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The scenario

UV  CFT :BZ fields S M fields
| N\ /
My ﬁ&OBZOSM
|
Ay transmutation scale l
|
Ade dyy
IR fixed point cyy—Y—— Mk O Osm

where k = doy + dpz — 4. dsy and drz are canonical dimensions of Ogy, and Oz,
respectively, while dy; is the scaling dimension (the same as the mass dimension in
this case) of Oy:

Oy(z) = O},(x)) = s UOy(x) with 1<dy<2 for 22—z =sz

An example of matching between Ogz and Oyy:

e (gq) in QCD <= M  (qq) mesons in the chiral non-linear model
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Examples of the BZ sector

e Banks & Zaks (1982): SU(3) YM with n massless fermions in e.g. fundamental
representation

g3 g
Blg) = (6016 2+ﬁ1( 1672)2 + 3 loops - - )

60—11——71 ﬁo(no)—O n0—165

B1=102—2n Bi(n) =0 ng ~8.05

If n1 <n < ng(soPy>0& B1 <0) then keeping By and (31 one gets

G . 33-2n
1672 306 — 38n

ﬁ(g[R) =0 fOI‘

Conclusions:

— If g = grgr, then the low-energy theory is scale invariant with small anomalous
scaling

— For n < ng, the theory remains perturbative, so the continuous spectrum doesn't
emerge.
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Couplings of unparticles to the SM

Assumptions:

e (O, in neutral under the SM gauge group

® dlm(Osm) < 4

AJPZ A\ |\ acagy—d
*Cint = Cy Mk OZ/{OSM X (m) AZ/{_ SM™ UOUOSM for k = dSM + dBZ —4
U

e Scalar unparticles Oy Ai,_d“HTHOu for dgy = 2

e Spinor unparticles O7;: Ai/Q_d“DROa for dsy = 3/2
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Deconstruction of unparticles

Kallen-Lehman representation of the Feynman propagator:

© dm?

INY(p?) = / 0426 (0|T{O(2) Oy (0)}]0) = / I (m?)

0o 2

1

p2 —m2 + ge

with py(m?) = Ag,0(m?)(m?)% =2 Deconstruction (Stephanov'07):

OUHZanpn with  m? = A®n

e

n=0

Then

D) = [ drem 0T {Ou(@)Ou0)H0) = 3 ——2

2 _m2 14
D mz + 1€

n—

A 0 2\dy —2 A 2\dy —2 2 2 ;
dy (mn) A2 g du/(m) dm /dm (m2) l

27 0p2—m%+i€ A—0 27 p%2 —m? + ic
n=
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So, the undeconstructed result has been confirmed. Now, let's focus on the
non-trivial phase:

- F? 2 2 2 Ady oy 2vdy—2
n — _ o u—
Im ngzo 7 —mZ 1 i En E2mé(p m;) A-_>—>0 5 0(p*)(p~)

So, each peak becomes lower as qu ~ A? — 0, but their density increases.

e Each mode ¢,, breaks the scale invariance.

e In the limit

the scale invariance is recovered.
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The deconstruction for t — u(Qy; decay

A A 0
g W = 75)8 0" Oy — - (1 = 5)1 > Faden
U U n=0
4
22 E? 2 .2 A
Lt — upn) = T LE?  with B, = M — M and F2 = duAQ(m2)du—2
Azldu 27T n 2mt n 27T n

Number of states |p,,) in the interval (F,, E, + dFE,): dN = dEu%

J
dP th )\2 m2 -
dE, A?2 Pt — vt n) = AZdUAdu2—7Tt2 E2(m? — 2myE,) %2 0(my — 2F,)

u
The same as the Georgi's result!
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Spontaneous symmetry breaking with unparticles and Higgs boson physics

(Delgado, Espinosa, Quiros'07)

. 2
Uv : Mggz_Q\m Oz
4
ABZ Yy 5 9
IR : CU ]\?dBZ_2 |H| Ou = Iﬁ:u|H| Ou
U

Deconstruction (O — > Fppn, m2 = A’n) =

Vit = m2|H? + N\ H|*+6V

for
1 2 2 200
2
Kyv“Fy 2 2 2 Adu 2 dyj—2
n) = — f H|%) = v, F* = A U=
(n) = =03 for ([H?) = n%()
So,
Adu oC dm2
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e The IR divergence!

e A possible regularization § V' = (|H|*>_ 2 is not scale invariant.

Since the scaling invariance is anyway violated by the vacuum expectation value # 0
through |H|*Oy; so we adopt

SV =ClH?Y ¥

as the IR regulator. Then

Ruvz

Ey
2(m3, + Cv?)

