Two-Component Dark Matter

Bohdan GRZADKOWSKI University of Warsaw

- Motivations
- The model
- Boltzmann equations: numerical and analytical solutions
- The relic abundance
- Direct detection
- Conclusions
- Subhadittya Bhattacharya, Aleksandra Drozd, B.G. and Jose Wudka "Two-Component Dark Matter", in progress,
- Aleksandra Drozd, B.G., Jose Wudka, "Multi-Scalar-Singlet Extension of the Standard Model the Case for Dark Matter and an Invisible Higgs Boson", JHEP 1204 (2012) 006, arXiv:1112.2582

- Multi-component DM seems to be a viable option as the SM contains a few "components"
- Implications of interactions between DM components
- More flexibility while fitting existing constraints $(\Omega_{DM}h^2$ and $\sigma_{DM N})$

Assumptions:

- Scalar φ and fermion ν DM
- φ and ν stable by a virtue of symmetry ${\cal G}$
- \bullet SM neutral under ${\cal G}$
- Non-trivial interaction between the two components
- Dim 4 interactions only

then

 $\mathcal{L}_{\rm int} = \mathcal{O}_{SM} \mathcal{O}_{DM} + \mathcal{L}_{DM}$

 $\mathcal{G} = \mathbb{Z}_2 imes \mathbb{Z}_2$ to stabilize DM components: φ and ν ,

$$\varphi \sim (-,-) \quad \nu \sim (+,-) \quad \nu_h \sim (-,+)$$

where $\nu = \nu^C$ and $\nu_h = \nu_h^C$.

The most general, gauge- and G-symmetric renormalizable potential:

$$V(H,\varphi) = -\mu_H^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2 + \frac{1}{2} \mu_{\varphi}^2 \varphi^2 + \frac{1}{4!} \lambda_{\varphi} \left(\varphi^2\right)^2 + \lambda_x H^{\dagger} H \varphi^2 \,,$$

•
$$\langle H
angle = \left(egin{array}{c} 0 \\ rac{v}{\sqrt{2}} \end{array}
ight)$$
, with $v=246$ GeV,

- We require the \mathcal{G} symmetry to remain unbroken, so $\mu_{\varphi}^2 > 0$, so $\langle \varphi \rangle = 0$,
- $\langle \varphi \rangle = 0$ implies no mass-mixing between φ and H.

Mass eigenstates:

$$m_H^2 = -\mu_H^2 + 3\lambda_H v^2 = 2\mu_H^2$$
 and $m_{\varphi}^2 = \mu_{\varphi}^2 + \lambda_x v^2$

 $\mathcal{G} = \mathbb{Z}_2 \times \mathbb{Z}_2$ to stabilize DM components: φ and ν ,

$$\varphi \sim (-,-)$$
 $\nu_h \sim (-,+)$ $\nu \sim (+,-)$

• The extra fermionic Lagrangian:

$$\mathcal{L} = \frac{1}{2}\overline{\nu_h}\,i\partial\!\!\!\!/\,\nu_h + \frac{1}{2}\overline{\nu}\,i\partial\!\!\!/\,\nu - \frac{1}{2}\nu_h^T C\nu_h M_h - \frac{1}{2}\nu^T C\nu m_\nu + g_\nu\varphi\,\overline{\nu_h}\nu.$$

• Interaction between the SM and DM and the DM self-interactions:

$$\mathcal{L}_{\rm int} = -\lambda_x H^{\dagger} H \varphi^2 + g_{\nu} \varphi \,\overline{\nu_h} \nu$$

• No interactions between ν_h , ν and SM

Theoretical constraints:

$$V(H,\varphi) = -\mu_H^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2 + \frac{1}{2} \mu_{\varphi}^2 \varphi^2 + \frac{1}{4!} \lambda_{\varphi} \left(\varphi^2\right)^2 + \lambda_x H^{\dagger} H \varphi^2$$

• Vacuum stability:

$$\lambda_{\varphi} > 0; \quad \lambda_x > -\sqrt{\frac{\lambda_{\varphi}\lambda_H}{6}} = -\frac{m_h}{2v}\sqrt{\frac{\lambda_{\varphi}}{3}}.$$

• Tree-level unitarity:

$$\lambda_{\varphi} < 8\pi, \qquad |\lambda_x| < 4\pi.$$

• Perturbativity:

$$\lambda_{\varphi} < 4\pi, \qquad |\lambda_x| < 4\pi, \qquad |g_{\nu}| < 4\pi$$

$$V(H,\varphi) = -\mu_H^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2 + \frac{1}{2} \mu_{\varphi}^2 \varphi^2 + \frac{1}{4!} \lambda_{\varphi} \left(\varphi^2\right)^2 + \lambda_x H^{\dagger} H \varphi^2$$

