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1. Introduction

• The Randall-Sundrum model.

• The Curvature-Higgs mixing.

• The Lee-Quigg-Thacker bound for the Higgs boson mass.

2. Tree-level unitarity

• W+
L W−

L → GKK , H, φ → W+
L W−

L

• ff̄ → GKK , H, φ → ZLZL

3. Discussion

• Determination of the cutoff for the Randall-Sundrum model

• The van Dam-Veltman-Zakharov discontinuity

4. Summary

B.G. and Jack Gunion
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The Randall-Sundrum Model

• 3 space, 1 time (xµ), + 1 extra spatial dimension (y), orbifold: y ≡ y + 1, y ≡ −y

• Standard Model particles on a “visible” brane (at y = 1/2),

• Planck mass scale physics on the “hidden” (at y = 0),

• Gravity in the bulk (for any y),

1/20-1/2

Pl

y

hidden brane (M    )                              visible brane (TeV)

V Vhid visΛ

The full 5d action:

S = −
∫

d4x dy
√
−ĝ

(
R̂

ε2
+ Λ

)

+

∫
d4x

√
−ghid(Lhid − Vhid) +

∫
d4x

√
−gvis(Lvis − Vvis)
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The strategy:

• Neglecting Lhid and Lvis we solve the Einstein’s equations.

The RS metric

ĝ
µ̂ν̂

(x, y) =

(
e−2m0b0|y|ηµν | 0

0 | −b20

)

is a solution of the Einstein’s equations if:

Vhid = −Vvis =
12m0

ε2
and Λ = −12m2

0

ε2

• An expansion around the background metric:

– ηµν → ηµν + εhµν(x, y),

– b0 → b0 + b(x),

hµν(x, y) =
∑

n

hn
µν(x)

χn(y)√
b0

=⇒ − 1

Λ̂W

∑
n6=0

hn
µνT µν − φ0

Λφ
T µ

µ

for

Λ̂W '
√

2MPlΩ0, Λφ =
√

3Λ̂W , Ω0 = e−m0b0/2 and φ0(x) ≡
√

6MPle
−m0(b0+b(x))/2
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Advantages:

• ”Solution” of the hierarchy problem:

All (!) mass parameters of the 5d theory of O(MP l):

ε−2 ∼ M3
P l, m0 <∼ MP l, v̂ ∼ MP l, 1/b0 ∼ m0/70

⇓
Effective 4d mass v0 = Ω0v̂ = e−m0b0/2v̂ ∼ 1 TeV

Drawbacks:

• (No stabilization ⇔ massless radion) =⇒ Goldberger-Wise model

• Fine tuning of the cosmological constants

4



The Curvature-Higgs mixing

Sξ = ξ

∫
d4x

√
gvisR(gvis)H

†H ,

where R(gvis) is the Ricci scalar for the metric induced on the visible brane.

L = − 1
2

{
1 + 6γ2ξ

}
φ0 φ0 − 1

2
φ0m2

φ0
φ0 − 1

2
h0( + m2

h0
)h0 − 6γξφ0 h0 ,

where φ0(x) ≡ √
6MPle

−m0(b0+b(x))/2 and

γ ≡ v0/Λφ for Λφ '
√

6MPlΩ0

The mixing angle θ

tan 2θ ≡ 12γξZ
m2

h0

m2
φ0
−m2

h0
(Z2 − 36ξ2γ2)

for Z2 ≡ 1 + 6ξγ2(1− 6ξ) ≡ β − 36ξ2γ2 .

The states that diagonalize the kinetic energy and have canonical normalization are h and φ:

h0 =

(
cos θ − 6ξγ

Z
sin θ

)
h +

(
sin θ +

6ξγ

Z
cos θ

)
φ ≡ dh + cφ

φ0 = − cos θ
φ

Z
+ sin θ

h

Z
≡ aφ + bh .
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The Lee-Quigg-Thacker bound for the Higgs boson mass

