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1. Introduction

• The Randall-Sundrum model.

• The Lee-Quigg-Thacker bound for the Higgs boson mass.

2. Tree-level unitarity

• W+
L W−

L → γ, Z → W+
L W−

L

• W+
L W−

L → GKK , H, φ → W+
L W−

L

3. Discussion

• Determination of the cutoff.

• Limits on the Higgs boson mass.

• Experimental constraints.

• Can LHC measure the curvature of the RS 5D space-time?

4. Summary

B. G., John F. Gunion, in press (Physics Letters B 653 (2007) 307)
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The Randall-Sundrum Model

• xµ, + 1 extra spatial dimension (y), orbifold (S1/Z2): y ≡ y + 1, y ≡ −y

• Standard Model particles on a “visible” brane (at y = 1/2),

• Planck mass scale physics on the “hidden” (at y = 0),

• Gravity in the bulk (for any y),

1/20-1/2

Pl

y

hidden brane (M    )                              visible brane (TeV)

V Vhid visΛ

The full 5d action:

S = −
∫

d4x dy
√
−g

(
m3

Pl 5R + Λ
)

+

∫
d4x

√
−ghid(Lhid − Vhid) +

∫
d4x

√
−gvis(Lvis − Vvis)
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• Neglecting Lhid and Lvis we solve the Einstein’s equations.

The RS metric

gMN (x, y) =

(
e−2m0b0|y|ηµν | 0

0 | −b20

)

is a solution of the Einstein’s equations if:

Vhid = −Vvis = 12m0 m3
Pl 5 and Λ = −12m2

0 m3
Pl 5 =⇒ Λ = − V 2

hid

12m3
Pl 5

The curvature (the Ricci scalar) for the RS metric: RRS = 20m2
0.

• An expansion around the background metric:

– ηµν → ηµν + εhµν(x, y), for ε2 ≡ m−3
Pl 5

– b0 → b0 + b(x),

hµν(x, y) =
∑

n

hn
µν(x)

χn(y)√
b0

=⇒ Lint = − 1

ΛW

∑
n6=0

hn
µνT µν − φ

Λφ
T µ

µ

for

ΛW '
√

2mPlΩ0, Λφ =
√

3ΛW , Ω0 = e−m0b0/2 and φ(x) ≡
√

6mPle
−m0(b0+b(x))/2
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Advantages:

• ”Solution” of the hierarchy problem:

All mass parameters (mP l 5, v, · · ·) of the 5d theory O(mP l 5)

⇓
Effective 4d mass scale v0 = Ω0v = e−m0b0/2v ∼ 1 TeV if m0b0/2 ∼ 35.

Drawbacks:

• (No stabilization ⇔ massless radion) =⇒ ”Goldberger-Wise-like”models

• Fine tuning of the cosmological constants
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The Lee-Quigg-Thacker bound for the Higgs boson mass

W+
L W−

L → W+
L W−

L

T (s, cos θ) = 16π
∑

J

(2J+1)aJ (s)PJ (cos θ), aJ (s) =
1

32π(2J + 1)

∫ 1

−1

T (s, cos θ)PJ (cos θ)d cos θ

• ”high-energy divergences”: Cornwall, Levin and Tiktopoulos, Phys. Rev. D10,

1145, 1974:

Proper high-energy behavior of tree-level amplitudes, i.e.

T (n)|E→∞ = O(E4−n lnk E), for k > 0

is a necessary condition for perturbative renormalizability.

• ”small partial-wave amplitudes”:

Unitarity of the S-matrix implies Re(aJ ) ≤ 1
2
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Z Zγ γ

W

W W

W
+

− −

+
W W

W W

+ +

− −

W W

W W

+ +

− −

W

W W

W
W W

W W

+ +

++

−−

−−

H

H

aJ = AJ

(
s

m2
W

)2

+ BJ

(
s

m2
W

)
+ CJ for ε

WL
µ (k) =

kµ

mW
+O

(
mW

E

)

• AJ , BJ 6= 0 for J = 0, 1 and 2

• A-terms (for J = 0, 1 and 2) vanish by the virtue of the gauge invariance and B2 = 0

• for J = 0 and 1, the B-term is canceled by the Higgs-boson exchange

• eventually aJ turns out to be mH -dependent constant in the high-energy asymptotic

region, that implies the Lee-Quigg-Thacker unitarity bound for the Higgs boson mass:

Re(aJ ) ≤ 1

2
⇒ mH <∼ 870 GeV
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Tree-level unitarity in W
+
L W

−
L → GKK , φ → W

+
L W

−
L

W +W
+

G
KK

W
−

W
−

KK
G

W
−

W+W
+

W
−

KK Graviton exchange

• The massive graviton propagator

Dµν,αβ(k) =
1

2

(
η̄µαη̄νβ + η̄µβ η̄να − 2

3
η̄µν η̄αβ

)
i

k2 −m2
G + iε

,

where η̄µν ≡ ηµν − kµkν

m2
G

for ηµν being the Minkowski metric.

• The graviton couples to the energy-momentum tensor Tµν , so the amplitude reads

TµνDµν,αβTαβ

• ε
WL
µ (k) =

kµ

mW
+O

(
mW

E

)
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KK
G

W
−

W+W
+

W
−

2

2

2

4

KK Graviton exchange

k

k

k

k

k

k

k

k

⇓

aJ ∝ k10
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kµT µν = 0

〈0|T µν |W+
L W−

L 〉 =


0 0 0 0

0 1
6
[(1− 2βW )d0

0,0 + 2(βW − 2)d2
0,0]s 0 − 1√

6
(s + 4m2

W )d2
1,0

0 0 − 1
2
sd0

0,0 0

0 − 1√
6
(s + 4m2

W )d2
1,0 0 1

6
[(1 + βW )d0

0,0 + 2(βW − 2)d2
0,0]s ,




in the CM frame. The scattering angle is measured relatively to the direction of motion W−,

dJ
µµ′ (cos θ) = dJ

µµ′ stands for the Wigner d function and βW ≡ 1− 4m2
W /s.

⇓

aJ ∝ k2

Note that the 4d RS effective theory contains dim 5 operators: ∝ 1
ΛW

hn
µνT µν , having a

cutoff O(1TeV), therefore the amplitude should satisfy the unitarity conditions up to the

cutoff O(1TeV).
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Determination of the cutoff

Graviton-matter interactions in D-dim:

L =
1

Λ
D/2−1
W

hMNT MN

• The goal: to determine the cutoff at which the interactions become strong.

• The Naive Dimensional Analysis (NDA) condition for the cutoff (ΛNDA):

The factor generated by extra internal graviton line = 1.

⇓

(
Λn

NDA

Λ
D/2−1
W

)2
1

Λ2
NDA

(
1

Λn
NDA

)2

ΛD
NDA lD = 1

for

lD = (4π)D/2Γ(D/2) n =

{
1 for fermions

2 for bosons
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In D=4: ΛNDA = 4πΛW

• Let’s apply the NDA to estimate the cutoff in 4D effective RS model with the tower of

KK graviton modes

•
mn = xn

m0

mPl

ΛW√
2

with xn ' πn for n À 1

• In the effective theory one should include an exchange of N gravitons in the loop (in

the NDA arguments), such that mN = ΛNDA

⇓

ΛNDA = 27/6π

(
m0

mPl

)1/3

ΛW
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Parameters of the effective RS model:

ΛW '
√

2mPlΩ0 ,

Λφ =
√

6mPlΩ0 =
√

3ΛW

mn = m0xnΩ0 ,

where Ω0mPl = e−m0b0/2mPl should be of order a TeV to solve the hierarchy problem. The

xn are the zeroes of the Bessel function J1 (x1 ∼ 3.8, xn ∼ x1 + π(n− 1)). A useful relation

following from the above equations is:

mn = xn
m0

mPl

Λφ√
6

with m1 = 15.5 GeV×
(

m0/mPl

0.01

)(
Λφ

1 TeV

)
.

• To trust the RS solution of the Einstein equations the curvature m0 must be small

comparing to the 5d scale of quantum gravity mPl 5: m0 < mPl 5.