Up = <90n> - =
The minimization for H reads:

m2—|—)\1}2—|—/ﬁzuZann—l—§ZvizO

Inserting v,, one gets in the continuum limit (A — 0):

m? + M2 — Myg(u2)2~p2du=1 = g
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d
for My = ZMCdU_QI’(du — DI'(2 —dy) and (,ua)z_du = /iz%{—
2du—1
dy

Even if m? = 0 one can get the vacuum expectation value # 0 (A; provides the
scale):

Vet = m?|H|*— Aui(pigg)* = H ™ + N H|*

dSM—2

1 1
\ ) 2—dy, A 2—dy, A2 2—dy,
2 U 2 2 dyy U 2
v = | - py  for gy = (—) (—) Wy
( A o M2
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UnCosmology

B. G. and Jose Wudka, “UnCosmology,” arXiv:0809.0977

e The equation of state for unparticles

The trace anomaly of the energy momentum tensor for a gauge theory with
massless fermions: 3

O = @N Fo " Fa ] (1)
where 3 denotes the beta function and N stands for the normal product.

Non-trivial IR fixed point at g = g,, so in the IR we assume

B=7(g—9s), 7>0
in which case the running coupling reads
g(u) =g+ e’y Blg(p)] = yep”

where c is an integration constant and p is the renormalization scale.
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From the thermal average of (1) choosing the renormalization scale 4 = T and

using (01) = py — 3py, we get

=3 = (N [P F, ) = ATH
9x

pu — 3pu = AT*™

Y
3 T+ A
pu:O'T4—|-A(1—|-—) :ZjZHJy and pu:O'——I——TZHJY
Y 3 7
where o is an integration constant.
Y

4

One can expect that A < A;,”, therefore we obtain

g
72 + (l> for T <A
PNp = %Tél X { g+ Ay U

9B= for T 2 Ay
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where ggz = 2(n2 — 1 + In.ny) for SU(n.) with ny flavours in the BZ sector.

e From the continuity at T’ = Ay, the constant f could be determined: f = ggz—gr.

e We will assume gz ~ gk.
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¥

2 — (l) for T <A
Pnp = %Tzl % gr+ f Ay U
JBz for T > Ay

Deconstruction (Stephanov'07):
Oy — Z F,p, with mi — A%n
n=0

The above result fits the following guess for the effective number of degrees of

freedom: ,
T
fo dMQp(MZ)Q(Aa — MQ)

gu(T) 0.6

S A2 p(Mr2)
where p(M?) o< (M?)(%=2) Then
T 2(dy—1)
T il
SIS (Au>

— In the presence of just one unparticle operator one can argue that v = 2(dy — 1).
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e Freeze-out and thaw-in

& Brief history of the Universe in the presence of unparticles (no mass-gap).

e T > My the BZ sector in form of massless particles (no unparticles yet), thermal
equilibrium with the SM is maintained (assumption), so T' = Tz = Tqy

OTSMui

— The BZ sector starts to decouple, as the average energy is no longer sufficient
to create mediators.

— However, the thermal equilibrium may still be maintained (7' = Tz = Tsy)
depending on the strength of effective couplings between the SM and the extra
sector (which at higher temperature, T' 2> Ay, is made of the BZ matter, while
below Ay, of unparticles).

Let’s denote by T'r the decoupling temperature at which
I'(SM < NP)~H

where H is the Hubble parameter

T

H?*=——p,
3M32,"

(T)  for  pur = Psm + Prp
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There are 2 interesting cases:
o My >1Tr > Ay

— T is determined by the condition
I'SM «— BZ)~ H

— For T' > Ty the SM and the BZ sectors evolve in thermal equilibrium, but even
for T < T their temperatures remain equal (I' = Tz = Tsu) since Ay > v.

o Ay >Tf2

— Till T"= Ay the SM and unparticles still have the same temperature.
— For Ay 2 T 2 T still the equilibrium is maintained (assumption, in general this
depends on dys). The decoupling temperature Ty must be now determined by

— Till T" ~ v temperatures of SM and unparticles remain equal, at T' ~ v they
split.

—> The unparticle cosmic background should be there.
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& The Banks-Zaks phase.

1
Lz = . (H'H) (gszq5z)
u
Then
e T2
I'pz x VLZ[ and H « M—Pl —>  decoupling for T < Ty _pz
& The unparticle phase.
ABZz—du
Ly = cy c 2 OOy for k=dsy+dpz —4
My

The most relevant operators for scalar unparticles are

Al—du

Lo o) (HA (v) A7

F=q ME{ (U—Ie)(’)u, L, =

(H'H) Oy, L

A3, [T\ U3 T2
L — 'y U ( ) and H x —— > Tf_u
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dy > é decoupling for T < Ty_yy freeze-out
<5  decoupling for T >1Ty 4  thaw-in

dys =3

g( lz/)

= log(Mz,)

; f{}‘f" flfirr_
3 4 5 6 7 R 7 togtMey)
Figure 1: Regions of (M, Ay) for various Figure 2: Regions of (M, Ay) for various
scenarios of decoupling for dyy = 3/2. scenarios of decoupling for dyy = 3.
decoupling in BZ phase decoupling in the unparticle phase
green —+ =
blue — +
_|_ —
red — —
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e BBN constraints

Big-Bang Nucleosynthesis = AN, = —0.3710'1) = upper limit for gy

e Assume freeze-out above the EW scale (T > v = 246 GeV, L oc HTHOy)

