

in order to ensure stability of the new vector boson a Zs symmetry is assumed to
forbid U (1)-kinetic mixing between U(1)x and U(1)y. The extra gauge boson A,

and the scalar S transform under Zs (dark charge conjugation) as follows

AL S —an 95 S g
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The scalar potential
V = —py|HI* + AglH|* — 53] SI” + As|SI* + w[S|°| H|*.

The vector bosons masses:

1 1
mwy = 59% myz = -\g*+ g% and mx = gxvs,

where

Positivity of the potential implies
Ag >0, Ag¢>0, kK> —-2vAgls.

The minimization conditions for scalar fields

(2Agv? + kvg — 2u3)v =0 and (kv® + 2\gvE — 2u%)vg = 0
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For k% < 4\g)\g the global minimum is

o _ AAspdy — 2kpg o _ ANHPS — 26pF

_ d v2 —
Y Dprs —r2 ST T g — K2

Both scalar fields can be expanded around corresponding vev's as follows

H+
S:\%(v5+¢s+i05) : Hoz\%(erngJriaH) where H = (H())'

The mass squared matrix M? for the fluctuations (¢, ¢s) and their eigenvalues read

AV KVv
2 H S
M= = ( KUvs  2AgU% )

mi = Agv®+ Agvs =+ \/)\%v% — 2AgAsv?0% + A0t + k20208

. :
> [ mi O [ cosa —sina hi \ _ -1 ( ©H
Mdiag_( 0 m%)’ R_(sina cosoz)’ (hz)_R (qbs)’
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Direct detection of the Pseudo-Goldstone dark matter

A2 A?
VD 7(2)\svs¢s + KvoH) = %@iﬂ&m%hl + cosamahs),
\\\ A
N 2
N m;
PSR = —tRo; —
S h s
A

The corresponding amplitude for the spin-independent DM nuclear recoils reads:

A A
\\\f,/,
hio
N N
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The DM direct detection signals are naturally suppressed in the SDM model.

A? A
VD 7(2>\svs¢s + Kvdpg) = %(Sin@m%hl + cos amaha),
\\\ A
N 2
N\ m;
\/._ ______ — _ZRQZ :
o h oS
A

The corresponding amplitude for the spin-independent DM nuclear recoils reads:

iIM = —q 2 Vg "
2’0’05’ (q2 — m% q2 _ m% N(p4) N(pQ)

2

sin2a.fymy (m% —m3

2 _
2’0’05’ m%m% ) q uN(p4)UN(p2) .
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5 — %@8 + bg)eiAlvs

e A is odd under the Z5 symmetry transformation S <+ S*, it is DM candidate.

e The only terms that contain A are the kinetic and the U(1) symmetry softly-
breaking terms:

M3

Li = 0*5%0,5 — — (S + S*) — u?(S? + §*2
A 9 ﬂ( ) — u”( )
3
» 1aMAaMle (M + M ) gbsama A+ (4;3 M ) ngAQ,
2 2 Vg Vg 2"05 Vs

so m% = —4u® — M3 /v,.

e Repeatedly integrating by parts and adopting free equations of motion for A and
h;, one finds the pseudo-Goldstone-Higgs vertices as follows

_ 3
LD (8“A8 A— m2 A7) _ (mf M )hA2

2V Vg
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- hio
The total cross section o 4n: N N
. 2 2 2 6 2 212
O(tree) sl 200 fymiyy oy (mf —ms3) v
AN 3 mi v%% m%m% ax

where v4 is the A velocity in the lab frame. Since v4 ~ 200 km/s, the total DM
nuclear recoil cross section o4y is greatly suppressed by the factor v ~ 10715:

a%\fe) ~107"Y em? <« a%?NONlT) ~ 10740 cm?
U

1-loop effects are leading

e if ¢> — 0 then loop corrections are expected to be UV finite,

e if m% o p? — 0 then loop corrections should vanish.
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(a) (b) (¢)

Figure 1. Examples of diagrams contributing to DM-nucleon scattering, which are
discarded in our computation. Diagrams (a) and (b) represent the one-loop box
and light-quark-h1;2 vertex corrected diagrams which are ignored due to the multiple
Yukawa coupling suppression, while the diagram (c) is an example of DM-gluon

scattering with two Higgs lines inserted into the top-quark loop, which is assumed to
be subdominant.
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Figure 2: 1-loop diagrams that do not contribute to A-nucleon scattering
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Figure 3: 1-loop diagrams contributing to A-nucleon scattering
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2 2 9

(1) fN mNMAN],—z
OAN = 02 m2
TV A

where the one-loop function F is defined as

1 1
T V/(Uil Ca V(XQSCX
mi mi

with Vf(121 A4 as one-loop corrections to the vertices h1A? and hyA%.

