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1. Introduction
e The Randall-Sundrum model.
e The Lee-Quigg-Thacker bound for the Higgs boson mass.

2. Tree-level unitarity
e WiW, —~,Z— W/ W,
e W/W, - Ggg,H, ¢ - W} W,
3. Discussion
e Determination of the cutoff.
e Limits on the Higgs boson mass.
e Experimental constraints.

e Can LHC measure the curvature of the RS 5D space-time?

4. Summary
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The Randall-Sundrum Model

o ¥, + 1 extra spatial dimension (y), orbifold (S1/Z2): y=y+ 1,y = —y
e Standard Model particles on a “visible” brane (at y = 1/2),
e Planck mass scale physics on the “hidden” (at y = 0),

e Gravity in the bulk (for any y),
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The full 5d action:

S = —/d4xdy\/jg (mz)]’gwR—i—A)
+ d4£E A/ —0hid (ﬁhid — Vhid) + d433 \/ —YGvis (Evis — Vvis)



e Neglecting L},;4 and L,;s we solve the Einstein’s equations.

The RS metric
e—QMOb0|y|q7MV | 0

0 2

QMN(fE, y) =

is a solution of the Einstein’s equations if:

V2
Vhia = —Veis = 12my m?;l 5 and A= —12777% m?gl 5 = A= Ll
12mPl 5
The curvature (the Ricci scalar) for the RS metric: Rrg = 20m3.
e An expansion around the background metric:
— Nuv — Nuv + €hpu (2, y), for €2 = m;?5
— bg — bg + b(a:),
huuv (2,y) = Zhy( S (y) = Lint = - Zh” e — oy

n;éO

for

Aw =~ \/implQ(), A¢ = \/gAw, Qo = e—"mobo/2 and ¢(:B) =

Ay

— Bmp e—0(bo+b())/2



Advantages:

e ”Solution” of the hierarchy problem:

All mass parameters (mp;5, v, --+) of the 5d theory O(mp; 5)

U

Effective 4d mass scale vg = Qpv = e~ mobo/24 ~, 1 TeV if mobo /2 ~ 35.
Drawbacks:
e (No stabilization < massless radion) = ” Goldberger-Wise-like” models

e Fine tuning of the cosmological constants



The Lee-Quigg-Thacker bound for the Higgs boson mass
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e "high-energy divergences’”: Cornwall, Levin and Tiktopoulos, Phys. Rev. D10,
1145, 1974:
Proper high-energy behavior of tree-level amplitudes, i.e.

TM g oo = O(E* " In* E), for k>0

is a necessary condition for perturbative renormalizability.

e ’’small partial-wave amplitudes”:

Unitarity of the S-matrix implies Re(a ;) < %
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Aj,Bjy#0for J=0,1 and 2
A-terms (for J = 0,1 and 2) vanish by the virtue of the gauge invariance and B2 = 0
for J =0 and 1, the B-term is canceled by the Higgs-boson exchange

eventually ay turns out to be my-dependent constant in the high-energy asymptotic
region, that implies the Lee-Quigg-Thacker unitarity bound for the Higgs boson mass:

1
Re(ay) < 5 = mpyg < 870 GeV



Tree-level unitarity in WI_J_ W, — Ggkg,d — WI_J_ W,

+
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Gy KK Graviton exchange
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W W
W W
The massive graviton propagator
D,UJV,OéB(]{;) — l (ﬁﬂaﬁVﬁ + ﬁ#ﬁﬁya _ gﬁﬂ’/ﬁaﬁ) ¢
2 3 k2 —m2, +ie’
where nHY = nt? — ’ﬁ’;” for n*¥ being the Minkowski metric.
G

The graviton couples to the energy-momentum tensor 7},,, so the amplitude reads

TMVDMV,aﬁTaﬁ

GXVL(k) =t 40 (mTW)



KK Graviton exchange



k,TH =0

0T+ |WS W, ) =

[0 0 0 0 )
0 L[(1—28w)d,+2(Bw —2)d3gls 0 — (s +4m3, )&
0 J _%Sdg,o 0
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in the CM frame. The scattering angle is measured relatively to the direction of motion W —,

J —qJ : : — 2
dwb, (cosf) = duu’ stands for the Wigner d function and By =1 — 4my;, /s.

Y

ay o k2

Note that the 4d RS effective theory contains dim 5 operators: o ﬁhﬁyT“V, having a
cutoff O(1TeV), therefore the amplitude should satisfy the unitarity conditions up to the

cutoff O(1TeV).



