
The Minimal Extension of the Standard Model

Bohdan GRZADKOWSKI

University of Warsaw

• The little hierarchy vs. the fine-tunning problem

• The model and the little hierarchy problem

• Dark Matter

• Neutrino physics

• Summary and comments

B.G., J. Wudka, ”Pragmatic approach to the little hierarchy problem: the case for Dark Matter and

neutrino physics”, arXiv:0902.0628

March 24th, 2009, University of Warsaw, Seminar for Cosmology and Elementary Particles 1



The little hierarchy vs. the fine-tunning problem

Figure 1: Red is the 90% CL allowed range, from PDG 2008. mh < 161 GeV at the 95% CL.
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The little hierarchy problem:

•
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mh = 130 GeV ⇒ δ(SM)m2
h ' m2

h for Λ ' 580 GeV

• For Λ∼> 580 GeV there must be a cancellation between the tree-level Higgs mass2

m
(B) 2
h and the 1-loop leading correction δ(SM)m2

h:

m
(B) 2
h ∼ δ(SM)m2

h > m2
h

⇓

the perturbative expansion is breaking down.

• The SM cutoff is very low!
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Solutions to the little hierarchy problem:

♠ Suppression of corrections growing with Λ at the 1-loop level:

⇒ The Veltman condition, no Λ2 terms at the 1-loop level:

3
2
m2

t −
1
8
(
6m2

W + 3m2
Z

)
− 3

8
m2

h = 0 =⇒ mh ' 310 GeV

In general

m2
h = m

(B) 2
h − 2Λ2

∞∑
n=0

fn(λ, . . . ) lnn

(
Λ
µ

)
where

(n + 1)fn+1 = µ
∂

∂µ
fn = βi

∂

∂λi
fn

with

f0 =
1

π2v2

[
3
2
m2

t −
1
8
(
6m2

W + 3m2
Z

)
− 3

8
m2

h

]
and fn ∝ 1/(16π2)n+1.
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Figure 2: Contour plots of Dt corresponding to Dt = 10 (10%) and 100 (1%) for n ≤ 2, from

Kolda & Murayama hep-ph/0003170.
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To understand the region allowed by Dt ≤ 10, 100 in the SM:

• Assume mh is such that the Veltman condition is satisfied:

3
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8
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h = 0 ,

• then at the 1-loop level Λ could be arbitrarily large, however

• higher loops limit Λ since the Veltman condition implies no Λ2 only at the 1-loop
level, while higher loops grow with Λ2.

⇒ SUSY

δ(SUSY )m2
h ∼ m2

t̃

3λ2
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8π2
ln

(
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)
then for Λ ∼ 1016−18 GeV one gets m2

t̃ ∼< 1 TeV in order to have δ(SUSY )m2
h ∼ m2

h.

♠ Increase of the allowed value of the mh: the inert Higgs model by Barbieri, Hall,
Rychkov, arXiv:hep-ph/0603188, (see also Ma) ⇒ mh ∼ 400 − 600 GeV, (m2

h

terms in T parameter canceled by mH±,mA,mS contributions).
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Our goal: to lift up the cutoff to multi TeV range preserving δ(SM)m2
h ≤ m2

h.

• Extra gauge singlet ϕ with 〈ϕ〉 = 0 (to prevent H ↔ ϕ mixing from ϕ2|H|2).

• Symmetry Z2: ϕ → −ϕ (to eliminate |H|2ϕ couplings).

• Gauge singlet neutrinos: νR i for i = 1, 2, 3.

V (H,ϕ) = −µ2
H|H|2 + λH|H|4 + µ2

ϕϕ2 +
1
24

λϕϕ4 + λx|H|2ϕ2

with
〈H〉 =

v√
2
, 〈ϕ〉 = 0 for µ2

ϕ > 0

then
m2

h = 2µ2
H and m2 = 2µ2

ϕ + λxv2

• Positivity (stability) in the limit h, ϕ →∞: λHλϕ > 6λ2
x

• Unitarity in the limit s � m2
h,m2: λH ≤ 4π

3 (the SM requirement) and λϕ ≤ 8π,
λx < 4π
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δ(ϕ)m2
h = − λx
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⇓
λx = λx(m,mh, Dt,Λ)

Figure 3: Plot of λx corresponding to δm2
h > 0 as a function of m for Dt = 1, Λ = 56 TeV

(left panel) and λx as a function of Λ for Dt = 1, m = 20 TeV (right panel). The various curves

correspond to mh = 130, 150, 170, 190, 210, 230 GeV (starting with the uppermost curve).

The solid (dashed) lines correspond to c = +1 (c = −1). Note that λx < 4π.
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Comments:

• When m � Λ, the λx needed for the amelioration of the hierarchy problem is
insensitive to m, Dt or Λ:
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• Since we consider λx > 1 higher order corrections could be important. In general∣∣∣∣∣δ(SM)m2
h + δ(ϕ)m2
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∑
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[
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2
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where the coefficients fn(λx, . . . ) can be determined recursively (see Einhorn &
Jones):

fn(λx, . . . ) ∼
[

λx

(16π2)

]n+1

If Λ = 100 TeV, mh = 120 − 250 GeV and m = 10 − 30 TeV the relative next
order correction remains in the range 4− 12%.