) 4/3
952 (TegN)

g (T = v)

7.‘.2

7 2
PM(TBBN) — gIR%TéBN

-
ZAN,,%TéBN

and pU(TBBN) =

4
gRr S 4.3 at 4o

To be compared with e.g. gz = 2(71% — 1+ %ncnf), for n, = 3 and ny = 10,
gBz = 00.

o Assume freeze-out below TgrinN (Tf—u <TggpnN, L BMVB“VOL()

7
gr — ZAND = gr S 0.05 at 4o
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Summary

Intensive activity on unparticles (~ 200 citations of the first Georgi's paper)

Interesting and exotic phenomenology

Unparticles could be deconstructed

Troubles with IR divergences

Cosmological consequences

Rough arguments for the equation of state for unparticles: py; = %pu {1 — By,
Rough arguments for the energy density for unparticles " derived”:

o
e = 7T_2T4 « gr+ (982 — 9ir) (%) } for T < Ay
30 gBz for T Z Au

Unparticles in equilibrium: freeze-out and thaw-in.
BNN bounds on the number of degrees of freedom for unparticles.

5/4}
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Experimental constraints

From A. Freitas and D. Wyler, “Astro Unparticle Physics”, arXiv:0708.4339.

Ccv = CA 3 Cs1 & Cs2 &
Lups = —a—ffOy+——frusf O+ fDf Oy + fryuf 04Oy
rf Mg“_l nd MU Mg”_l pIss My Mg“ D Mg“ p
CP1 ¢ Cp2 ¢ "
+M§“ fDvysf Oy + Mél” fyuysf O"Ouy.

Here the coefficients have been scaled to a common mass, chosen as the Z-boson mass
M7z, so that the only unknown quantities are the dimensionless coupling constants c;.
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Coupling cy CA

dy 1 4/3 5/3 2 1 4/3 5/3 2

5th force 7o 1.4-1072° | 1.8.107 1Y 2.107° 4.10" 4% 8.10 10 il g Y 1.1-10°
Star cooling 5.1071% | 2.5.10712 1-1079 35-107 || 63-1071 | 2.10712 | 73.10710 | 3.1077
SN 1987A 1-1079 3.5.10"8 1.106 3.107° 2.10~ 11 55-10710 | 15.1078 | 4.1.1077
LEP 0.005 0.045 0.04 0.01 0.1 0.045 0.04 0.008
Tevatron 0.4 0.05

ILC 1.6-104 1.4.103 1.3-1073 | 3.2.107% 3.2.1079 1.4.103 1.3-1073 | 2.5.10"4
LHC 0.25 0.02

Precision 1 0.2 0.025 1 0.15 0.01

Quarkonia 0.01 0.1 0.45

Positronium 0.25 2.10~13 2.1078 0.03
Coupling €31 cp1. 2¢p9

dy 1 4/3 5/3 2 1 4/3 5/3 2

5th force 6.5-10 %% | 1.2.107 12 1.6-10"° 1.7-10° = - = =
Star cooling || 1.3-1079 7.10~ "7 3.1074 0.13 4.10"8 1.1-107° 3.3.1073 1

SN 1987A 8108 2.4-10"6 6.6-10"° 2.1073 5.5.10"8 1.3.10~6 3.5.10° 9.104
LEP > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1
ILC > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1

From A. Freitas and D. Wyler, “Astro Unparticle Physics”, arXiv:0708.4339 [hep-ph].
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HEIDI

Jochum van der Bij and S. Dilcher:

1. J. J. van der Bij and S. Dilcher, “HEIDI and the unparticle,” Phys. Lett. B 655, 183 (2007) [arXiv:0707.1817 [hep-ph]].

2. J. J. van der Bij and S. Dilcher, “A higher dimensional explanation of the excess of Higgs-like events at CERN LEP,”
Phys. Lett. B 638, 234 (2006) [arXiv:hep-ph/0605008].

3. J. J. van der Bij, “The minimal non-minimal standard model,” Phys. Lett. B 636, 56 (2006) [arXiv:hep-ph/0603082].

The model:

e Extra-dimensional (0) scalars neutral under the SM gauge group

1 2T~
o(x,y) Z—E ¢r(x)e THY
V2L9/2 -

e Extra terms in the scalar potential

V(H,6) = = ZH2fi0— |HP)
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Similarities:
e The continuous mass spectrum e.g. for s — oco: p(s) ~ g—3+4/2
Differences

e |In HEIDI only scalars, while unparticles could have any spin
e Van der Bij and Dilcher don’t assume scale invariance of the extra sector

e In HEIDI interactions between the SM and the extra scalars assumed to be
renormalizable

e Van der Bij and Dilcher claim that only for 0 < 6 < 1 there is no tachyons in the
scalar spectrum, so the potential is stable (1 < dyy < 2)

UnCosmology, October 7th, 2008, University of Warsaw, Seminar on Cosmology and Particle Physics 24



