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The little hierarchy problem
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mh = 130 GeV ⇒ δ(SM)m2
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h for Λ ' 600 GeV

• For Λ∼> 600 GeV there must be a cancellation between
the tree-level Higgs mass2 m

(B) 2
h and the 1-loop leading correction δ(SM)m2

h:

m
(B) 2
h ∼ δ(SM)m2

h > m2
h

⇓

the perturbative expansion is breaking down.

• The SM cutoff is very low!
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Solutions to the little hierarchy problem:

♠ Suppression of corrections growing with Λ2 at the 1-loop level:

• The Veltman condition, no Λ2 terms at the 1-loop level:
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then for Λ ∼ 1016−18 GeV one gets m2

t̃ ∼< 1 TeV2 in order to have δ(SUSY )m2
h ∼

m2
h.

♠ Increase of the allowed value of mh:

• The inert Higgs model by Barbieri, Hall, Rychkov, Phys.Rev.D74:015007,2006,
(Ma, Phys.Rev.D73:077301,2006) ⇒ mh ∼ 400 − 600 GeV, (lnmh terms in
T parameter canceled by mH±,mA,mS contributions).
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The Strategy

• The SM 1-loop quadratic divergences are dominated by the top (fermionic)
contribution, so to suppress them we are going to introduce extra scalars (as the
SM Higgs would need to be too heavy to do the job).

• We will look for a model which allows for relatively heavy lightest Higgs boson (in
order to suppress δM2

i /M
2
i even more). Note also that within the SM fit to the

precision data there is a tension caused by the lightness of the Higgs.

• DM candidate is mandatory.

• CPV will be desirable.
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Natural Models

♠ Less divergence + DM ⇒ SM + Nϕ scalar singlets

B.G., J. Wudka, ”Pragmatic approach to the little hierarchy problem: the case for
Dark Matter and neutrino physics”, Phys.Rev.Lett.103:091802,2009.

• Nϕ extra gauge singlets ϕi with 〈ϕi〉 = 0,

• Symmetries Z
(i)
2 : ϕi → −ϕi (to eliminate |H|2ϕi couplings).
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δ(ϕ)m2
h = −Nϕ

λx
8π2
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λx = λx(m,mh, Dt,Λ, Nϕ)

Figure 1: Plots of λx as a function of m for Nϕ = 6, Dt = 0 and various choices of Λ = 3, 4, 5

shown above each panel. The curves correspond to mh = 130, 150, 170, 190, 210, 230 GeV

(starting with the uppermost curve).
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Stability of the fine tunning
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From 1-loop condition (n = 0)
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Λ∼< 3− 5 TeV for mh = 130− 230 GeV
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Singlet DM

Figure 2: Allowed regions in the space (m,Λ) are plotted for Dt(m) = 0, Nϕ = 6 and assuming

that each ϕi contributes the same to the total ΩDM at the 3σ level: Ωϕh
2 = 0.106 ± 0.008 for

the Higgs mass shown above each panel; mh = 130, 150, 170, 190, 210, 230 GeV.
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♠ Less divergence + DM + CPV ⇒
{

2HDM (CPV) + Inert singlet (DM)
2HDM (CPV) + Inert doublet (DM)

• The Inert Doublet Model with no quadratic divergences

Z2 : φ2 → −φ2

V (φ1, φ2) = −1
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Cancellation of quadratic divergences for φ1 and φ2 (Newton & Wu, 1994):
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Comments on the inert 2HDM:

• Motivations:

– To allow for heavy SM-like Higgs boson in order to weaken the little hierarchy
problem,

– To provide a candidate for DM.

• No CPV (as implied by exact Z2).

• The vacuum stability conditions turn out to be inconsistent with the cancellation
of quadratic divergences for realistic top mass.

⇓

• Allow for m2
12φ
†
1φ2 + H.c. (CPV),

• Allow for 〈φ2〉 6= 0,
• The price: no DM candidate!
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• The Non-Inert Doublet Model with no quadratic divergences

B.G., P. Osland, ”A Natural Two-Higgs-Doublet Model”, e-Print: arXiv:0910.4068

The cancellation of quadratic divergences
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⇓

For a given choice of the mixing angles αi’s (i = 1, 2, 3), the neutral-Higgs masses
M2

1 , M2
2 and M2

3 can be determined from the cancellation conditions in terms of
tanβ, µ2 and M2

H±.
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Figure 3: Distributions of allowed masses M2 vs M1 (left panels) and M3 vs M2