Since $\mu_{\varphi}^2 > 0$ and $m_{\varphi}^2 = \mu_{\varphi}^2 + \lambda_x v^2$, therefore if $\lambda_x > 0$ then

$$m_{\varphi}^2 > \lambda_x v^2 \,;$$

as a consequence, light scalars $(m_{\varphi} \ll v)$ must couple very weakly to the SM: The above constraints imply that, the following regions are allowed:

$$0 < \lambda_x < \min\left[\left(\frac{m_{\varphi}}{v}\right)^2, 4\pi\right]$$
$$-0.74 < -\frac{m_h}{2v}\sqrt{\frac{\lambda_{\varphi}}{3}} < \lambda_x < 0,$$

where the maximal value of $\lambda_{\varphi} = 8\pi$ consistent with unitarity was adopted.

$$\mathcal{L}_{\rm int} = -\lambda_x H^{\dagger} H \varphi^2 + g_{\nu} \varphi \,\overline{\nu_h} \nu$$

Figure 1: Diagrams contributing to the scalar $\varphi \varphi$ annihilation into SM particles.

Figure 2: Diagrams contributing to the scalar $\varphi \varphi$ annihilation into DM neutrinos.

Parameters:

- λ_x , $g_
 u$, $m_
 u$ and m_arphi
- M_h mass of the heavy "neutrino" assumed to be $M_h = m_{\nu} + m_{\varphi} + 10 \text{ GeV}$

Boltzmann equations: numerical and analytical solutions

$$\dot{n}_{\varphi} + 3Hn_{\varphi} = -\langle \sigma_{\varphi\varphi\to SM\,SM}v \rangle \left(n_{\varphi}^2 - n_{\varphi}^{EQ2}\right) - \left(\langle \sigma_{\varphi\varphi\to\nu\nu}v \rangle n_{\varphi}^2 - \langle \sigma_{\nu\nu\to\varphi\varphi}v \rangle n_{\nu}^2\right)$$
$$\dot{n}_{\nu} + 3Hn_{\nu} = -\left(\langle \sigma_{\nu\nu\to\varphi\varphi}v \rangle n_{\nu}^2 - \langle \sigma_{\varphi\varphi\to\nu\nu}v \rangle n_{\varphi}^2\right)$$

where

$$\langle \sigma_{XX \to YY} v \rangle(T) \equiv \frac{1}{\left(n_X^{EQ}\right)^2} \int \frac{\zeta_X d^3 p}{(2\pi)^3 2E_p} \frac{\zeta_X d^3 p'}{(2\pi)^3 2E'_p} \frac{\zeta_Y d^3 q}{(2\pi)^3 2E_q} \frac{\zeta_Y d^3 q'}{(2\pi)^3 2E'_q} \times \delta^4(p+p'-q-q') |M_{XX \to YY}|^2 e^{-(E_p+E'_p)/T}$$

and

$$\left\langle \sigma_{\nu\nu\to\varphi\varphi}v\right\rangle = \left(\frac{n_{\varphi}^{EQ}}{n_{\nu}^{EQ}}\right)^2 \left\langle \sigma_{\varphi\varphi\to\nu\nu}v\right\rangle$$

The solutions can be classified according to the mass hierarchy in the dark sector:

Case A:
$$m_{\nu} > m_{\varphi}$$
, Case B: $m_{\nu} < m_{\varphi}$

$$f_X(T) \equiv \frac{n_X(T)}{T^3}$$
 for $X = \nu, \varphi$

The case A $(m_{\nu} > m_{\varphi})$

$$f'_{\varphi} = \sigma(T) \left[f^2_{\varphi} - f^{EQ^2}_{\varphi} \right] + \sigma_A(T) \left[\left(\frac{f^{EQ}_{\nu}}{f^{EQ}_{\varphi}} \right)^2 f^2_{\varphi} - f^2_{\nu} \right]$$
$$f'_{\nu} = \sigma_A(T) \left[f^2_{\nu} - \left(\frac{f^{EQ}_{\nu}}{f^{EQ}_{\varphi}} \right)^2 f^2_{\varphi} \right],$$

where

$$\sigma(T) \propto \langle \sigma_{\varphi\varphi\to SM\,SM}v\rangle(T) = \text{const} + \mathcal{O}(T)$$

$$\sigma_A(T) \propto \langle \sigma_{\nu\nu\to\varphi\varphi}v\rangle(T) = aT + \mathcal{O}(T^2)$$