2 2\ 2

32a(m1 ms5)ms . 29 5

F = A1C5(0, m3 . m3.m2.m2.m
].287T2U vgm%m2 [ ( A A 1 29 A)

29 2 9 92 9
+A2D3(O,O,mA,mA,O,mA,ml,ml,mQ,mA)

2 2 2 2 2 2 2
—|—A3D3(0, 0, A, TN H, 0, M py TNy, TNg, TNy, mA)]

Comments:

e The one loop amplitude F is UV finite in the limit of zero momentum transfer
2
q° — 0,

o F — 0 formy — 0.
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Scans over parameter space

Independent parameters: vg,sin a, ms and mpys (Mma or mx).

Parameter Range

Second Higgs - mo  [1,1000] GeV
Dark Matter - mpy  [1,1000] GeV

Singlet VEV - v, [1,107] GeV
Mixing angle - « =

Table 1: Scan regions for independent parameter’s for both models.

We are searching for regions of the parameter space
that are only populated by one model.
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Collider and/or theoretical constraints:

e The points are generated by the code ScannerS [R. Coimbra, M. O. P. Sampaio,
and R. Santos, “ScannerS: Constraining the phase diagram of a complex scalar
singlet at the LHC”, Eur. Phys. J. C73 (2013) 2428]:

— the potential has to be bounded from below,
— the vacuum is chosen so that the minimum is the global one,
— perturbative unitarity holds.

e The bound on the LHC signal strength 1 for the SM Higgs is used to limit cos «,
e BR(hy — inv) < 24%,
e S, T and U,

e The collider bounds from LEP, Tevatron and the LHC are imposed via HiggsBounds
[P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, and K. E. Williams, “HiggsBounds:
Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the
Tevatron” ,Comput. Phys. Commun. 181 (2010) 138].
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Cosmological constraints:

e DM abundance: (Qh2)%3 = 0.1186 + 0.002 from Planck Collaboration, here we
require that (Q h?) 4, x < 0.1186 or we adopt 5o allowed region,

e Direct detection: we apply the latest XENONI1T upper bounds for the DM mass
greater than 6 GeV, while for lighter DM particles, the combined limits from
CRESST-IlI and CDMSlite are utilized for afﬁ\,,XN = fa,x04N.xN, With

(Qh2) 4 x
()%

fax =

where (Qh?) 4 x is the calculated DM relic abundance for the SDM (A) or the
VDM (X).

e Indirect detection: for the DM mass range of interest, the Fermi-LAT upper bound
on the DM annihilations from dwarfs is the most stringent. We use the Fermi-LAT
bound on bb when m 4 x = my, and that on light quarks for ma x < mp.
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Figure 4: mo versus mpy;.

Where the models coexist:
e mo =~ 2mpps (DM annihilation through the non-SM-like resonance hs),
e mpy ~ m1/2 (DM annihilation through the SM-like resonance h1),

SDM and VDM could be disentangled by a measurement of mpys and ms.
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Figure 5: DM-nucleon cross-section as a function of the DM mass. Scalar DM-nucleon
nucleon cross-section is computed at one-loop level. The latest results from XenonlT
are shown as the solid line that makes the upper edge of the plot.

e Suppression of opyr—n for the SDM model,
e hy and hy resonance effects for both the SDM and the VDM models, m{ >~ 2mps
and mo >~ 2mps, respectively.
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ILC signals

Figure 6: Feynman diagram for ete™ — ZxX, x denotes the dark particle (xy = A4, X).

e P. Ko, H. Yokoya, “Search for Higgs portal DM at the ILC", JHEP 1608 (2016)
109,

e T. Kamon, P. Ko, J. Li “Characterizing Higgs portal dark matter models at the
ILC", Eur.Phys.J. C77 (2017) no.9, 652

PASCOS 2019, The University of Manchester, UK, July ond 2019 23



Figure 7: Feynman diagram for ete™ — Zxx, x denotes the dark particle (xy = A4, X).
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Js =15TeV, m,=700GeV, vs=554TeV

do
— [pb-GeV™]

two-pole case: mpy = 60 GeV, sina = 0.01
one-pole case: mpy = 200 GeV, sina = 0.05
no-pole case: mpy = 500 GeV, sina =0.3

dE;
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Figure 8: ddE—"Z for the SDM model.
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The strategy:

1. From the endpoint E,,.x one can determine mp;:

> :s—4m%M—|—m2Z
max 2\/§ Y

2. In the presence of two poles, my could be determined:

s —m2 + m?
Ez(Q* =mj) = Ey = 235 2,

3. Then ratio

dospm
dE,

doypwm
dE

N\
DO | Qo

It Is typically greater than 1.