W+
L W−

L → W+
L W−

L

T (s, cos θ) = 16π
∑

J

(2J+1)aJ (s)PJ (cos θ) with aJ (s) =
1

32π

∫ 1

−1

T (s, cos θ)PJ (cos θ)d cos θ

Z Zγ γ

W

W W

W
+

− −

+
W W

W W

+ +

− −

W W

W W

+ +

− −

W

W W

W
W W

W W

+ +

++

−−

−−

H

H
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For the SM for W+
L W−

L → W+
L W−

L we have

aJ = AJ

(
q

mW

)4

+ BJ

(
q

mW

)2

+ CJ

• divergent contributions for J = 0, 1 and 2

• A-terms vanish by the virtue of the gauge invariance for J = 0, 1 and 2

• for J = 1 and 0, the B-term is cancelled by the Higgs-boson exchange

• eventually aJ turns out to be mH -dependent constant in the high-energy asymptotic

region, that implies the Lee-Quigg-Thacker bound for the Higgs boson mass:

Im(aJ ) ≥ |aJ |2 ⇒ Re(aJ ) ≤ 1

2

⇓

mH <∼ 870 GeV
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Tree-level unitarity in W
+
L W

−
L → GKK , H, φ → W

+
L W

−
L

W +W
+

G
KK

W
−

W
−

KK
G

W
−

W+W
+

W
−

KK Graviton exchange

• The massive graviton propagator

Dµν,αβ(k) =
1

2

(
η̄µαη̄νβ + η̄µβ η̄να − 2

3
η̄µν η̄αβ

)
i

k2 −m2
G + iε

,

where η̄µν ≡ ηµν − kµkν

m2
G

for ηµν being the Minkowski metric.

• The graviton couples to the energy-momentum tensor Tµν , so the amplitude reads

TµνDµν,αβTαβ for Tµν 3 k2
µ, . . .

• ε
WL
µ (k) =

kµ

mW
+O

(
mW

E

)
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KK
G

W
−

W+W
+

W
−

2

2

2

4

KK Graviton exchange

k

k

k

k

k

k

k

k

⇓

aJ ∝ k10
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kµT µν = 0

〈0|T µν |W+
L W−

L 〉 =


0 0 0 0

0 1
6
[(1− 2βW )d0

0,0 + 2(βW − 2)d2
0,0]s 0 − 1√

6
(s + 4m2

W )d2
1,0

0 0 − 1
2
sd0

0,0 0

0 − 1√
6
(s + 4m2

W )d2
1,0 0 − 1

6
[(1 + βW )d0

0,0 + 2(βW − 2)d2
0,0]s ,




in the reference frame in which off-shell graviton is at rest. The scattering angle is measured

relatively to the direction of motion W−, dJ
µµ′ (cos θ) = dJ

µµ′ stands for the Wigner d function

and βW ≡ 1− 4m2
W /s.

⇓

aJ ∝ k2

Note that the RS model is an effective theory (dim 5 operators: ∝ 1

Λ̂W

hµνT µν) having a cutoff

O(1TeV), therefore the amplitude should satisfy the unitarity conditionsup to
√

s ' 1 TeV.
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a2 = − 1

192πΛ̂2
W

{[
91 + 30 log

(
m2

G

s

)]
s +

[
241 + 210 log

(
m2

G

s

)]
m2

G + 32g2v2

}
+O(s−1)

a1 = − 1

384πΛ̂2
W

{[
73 + 36 log

(
m2

G

s

)]
s + 36

[
1 + 3 log

(
m2

G

s

)]
m2

G + 37g2v2

}
+

+
1

32π

[
s

v2
+

1

2 cos2 θW
(12 cos2 θW − 1)g2

]
− 1

32π
R2

(
s

v2
− g2

)
+O(s−1)

a0 = − 1

384πΛ2
W

{[
11 + 12 log

(
m2

G

s

)]
s−

[
10− 12 log

(
m2

G

s

)]
m2

G + 19g2v2

}
+

+
1

32π

s

v2
− 1

32π

[
R2

(
s

v2
− g2

)
+ 4

m2
scal

v2

]
+O(s−1)

where m2
scal = g2

vvhm2
h + g2

vvφm2
φ and R2 ≡ g2

vvh + g2
vvφ satisfies the following sum rule

R2 = 1 +

[
γ(1− 6ξ)