$$\delta^A_{\varphi} \simeq 2.3\% \qquad \delta^A_{\varphi} \simeq 1.4\%$$

Figure 3: Thermally averaged cross sections $\langle \sigma_{\varphi\varphi \to SM SM} v \rangle / K$ (black points); $\langle \sigma_{\varphi\varphi \to \nu\nu} v \rangle / K$ (green points); $\langle \sigma_{\nu\nu \to \varphi\varphi} v \rangle / K$ (red points), as a functions of T (in GeV), for $\lambda_x = .1$ and $g_{\nu} = 2.5$. In the left panel: $m_{\varphi} = 100$ GeV, $m_{\nu} = 120$ GeV (case A); in the right panel: $m_{\varphi} = 120$ GeV, $m_{\nu} = 100$ GeV (case B).

Figure 4: Solutions to the BEQs for $f_X(T) \equiv n_X(T)/T^3$ for case A (left panels) and case B (right panels) for $\lambda_x = 0.1$ and $g_\nu = 2.5$. Solid black (red) lines correspond to the equilibrium distributions, f_{φ}^{EQ} (f_{ν}^{EQ}) for scalars (neutrinos), dashed lines are the corresponding numerical solutions of the BEQs. Green dashed lines show numerical solutions of a single BEQ for scalars without neutrinos present in the theory.

$$\begin{split} \Delta_{\varphi} &\equiv f_{\varphi} - f_{\varphi}^{EQ}, \qquad \Delta_{\nu} \equiv f_{\nu} - f_{\nu}^{EQ} \\ \Delta_{\nu}(T) &\simeq \frac{\Delta_{\nu}(T_{f}^{\nu})}{1 - \Delta_{\nu}(T_{f}^{\nu}) \int_{T_{f}^{\nu}}^{T} \sigma_{A} dT} \quad \Rightarrow \quad f_{\nu}(T_{CMB}) \simeq \frac{2}{\sigma_{A}(T_{f}^{\nu}) T_{f}^{\nu}} \\ \Delta_{\varphi}(T) &\simeq \frac{r_{f}}{\sigma T_{f}^{\varphi}} \frac{u + \tanh[r_{f}(1 - T/T_{f}^{\varphi})]}{1 + u \tanh[r_{f}(1 - T/T_{f}^{\varphi})]}; \qquad \Rightarrow \quad f_{\varphi}(T_{CMB}) \simeq \frac{1}{\sigma T_{f}^{\varphi}} \\ r_{f} &= \frac{T_{f}^{\varphi}}{T_{f}^{\nu}} \sqrt{\frac{\sigma}{\sigma_{A}(T_{f}^{\varphi})}}, \quad u = \frac{c_{\varphi} m_{\varphi}}{r_{f} T_{f}^{\varphi}} \\ \\ \int_{0}^{\frac{20}{10}} \frac{1}{400} \frac{\sigma_{000}}{\sigma_{00}} \frac{1}{800} \frac{1}{100}}{\sigma_{00}} \int_{0}^{\frac{20}{10}} \frac{\sigma_{000}}{\sigma_{00}} \frac{1}{800} \frac{\sigma_{000}}{\sigma_{00}} \frac{1}{800} \frac{1}{100}}{\sigma_{000}} \\ \\ &= \frac{1}{\sigma_{0}} \int_{0}^{\frac{20}{10}} \frac{\sigma_{000}}{\sigma_{00}} \frac{\sigma_{00}}{\sigma_{00}} \frac{\sigma_{00}}{$$

for

Figure 5: The ratio $f_X(T_{\text{CMB}})^{\text{num}}/f_X(T_{\text{CMB}})^{\text{approx}}$ for case A for scalars (left panel) and neutrinos (right panel). The parameters $m_{\varphi}, m_{\nu}, \lambda_x, g_{\nu}$ were chosen randomly within the range 10 GeV $< m_{\varphi}, m_{\nu} < 2$ TeV, $0.001 < \lambda_x < 4\pi$ and $0.1 < g_{\nu} < 4\pi$.

The relic abundance

Figure 6: Left panel: solutions of the BEQs for $m_{\varphi} = 150$ GeV, $m_{\nu} = 175$ GeV (case A), $\lambda_x = 1$. Pink, red, dark red lines: solutions for the neutrino abundance for $g_{\nu} = 0.1, 1, 10$, respectively. Green: equilibrium distribution for neutrinos at 175 GeV. Right panel: solutions to the BEQs: f_{φ} (dashed black line), f_{φ}^{EQ} (solid black line) and f_{ν} for $m_{\nu} = 145, 130, 120$ GeV (light red, red and dark red dashed lines, respectively), In all cases we chose $m_{\varphi} = 150$ GeV, $\lambda_x = 1$, $g_{\nu} = 7.5$. Yellow lines are from the WMAP 6σ allowed region of DM abundance.