Determination of the cutoff

Graviton-matter interactions in D-dim:

_ 1 MN
L= AD/2_1 hynT
w

e The goal: to determine the cutoff at which the interactions become strong.

e The Naive Dimensional Analysis (NDA) condition for the cutoff (Anpa ):

The factor generated by extra internal graviton line = 1.

- 2 2
(5} 0 (22 ) o
A‘?Vﬂ_l A%pa \ AMlpa

1 for fermions

for

Ip = (4m)P/2r(D/2) n= N
Oor DOsSOoNns
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In D=4 ANDA = 47TAW

e Let’s apply the NDA to estimate the cutoff in 4D effective RS model with the tower of

KK graviton modes

mo Aw
0 W
mp; V2

e In the effective theory one should include an exchange of N gravitons in the loop (in

Mp = I with x, ~7mn for n > 1

the NDA arguments), such that my = Axpa
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Parameters of the effective RS model:

AW ~ \/EmplQ() :
Ay = VémpQo=V3Aw

my, = moxnlo,

—m0b0/2m p; should be of order a TeV to solve the hierarchy problem. The

where Qomp; = €
xn, are the zeroes of the Bessel function J; (x1 ~ 3.8, zp, ~ 1 +m(n — 1)). A useful relation

following from the above equations is:

A A
=z, 0 Re m1:15.5Ger(M)< ? ).
mp; V6 0.01 1 TeV

e To trust the RS solution of the Einstein equations the curvature mg must be small

comparing to the 5d scale of quantum gravity mp;5: mg < mp; 5.
e From the matching to the General Relativity

3
m
2 Pl5
mp; = 2
mo

Y

that implies

mo 1 ( mo )3/2
— <1
mpj V2 \mpys
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e We define A (the cutoff) to be the largest /s for which we would expect Wy W —
Wi, Wi, scattering to be unitarity when computed using the RS effective theory. Since

Ling = Zhn THY — T/’lj

n;éO (b

therefore well-motivated choices for the upper cutoff seem to be A = Ay and A=Aw

e We include all KK states with m,, < A:

as(V5) = Y as(mg=mn,5)

7, My <X

mo Ag
mp; V6

mo/mp; < 1 implies many KK graviton modes below the cutoff A. It will be shown

Mn = In

that because of the presence of many KK modes A # Ay .
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Summed KK Graviton Exchanges
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Reag,1,2 as functions of mg/mp; as computed at /s = ANpa and summing over all KK graviton re-

sonances with mass below Anxpa, but without including Higgs or radion exchanges.

(mo/mpl)l/SAW and that aj(1/s = ANpDA ) do not depend on Ay .
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Unitarity Limits for Summed KK Graviton Exchanges ay Unitarity Limit for Summed KK Graviton Exchanges
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In the left hand plot, A/ANpA as a function of mg/mp;, where A is the largest /s for which WZ_ WE
scattering is unitary after including KK graviton exchanges with mass up to A, but before including Higgs
and radion exchanges. Results are shown for the J = 0, 1 and 2 partial waves. With increasing /s unitarity
is always violated earliest in the J = 0 partial wave, implying that J = 0 yields the lowest A. The right
hand plot shows the individual absolute values of A(J = 0) and Anpa for the case of Ay = 5 TeV; A/ANDA

is independent of A
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A¢=5 TeV A¢=1O TeV
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Reag as a function of /s for five cases:

1. solid (black) mj = 870 GeV, SM contributions only (v = 0)

2. short dashes (red) mj = 870 GeV, with radion of mass m4 = 500 GeV included, but no KK gravitons
(we do not show the very narrow ¢ resonance)

3. dots (blue) as in 2), but including the sum over KK gravitons taking mqg/mp; = 0.01 (mg/mp; =
0.05) — Reaz is also shown for this case

4. long dashes ( ) mp, = 1000 GeV (915 GeV), with radion of mass mg = 500 GeV, but no KK
gravitons

5. as in 4., but including the sum over KK gravitons taking mg/mp; = 0.01 (mqg/mp; = 0.05). The A

and Anpa values for mg/mp; = 0.01 (mg/mp; = 0.05) are indicated by vertical lines.
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The curvature dependence:

my =870 GeV, my=500 GeV, Ay=10 TeV
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1430 GeV, taking mg =

Ay = 10 TeV, and for the mg/m p; values indicated on the plot.
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The graviton excitations can be revealed:

m; =870 GeV, my=500 GeV, Ay;=10 TeV
0.10 T ||||||| T T ||.;|||".|| T T

0.08

mo/ Mpjanck=0.03 | | Mo/Mpjapne=0.1

0.06

Re a;,

.t
"

0.02

o
o
o
-
.
e’