Z

]2

for γ ≡ v

Λφ
and Z2 ≡ 1 + 6ξγ2(1− 6ξ)

a0 =
1

32π

[
(1−R2)

s

v2
+ g2R2 − 4

m2
scal

v2
+ graviton contributions

]
,

The very first term is responsible for the large violation of unitarity

f ≡ (1−R2)
s

v2
= −

(
1− 6ξ

Z

)2 s

Λ2
φ
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ff̄ → GKK , H, φ → ZLZL

(hf̄ , hf ) SM: t,u-channels (h− φ) s-channel G s-channel

(h, h) −2h
mf s1/2

v2 +O(s0) 2hR2 mf s1/2

v2 +O(s0) −h 8
3

mf s1/2

Λ̂2
W

(d2
0,0 + 1

2
d0
0,0) +O(s−1/2)

(h, −h) 0 0
√

2
3

s

Λ̂2
W

d2
1,0 +O(s0)
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Determination of the cutoff for the Randall-Sundrum model

Λ̂W '
√

2MPlΩ0 ,

Λφ =
√

6MPlΩ0 =
√

3Λ̂W

mn = m0xnΩ0 ,

where Ω0MPl = e−m0b0/2MPl should be of order a TeV to solve the hierarchy problem. The

xn are the zeroes of the Bessel function J1 (x1 ∼ 3.8, x2 ∼ 7.0). A useful relation following

from the above equations is:

mn = xn
m0

MPl

Λφ√
6

with 0.01 <∼
m0

MPl

<∼ 0.1
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The RS model, no curvature-Higgs mixing

The amplitudes a0,1,2(s = Λ2
φ
) and a0,1,2(s = Λ̂2

W ) are plotted as functions of m0/MP l, after summing:

aJ (s) =
∑

n,2mn<
√

s
aJ (mG = mn, s). The plotted values of ai terminate when m0/MP l is such that

2m1 exceeds Λφ =
√

3Λ̂W or Λ̂W , for the two respective s values above.
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The curvature-Higgs mixing model

The unitarity limits on ξ for mh = 120 GeV when KK gravitons are omitted.
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The unitarity limits on ξ after summing over all KK excitations with 2mn <
√

s.
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The van Dam-Veltman-Zakharov discontinuity

massless graviton : Dµν,αβ(k) =
1

2

(
ηµαηνβ + ηµβηνα − ηµνηαβ

) i

k2 + iε

massive graviton : Dµν,αβ(k) =
1

2

(
η̄µαη̄νβ + η̄µβ η̄να − 2

3
η̄µν η̄αβ

)
i

k2 −m2
G + iε

where η̄µν ≡ ηµν − kµkν

m2
G

The s-channel graviton contributions to the amplitude for ff̄ → ZLZL calculated both for

mG 6= 0 and for mG = 0 for possible initial state helicities (h = ± 1
2
).

(hf̄ , hf ) mG 6= 0 mG = 0

(h, h) −h 8
3
β

1/2
f

s+4m2
Z

s−m2
G

mf s1/2

Λ̂2
W

d2
0,0 −h 8

3
β

1/2
f

s+4m2
Z

s

mf s1/2

Λ̂2
W

(
d2
0,0 + 1

2

s−2m2
Z

s+4m2
Z

d0
0,0

)

(h, −h)
√

2
3
β

1/2
f

s+4m2
Z

s−m2
G

s

Λ̂2
W

d2
1,0

√
2
3
β

1/2
f

s+4m2
Z

s
s

Λ̂2
W

d2
1,0
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Comments:

• The amplitudes found for massless and massive gravitons are different.

• Even in the limit mG → 0 the massive amplitude doesn’t coincide with the massless re-

sult. This is an illustration of the celebrated van Dam-Veltman-Zakharov discontinuity;

regardless how small is the graviton mass, its very presence has physical consequences.

• Note however, that in all cases considered here, for J = 2, the limit mG → 0 of a

massive amplitude does reproduce the massless calculation, in particular there is no

discontinuity for opposite helicities. This result is consistent with the fact that the

massive graviton does not contain J = 0 component, while the massless one does.