4. If m? ~ 6m3% the maximal deviation (50%) appears exactly at the i-th pole.
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Background

Z 1767171“177-

Figure 9: Exemplary diagrams of the Standard Model background processes. Neutrinos
contribute to missing energy and can therefore mimic dark particles. The background
cross-section could be reduced by polarizing the initial e™ and e~ beams.
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Comments

Only a vicinity of a pole for one of the Higgs bosons, i.e. only events with Z boson
energy within a certain bin around E; = E;(1/s) = (s — m? +m%)/(2/s) could
be useful.

For /s = 1.5 TeV, mpy = 44.5 GeV, my = 102 GeV, vg = 5 TeV and
sin @ = 0.31 the separation between the cross-sections for SDM and VDM at the
level of 1o could be obtained for a bin around Ez = FE1(1.5 TeV) with the width
~ 4.5 GeV.

Jet energy can be measured in calorimeters with resolution ~ 3%. Hence, the
minimal size expected for the resolution of the Z energy near the hy pole at,

— CLIC with \/s = 1.5 TeV is ~ 3% x Ezly,__p 5 Tev) = 22.4 GeV,

— CEPC with /s = 240 GeV and the same parameters, for the minimal bin
size ~ 3% X EZ|EZ:E1(240 Gevy = 3:1 GeV the separation between the two
cross-sections is at the level of 120.

Therefore it is fair to conclude that there exist regions of parameters, where the two

scenarios might be disentangled at future ete™ colliders in resonance regions.
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Summary

The Abelian VDM model is challenged by a similar SDM model with DM candidate
A that is a pseudo-Goldstone boson related to softly broken U(1), by pu?(S?%+5*%),

Direct detection efficiently suppressed in the SDM model, opy—n vj‘zl, as
a consequence of A being a pseudo-Goldstone boson, 1-loop calculations were
performed and adopted, for ¢ = 0 the 1-loop results are UV finite and vanish in
the limit maq = mpy — 0.

In some regions of (m;,my) space (m? ~ 6m%) the ILC might be useful to
disentangle the models,

In some regions of the parameter space only SDM could be realized, in progress.

e Scalar [Under Relic] e Vector [Under Relic] e Scalar [Relic] e Vector [Relic] e Scalar [Under Relic] e Vector [Under Relic] o Scalar [Relic] e Vector [Relic]
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Backup slides

The global minimum for the SDM:

o _ AAspir — 26(ps — 2p%) g (pg —207) = 2605

2
— =0
Y AN g — K2 U8 AAgAs — K? A
—1 2 212 2 2 2 2
Vi= o e (g = 207 4wy sty — n(uf —20)])
2Agv?  Kovg 0
M? = kovs  2Agsvs 0
0 0 —4u?

2Asps > k(ps —2p%) and 2Ag(p% — 2u°) > kugr and i < 0
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2 2 92
(1 _ fN mNMAN]_-z
O' p—
AN = 2 2
H A

where the one-loop function F is defined as

1
F— foﬁl Ca V(/22504
m2 m2
1 2

with Vf(x% A4 as one-loop corrections to the vertices h1A? and hyA2.

2 2\ 2
Soq(ms — m3)m

F = — a(21 32)2 ‘g[AlC’Q(O,mi,mi,m%,mg,mi)
128m“vgvgmims;

2 2 2 2 2 2 2
+A2D3(Oa 07 T A, TN 4, 07 T A, 11, TN, TNy, mA)

2 2 2 2 2 2 2
+A3D3(07 07 A, », 07 M py TN, MNg,y TNy, mA)]

A = 4(m13 + m )(Qm%vHsi + Qm%chi — m%vssm + mgvgsm) :
As = —2mlsa[(m1 — 5m§)’vgca — (m% - m%)(vscw + 41};;32)] ,
As = 2m§ca[(5m% + m%)vssa — (m% — m%)(0533a + 4chz)] .
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respectively. For this choice of parameters Ay (Q) > 0 at 2-loop (right panel blue)
but not at 1-loop. Ag(Q) is always positive (right panel red), running of k(Q) is
very limited, however the third positivity condition x(Q) + 21/ A (Q)As(Q) > 0 is
violated at higher scales even at 2-loops (right panel green).
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The mass of the Higgs boson is known experimentally therefore within the SM the
initial condition for running of Ay (Q) is fixed

)\H(mt) = Mﬁl/(Q’UQ) = )\SM = 0.13

For VDM this is not necessarily the case:

Mh1 — \gv® + )\5’05 + \/)\Svs — 22 g Asv20% + A4 0t + k20208,

VDM:

e Larger initial values of A\py such that Ag(m;) > Agns are allowed delaying the
instability (by shifting up the scale at which A\ (Q) < 0).

e Even if the initial A\ is smaller than its SM value, Ay (m:) < Asps, still there is a
chance to lift the instability scale if appropriate initial value of the portal coupling
(my) is chosen.

6§ 551\4 I
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Figure 11: Branching ratio of second Higgs vs. mass of second Higgs. Scalar model
In red, vector model in blue.
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Sin(a)
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Figure 12: sin «v versus meo.
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