0.00

1 1 1 1 L. 11 | 1 1 1 1 1 L1 1 | 1
103 104
Vs (GeV)

Reaj 2 for mj = 870 GeV, my = 500 GeV and Ay = 10 TeV as functions of /s for the mg/m p; values

indicated on the plot.
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Ay ( TeV) 5 10 20 40
Absolute maximum Higgs mass
mznax( GeV) 1435 1430 1430 1430
required mq/mp; 1.32x 1072 | 1.8 x 1073 | 23x107%* | 29x 1075
associated m1( GeV) 103.2 28.2 7.2 1.8
mo/mp; = 0.005: Tevatron limit: mq >77
max( GeV) 1300 930 920 905
associated m1( GeV) 39 78 156 313
mo/mp; = 0.01: Tevatron limit: mi > 240 GeV
max( GeV) 1405 930 910 895
associated m1( GeV) 78 156 313 626
mo/mp; = 0.05: Tevatron limit: m; > 700 GeV
mmax( GeV) 930 915 900 885
associated m1( GeV) 391 782 1564 3129
mo/mp; = 0.1: Tevatron limit: m; > 865 GeV
mnax( GeV) 920 910 893 883
associated m1( GeV) 782 1564 3128 6257
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Experimental constraints

e Tevatron KK-graviton search: o(pp — G)BR(G — ete™, utu=,vv) < fpp(ma) /A3,

—> For a given graviton mass an upper limit for (ﬂng) can be determined.
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The 95% C.L. excluded region in the plane of k/Mp; (mg/mp;) and the graviton mass (T. Aaltonen et
al. [CDF Collaboration], arXiv:0707.2294 [hep-ex]).
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Can LHC measure the curvature of the 5D space-time?

e o(pp — G)BR(G — ete™) « fpp(mea)/A?, = m¢g and Ay determination at LHC

B. C. Allanach, et al.JHEP 0212, 039 (2002) [arXiv:hep-ph/0211205]:

U
Amg = 10.5 GeV (for mg = 1.5 TeV), AAAV“;V =1=+17% (for Ayw =1+ 39 TeV)
mo AW
Mmn = L ——— ——
mp; /2
U

If n is known then the curvature mg/mp; can be determined at the LHC
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Summary

The graviton and/or radion exchange lead to divergent partial wave amplitudes for

ViV, — ViV, aj x and therefore can substantially modify their high-energy

S
2
AW !

behavior.
The tree-level unitarity requirement can be adopted to determine the cutoff in the

Randall-Sundrum model.

The results obtained here for the graviton exchange are applicable to models which have

L%, ohT, THY.

massive gravitons which couples as Ao i

In the curvature-Higgs mixing scenario, £./gvis R(gvis) H T H, the presence of the radion-
Higgs mixing can substantially spoil the cancellation of a1,0 o s by the Higgs-boson
exchange. Therefore the requirement of proper high-energy behavior severely constra-

ints the allowed region for the mixing parameter .

When 5 TeV < Ay < 40 TeV, then the requirement of proper unitarity behavior allows
to determine an absolute maximum Higgs-boson mass: my, < 1.43 TeV.
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The KK graviton width as a function of Ay for various values of the graviton mass. This plot applies

independently of the level n of the excitation.
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diagram

v, 4 s-channel

2 Acos
—W COS

v, 4 t-channel

9524 (—3 + 2cos 8 + cos? 0)

WWWW contact

— g§i4 (3 —6cosf — cos? 0)

G s-channel 0 — 24/15\%‘/ (—1 + 3cos?0)
G t-channel 0 241.;;2 13+10 ;j_sci;rgo& 0
(h — ¢) s-channel 0 ~ 5 R?
(h — ¢) t-channel 0 — —1—|—2cos9R2

The leading contributions to the WZ_ W; — WZ_ W; amplitude. R?
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1 2 2 2 —1
a = —— m~ + 32g°v + O(s
: 9607 A2, { G } @)

m?2 m?2
ag = - _ 73+ 36log [ —< || s+36 |1+3log [ —< | | m% +37¢9%0° 5 +
1152771\%/ s s
— | —=(1 — — S
967 2 cos? Oy <
1 m?2 m2
ap = —————< [11+12log| —C& ||s— |10—12log | —<& || mZ + 19g%v% } +
3847'('/\%‘/ S S
—2
m
+37 [_(1 . R2) —|—R2 2 scal 4+ O( )
| v2 v2
where mzcal = g?w hmi + ggv qui and R? = ggv T+ g?w & satisfies the following sum rule

R?> =1 2 f EL
+° for v = —

¢

1 S m
ag = [— + g?R? — 4—=sal | oraviton contributions | |
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