• Since the J = 0 component can not contribute to opposite helicity amplitudes, no

wonder in those cases there is no discontinuity.

• The presence of J = 0 component of the massless graviton leads also to different high-

energy behavior of the amplitudes and therefore may influence the unitarity constraints

differently.
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Summary

• The graviton exchange leads to divergent partial wave amplitudes for VLVL → VLVL,

aJ ∝ s

Λ̂2
W

, and therefore can substantially modify their high-energy behavior.

• The tree-level unitarity requirement can be either adopted to determine the cutoff in

the Randall-Sundrum model or to impose constraints on the free parameter m0
MP l

.

• The results obtained here for the graviton exchange are applicable to models that have

massive gravitons which couples as 1
Λ

Σn6=0hn
µνT µν .

• In the curvature-Higgs mixing scenario, the presence of the radion-Higgs mixing spoils

the cancellation of a1,0 ∝ s by the Higgs-boson exchange. Therefore the requirement

of proper high-energy behavior severely constraints the allowed region for the mixing

parameter ξ.

• The van Dam-Veltman-Zakharov discontinuity was observed in the process ff̄ → ZLZL.
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95% C.L. exclusion limits on the RS model parameters M1 and k/MP l. The area below the

dashed-dotted line is excluded from the precision electroweak data. The dark shaded area in the lower

right-hand corner corresponds to Λφ > 10 TeV, which requires a significant amount of fine-tuning.
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Scalar scattering

For completeness we also consider processes of scattering involving scalars only. Here

however, there is no need to calculate SM-like diagrams involving only scalars since they don’t

contain any contributions growing with energy, so there is no chance for a compensation of

γ2 = v2/Λ̂2
W .

First we need to derive Ghh, Gφφ and Gφh vertices for off-shell external particles. There-

fore one has to expand the curvature-Higgs mixing term around the R-S background metrics:

Sξ = ξ

∫
d4x

√
gvisR(gvis)Ĥ

†Ĥ =

6ξ

∫
d4x Ω

{
− Ω + ε

[
hµν∂µ∂νΩ− 1

2
(∂νhµ

µ)∂νΩ + (∂µhµν)∂νΩ+

1

6
Ω(∂µ∂ν − ηµν )hµν

]
+O(ε2)

}
H†

0H0 ,

where ε ≡ (MPl5)
3/2.

Among all possible final and initial states made of φ and h, only the elastic Higgs-boson

scattering have a chance to provide a result which is not suppressed by γ2 = v2/Λ̂2
W . There-

fore below we focus on the graviton-exchange contributions to the process hh → hh. We

obtain the following contributions to the amplitude from the s- t- and u-channel:

a(s)(cos θ) = − (Ahh − Chh)2

12π

s− 4m2
h

s−m2
G

s

Λ̂2
W

(1)
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a(t)(cos θ) =
(Ahh − Chh)2

12π

16(1 + cos θ)2m4
h − 8(5 + 6 cos θ + cos2 θ)m2

hs + (13 + 10 cos θ + cos2 θ)s2 ,

Λ̂2
W [2m2

G + (1− cos θ)(s− 4m2
h
)]

(2)

a(u)(cos θ) = a(t)(− cos θ) (3)

where

Ahh = −6ξγb(γb + 2d), Chh = d2

Integrating with the Legendre polynomials we obtain the following coefficients for the J = 2, 1

and 0 partial waves.

a2 = − (Ahh − Chh)2

96π

[
181 + 60 log

(
m2

G

s

)]
s

Λ̂2
W

+O(s0)

a1 = 0

a0 = − (Ahh − Chh)2

96π

[
11 + 12 log

(
m2

G

s

)]
s

Λ̂2
W

+O(s0) ,

Expanding in powers of γ we get

(Ahh − Chh)2 = 1− 72γ2ξm4
h

(m2
h
−m2

φ
)2

+O(γ4)

Note that for the scalar–scalar scattering, the Higgs and radion exchange could lead to terms

growing as s, however those cancel and the result is of the order of O(s0).

It turns out the a2 ' 10−2 ÷ 10−3 for reasonable set of parameters.
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