(right), resulting from a scan over the full range of αi, tanβ ∈ (0.5, 50) and
MH± ∈ (300, 700) GeV, for µ = 200 GeV. No constraints are imposed other than
the cancellation of quadratic divergences, M2

i > 0 and M1 < M2 < M3. Two
ranges of tanβ-values are displayed: bottom panels: 0.5 ≤ tanβ ≤ 1, top panels:
40 ≤ tanβ ≤ 50. The color coding indicates increasing density of allowed points as
one moves inward from the boundary.
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Figure 4: Similar to Fig. 3, for µ = 500 GeV.
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M2
1 −M2
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1
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where Rij are elements of the orthogonal rotation matrix for the neutral scalars.

⇓

tanβ∼> 40 =⇒ M1 'M2 'M3 ' µ2 + 4m2
b
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Advantages:

• No 1-loop quadratic divergences (so, δM2
i /M

2
i suppressed),

• Large H1 mass allowed (so, δM2
i /M

2
i suppressed),

• A chance for substantial CPV,

• DM candidate easily accommodated by adding singlets ϕi-like.
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The following experimental constraints are imposed:

• The oblique parameters T and S

• B0 − B̄0 mixing

• B → Xsγ

• B → τ ν̄τX

• B → Dτν̄τ

• LEP2 Higgs-boson non-discovery

• Rb

• The muon anomalous magnetic moment

• Electron electric dipole moment
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Figure 5: Allowed regions in the tanβ–MH± plane, for µ = 200, 300, 400, 500, 600
and 700 GeV (as indicated). Red: Positivity is satisfied; yellow: positivity and
unitarity both satisfied; green: also experimental constraints satisfied at the 95% C.L.,
as specified in the text.
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Violation of CP
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Figure 6: Imaginary parts of the rephasing invariants |=Ji|, for µ = 500 GeV (top)
and µ = 300 GeV (bottom). The colour coding is given along the right vertical axis.
At low tanβ the values should be rescaled by a factor of 10, at high tanβ by a factor
0.01.
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Stability of the cancellation condition

δM2
i = Λ2
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,

The coefficients f
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is sufficient:
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Requiring that the 2-loop contribution does not exceed M2
1 one finds:

Λ2 ln
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Λ

v

)
∼ (4πM1)2

Then, e.g. for M1 = 200(500) GeV the cutoff is at Λ ∼ 1.8(3.8) TeV.
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• DM in the Non-Inert Doublet Model with no quadratic divergences

V (φ1, φ2) = −1
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L = −ϕ2(κivHi + λijHiHj + λ±H
+H−)

with

κi = η1Ri1cβ + η2Ri2sβ,

λij =
1

2

[
η1(Ri1Rj1 + s2

βRi3Rj3) + η2(Ri2Rj2 + c2βRi3Rj3)
]
,

λ± = η1s
2
β + η2c

2
β

Assumption: M1 �M2,3 so that DM annihilation is dominated by H1 exchange.
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Figure 7: Inert-scalar coupling η (vs mϕ) required by the observed DM abundance
ΩDMh

2 = 0.106 ± 0.008 within a 3-σ band. As indicated above each panel, the
lightest Higgs-boson mass ranges from M1 = 100 to 400 GeV . It was assumed that
2λ11 = κ1 ≡ η.
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• 2HDM (CPV) + Inert doublet (DM)

B.G., O.M. Ogreid, P. Osland, ”Natural Multi-Higgs Model with Dark Matter and CP
Violation”, Phys.Rev.D80:055013,2009.

V (Φ1,Φ2, η) = V12(Φ1,Φ2) + V3(η) + V123(Φ1,Φ2, η)
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Summary

• The SM could be easily extended so that the little hierarchy problem is ameliorated,
DM candidate is provided and also CP is violated in the extra sector:

– The addition of Nϕ real scalar singlets ϕi to the SM lifts the cutoff Λ to
∼ 4 − 9 TeV. It also provides a realistic candidate for DM if mϕ ∼ 1 − 3 TeV
(depending on Nϕ).

– To accommodate CPV in the Higgs potential the SM scalar sector should be
replaced by 2 Higgs doublets (non-inert). Cancellation of quadratic divergences
could be arranged within the 2HDM. Heavy lightest Higgs additionally suppresses
δM2

i /M
2
i . Adding extra inert scalar singlet or doublet offers a DM candidate.

– CPV in the Higgs potential with the SM doublet and singlets only?

• Some fine tuning always remains.
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