• From the matching to the General Relativity

m2
Pl = 2

m3
Pl 5

m0
,

that implies

m0

mPl
=

1√
2

(
m0

mPl 5

)3/2
<∼ 1
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• We define Λ (the cutoff) to be the largest
√

s for which we would expect WLWL →
WLWL scattering to be unitarity when computed using the RS effective theory. Since

Lint = − 1

ΛW

∑
n6=0

hn
µνT µν − φ

Λφ
T µ

µ

therefore well-motivated choices for the upper cutoff seem to be Λ = Λφ and Λ = ΛW

• We include all KK states with mn ≤ Λ:

aJ (
√

s) =
∑

n,mn<Λ

aJ (mG = mn,
√

s)

•
mn = xn

m0

mPl

Λφ√
6

m0/mPl ¿ 1 implies many KK graviton modes below the cutoff Λ. It will be shown

that because of the presence of many KK modes Λ 6= ΛW .
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Rea0,1,2 as functions of m0/mP l as computed at
√

s = ΛNDA and summing over all KK graviton re-

sonances with mass below ΛNDA, but without including Higgs or radion exchanges. Note that ΛNDA ∝
(m0/mP l)

1/3ΛW and that aJ (
√

s = ΛNDA) do not depend on ΛW .
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In the left hand plot, Λ̄/ΛNDA as a function of m0/mP l, where Λ̄ is the largest
√

s for which W+
L

W−
L

scattering is unitary after including KK graviton exchanges with mass up to Λ̄, but before including Higgs

and radion exchanges. Results are shown for the J = 0, 1 and 2 partial waves. With increasing
√

s unitarity

is always violated earliest in the J = 0 partial wave, implying that J = 0 yields the lowest Λ̄. The right

hand plot shows the individual absolute values of Λ̄(J = 0) and ΛNDA for the case of Λφ = 5 TeV; Λ̄/ΛNDA

is independent of Λφ
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Rea0 as a function of
√

s for five cases:

1. solid (black) mh = 870 GeV, SM contributions only (γ = 0)

2. short dashes (red) mh = 870 GeV, with radion of mass mφ = 500 GeV included, but no KK gravitons

(we do not show the very narrow φ resonance)

3. dots (blue) as in 2), but including the sum over KK gravitons taking m0/mP l = 0.01 (m0/mP l =

0.05) — Rea2 is also shown for this case

4. long dashes (green) mh = 1000 GeV (915 GeV), with radion of mass mφ = 500 GeV, but no KK

gravitons

5. as in 4., but including the sum over KK gravitons taking m0/mP l = 0.01 (m0/mP l = 0.05). The Λ̄

and ΛNDA values for m0/mP l = 0.01 (m0/mP l = 0.05) are indicated by vertical lines.
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The curvature dependence:

Rea0,1,2 as functions of
√

s for mh = 870 GeV and mh = 1430 GeV, taking mφ = 500 GeV and

Λφ = 10 TeV, and for the m0/mP l values indicated on the plot.
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The graviton excitations can be revealed:

Rea1,2 for mh = 870 GeV, mφ = 500 GeV and Λφ = 10 TeV as functions of
√

s for the m0/mP l values

indicated on the plot.
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Λφ( TeV) 5 10 20 40

Absolute maximum Higgs mass

mmax
h ( GeV) 1435 1430 1430 1430

required m0/mPl 1.32× 10−2 1.8× 10−3 2.3× 10−4 2.9× 10−5

associated m1( GeV) 103.2 28.2 7.2 1.8

m0/mPl = 0.005: Tevatron limit: m1 >??

mmax
h ( GeV) 1300 930 920 905

associated m1( GeV) 39 78 156 313

m0/mPl = 0.01: Tevatron limit: m1 > 240 GeV

mmax
h ( GeV) 1405 930 910 895

associated m1( GeV) 78 156 313 626

m0/mPl = 0.05: Tevatron limit: m1 > 700 GeV

mmax
h ( GeV) 930 915 900 885

associated m1( GeV) 391 782 1564 3129

m0/mPl = 0.1: Tevatron limit: m1 > 865 GeV

mmax
h ( GeV) 920 910 893 883

associated m1( GeV) 782 1564 3128 6257
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Experimental constraints

• Tevatron KK-graviton search: σ(pp̄ → G)BR(G → e+e−, µ+µ−, γγ) ∝ fpp̄(mG)/Λ2
W

=⇒ For a given graviton mass an upper limit for
(

m0
mP l

)
can be determined.

)2Graviton Mass (GeV/c
300 400 500 600 700 800

P
l

M
k/

0

0.02

0.04

0.06

0.08

0.1

Excluded 95% C.L.