 $1 \text{ GeV} < m_{arphi} < 10 \text{ TeV}$, $1 \text{ GeV} < m_{
u} < 2 \text{ TeV}$, $0.001 < |\lambda_x| < 4\pi$, $0.1 < g_{
u} < 4\pi$

Figure 7: Points (obtained by solving the BEQs numerically) that satisfy WMAP bound for cases A and B and projected into the (λ_x, g_ν) plane. Blue (circles): $m_\nu < 100$ GeV, green (triangles): 100 GeV $< m_\nu < 1$ TeV red (squares): 1 TeV $< m_\nu < 2$ TeV and for scalar DM mass ranges as indicated in each panel.

points that also satisfy CRESST limit.

"Beyond the LHC" The Nordita Workshop, 26 July 2013, Stockholm, 16

Direct Detection

$$\sigma_{\rm DM-N} = \frac{n_{\varphi}}{n_{\varphi} + n_{\nu}} \sigma_{\varphi N} = \frac{n_{\varphi}}{n_{\varphi} + n_{\nu}} \left(\frac{\lambda_x}{m_{\varphi}}\right)^2 \frac{v^2 m_n^2 \left(\sum_q f_q^N\right)^2}{\pi m_h^4}$$

Figure 9: The Feynman diagram for the elastic scattering of φ off a nucleon.

Figure 10: $\sigma_{\text{DM}-\text{N}}$ as a function of the scalar mass m_{φ} for points satisfying the WMAP data within 6σ . Left panel: green circles (dark green squares) correspond to case A (case B) solutions. Right panel: orange circles (dark orange squares) correspond to $\Omega_{\varphi} < \Omega_{\nu}$ ($\Omega_{\varphi} > \Omega_{\nu}$). The red line shows the XENON100 data, and the two islands in blue indicate 1 and 2σ CRESST-II results.

Figure 11: Left panel: plot of the invisible branching ratio $BR(h \to \varphi \varphi)$ as a function of the scalar mass m_{φ} . Right panel: plot of the cross section $\sigma_{\varphi N}$ against $BR(h \to \varphi \varphi)$. Green circles: points that satisfy also the WMAP data with 6σ range; red triangles: points that satisfy the XENON100 limit; blue diamonds: points that agree with the CREST-II M1 data.

Figure 12: Selected solutions of the Boltzmann equation for parameters that satisfy both WMAP and XENON constraints.

Conclusions

- The two-component DM model made of φ and ν was discussed.
- Solutions consistent with $\Omega_{DM}h^2$ and $\sigma_{\rm DM-N}$ were found for
 - $\begin{array}{ll} \ m_{\varphi} \simeq \frac{m_{Higgs}}{2} & \Omega_{\varphi} > \Omega_{\nu}, \ m_{\nu} \leqslant m_{\varphi}, \ \lambda_{x} \gtrless 0 \\ \ m_{\varphi} \sim 130 140 \ \text{GeV} & \Omega_{\varphi} > \Omega_{\nu}, \ m_{\nu} \leqslant m_{\varphi}, \ \lambda_{x} < 0 \\ \ m_{\varphi} \gtrsim 3 \ \text{TeV} & \Omega_{\varphi} < \Omega_{\nu}, \ m_{\nu} > m_{\varphi}, \ \lambda_{x} > 0 \end{array}$
- In order to enhance the annihilation rate for ν , large values of the $\nu \varphi$ coupling $g_{\nu} \simeq 1 12$ are favored by the WMAP data.

Figure 13: Points that satisfy WMAP bound within 6σ range projected into (λ_x, m_{φ}) plane. Orange circles - points where $\Omega_{\varphi} < \Omega_{\nu}$, dark orange squares - points where $\Omega_{\varphi} > \Omega_{\nu}$. The left panel corresponds to the solutions for positive λ_x , while the right panel is for negative λ_x . Blue dashed line is the consistency limit on λ_x , while the black horizontal dashed line is the stability limit $\lambda_{\varphi} = 8\pi$.

Figure 14: Relative abundance of φ (left panel) and relative number density of φ (right panel) as a function of m_{φ} for points that satisfy WMAP bound within 6σ . Light red points: $1 < \lambda_x < 10$; red points: $.1 < \lambda_x < 1$; dark red points: $\lambda_x < .1$