)2Graviton Mass (GeV/c
300 400 500 600 700 800

P
l

M
k/

0

0.02

0.04

0.06

0.08

0.1

The 95% C.L. excluded region in the plane of k/M̄P l (m0/mP l) and the graviton mass (T. Aaltonen et

al. [CDF Collaboration], arXiv:0707.2294 [hep-ex]).
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Can LHC measure the curvature of the 5D space-time?

• σ(pp → G)BR(G → e+e−) ∝ fpp(mG)/Λ2
W =⇒ mG and ΛW determination at LHC

B. C. Allanach, et al.JHEP 0212, 039 (2002) [arXiv:hep-ph/0211205]:

⇓
∆mG = 10.5 GeV (for mG = 1.5 TeV), ∆ΛW

ΛW
= 1÷ 17% (for ΛW = 1÷ 39 TeV)

•
mn = xn

m0

mPl

ΛW√
2

⇓
If n is known then the curvature m0/mPl can be determined at the LHC
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Summary

• The graviton and/or radion exchange lead to divergent partial wave amplitudes for

VLVL → VLVL, aJ ∝ s
Λ2

W

, and therefore can substantially modify their high-energy

behavior.

• The tree-level unitarity requirement can be adopted to determine the cutoff in the

Randall-Sundrum model.

• The results obtained here for the graviton exchange are applicable to models which have

massive gravitons which couples as 1
ΛW

Σn6=0hn
µνT µν .

• In the curvature-Higgs mixing scenario, ξ
√

gvisR(gvis) H†H, the presence of the radion-

Higgs mixing can substantially spoil the cancellation of a1,0 ∝ s by the Higgs-boson

exchange. Therefore the requirement of proper high-energy behavior severely constra-

ints the allowed region for the mixing parameter ξ.

• When 5 TeV ≤ Λφ ≤ 40 TeV, then the requirement of proper unitarity behavior allows

to determine an absolute maximum Higgs-boson mass: mh <∼ 1.43 TeV.
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The KK graviton width as a function of Λφ for various values of the graviton mass. This plot applies

independently of the level n of the excitation.
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diagram O( s2

v4 ) O( s1

v2 )

γ, Z s-channel − s2

g2v4 4 cos θ − s
v2 cos θ

γ, Z t-channel − s2

g2v4 (−3 + 2 cos θ + cos2 θ) − s
v2

3
2
(1− 5 cos θ)

WWWW contact − s2

g2v4 (3− 6 cos θ − cos2 θ) − s
v2 2(−1 + 3 cos θ)

G s-channel 0 − s

24Λ̂2
W

(−1 + 3 cos2 θ)

G t-channel 0 − s

24Λ̂2
W

13+10 cos θ+cos2 θ
−1+cos θ

(h− φ) s-channel 0 − s
v2 R2

(h− φ) t-channel 0 − s
v2
−1+cos θ

2
R2

The leading contributions to the W+
L

W−
L
→ W+

L
W−

L
amplitude. R2 ≡ g2

vvh
+ g2

vvφ
= 1 + γ2 for γ ≡ v

Λφ
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a2 = − 1

960πΛ̂2
W

{[
91 + 30 log

(
m2

G

s

)]
s +

[
241 + 210 log

(
m2

G

s

)]
m2

G + 32g2v2

}
+O(s−1)

a1 = − 1

1152πΛ̂2
W

{[
73 + 36 log

(
m2

G

s

)]
s + 36

[
1 + 3 log

(
m2

G

s

)]
m2

G + 37g2v2

}
+

+
1

96π

[
s

v2
(1−R2)−R2g2 +

12 cos2 θW − 1

2 cos2 θW
g2

]
+O(s−1)

a0 = − 1

384πΛ̂2
W

{[
11 + 12 log

(
m2

G

s

)]
s−

[
10− 12 log

(
m2

G

s

)]
m2

G + 19g2v2

}
+

+
1

32π

[
s

v2
(1−R2) + R2g2 − 4

m2
scal

v2

]
+O(s−1)

where m2
scal = g2

vvhm2
h + g2

vvφm2
φ and R2 ≡ g2

vvh + g2
vvφ satisfies the following sum rule

R2 = 1 + γ2 for γ ≡ v

Λφ

a0 =
1

32π

[
− s

Λ2
φ

+ g2R2 − 4
m2

scal

v2
+ graviton contributions

]
,
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