March 24th, 2009, University of Warsaw, Seminar for Cosmology and Elementary Particles 9



Figure 4: Contour plots of the Barbieri-Giudice parameters ∆Λ (left panel) and ∆m (right panel)

for mh = 150 GeV and λx = 3.68.
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model δm2
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Λ ∼ 60 TeV, m ∼ 20 TeV

For Dt = 1 (no fine-tuning) and mh = 130 GeV:

• SM: Λ ' 1 TeV, while

• SM + ϕ: Λ ' 60 TeV for λx = λx(m) (fine tuning!) with m = 20 TeV,

• The range of (mh,Λ) space corresponding to a given Dt is expected to be larger
when ϕ is added to the SM, if λx = λx(m,mh, Dt,Λ).
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Dark Matter
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It is possible to find parameters Λ, λx and m such that
both the hierarchy is ameliorated to the prescribed level and

such that Ωϕh2 is consistent with ΩDM .

ϕϕ → hh, W+W−, ZZ ⇒ 〈σv〉 =
1
8π

λ2
x

m2

The Boltzmann equation ⇒ xf

(
≡ m

Tf
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]
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March 24th, 2009, University of Warsaw, Seminar for Cosmology and Elementary Particles 12



xf ' 30 ⇒ m ≥ xfTc ' 8 TeV

Ωϕ = ΩDM ⇒ λx ∼
1
4

m

TeV
⇓

|δm2
h| = Dtm

2
h ⇒ m = m(Λ)

Figure 5: Plot of m as a function of the cutoff Λ when Dt = 1 and Ωϕ = ΩDM

at the 1σ level: Ωϕh2 = 0.114 (left panel) and Ωϕh2 = 0.098 (right panel); for

mh = 130, 150, 170, 190, 210, 230 GeV (starting with the uppermost curve) and for c = +1

solid curves and c = −1 (dashed curves).
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Neutrino physics

LY = −L̄YlHlR − L̄YνH̃νR −
1
2
(νR)cMνR − ϕ(νR)cYϕνR + H.c.

Z2 : H → H, ϕ → −ϕ, L → SLL, lR → SlRlR, νR → SνR
νR

The symmetry conditions (SiS
†
i = S†i Si = 1):

S†LYlSlR = Yl, S†LYνSνR
= Yν, ST

νR
MSνR

= +M, ST
νR

YϕSνR
= −Yϕ

The implications of the symmetry:

ST
νR

MSνR
= +M ⇒ SνR

= ±1, SνR
= ± diag(1, 1,−1)
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SνR
= ±1 ⇒ Yϕ = 0 or SνR

= ± diag(1, 1,−1) ⇒ Yϕ =

 0 0 b1

0 0 b2

b1 b2 0


S†LYlSlR = Yl ⇒ SL = SlR = diag(s1, s2, s3), |si| = 1

S†LYνSνR
= Yν ⇒ 10 Dirac neutrino mass textures

For instance the solution corresponding to s1,2,3 = ±1:

Yν =

 a b 0
d e 0
g h′ 0


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Lm = −(n̄Mnn + N̄MNN)

with the see-saw mechanism explaining Mn � MN :

MN ∼ M and Mn ∼ (vYν)
1
M

(vYν)T

where

νL = nL + MD
1
M

NL and νR = NR −
1
M

MT
DnR

Yν =

 a b 0
d e 0
g h′ 0

 ⇒ MD = Yν
v√
2

⇒ Mn

To compare our results with the data, we use the following approximate lepton mixing
matrix (tri-bimaximal lepton mixing) that corresponds to θ13 = 0, θ23 = π/4 and
θ12 = arcsin(1/

√
3):

U =


√

2
3

√
1
3 0

−
√

1
6

√
1
3

√
1
2

−
√

1
6

√
1
3 −

√
1
2


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Writing the diagonal light neutrino mass matrix as

mlight = diag(m1,m2,m3)

we find
Mn = UmlightU

T

⇓

Yν =

 a b 0
−a

2 b 0
−a

2 b 0

 m1 = −3a2 v2

M1

m2 = −6b2 v2

M2

m3 = 0

and Yν =

 a b 0
a −b

2 0
a −b

2 0

 m1 = −3b2 v2

M2

m2 = −6a2 v2

M1

m3 = 0

Does Yϕ 6= 0 imply ϕ → ninj decays?

Yν =

 a b 0
d e 0
g h′ 0

 , Yϕ =

 0 0 b1

0 0 b2

b1 b2 0

 ⇒ ϕ → N?
1,2N3 → n1,2,3 h︸ ︷︷ ︸

N?
1,2

N3

that can be kinematically forbidden by requiring M3 > m.
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Does ϕ explain the PAMELA data?

Figure 6: Combined fit of different DM annihilation channels to the PAMELA positron and PAMELA

anti-proton data, from Cirelli, Kadastik, Raidal and Strumia, arXiv:0809.2409.
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Summary and comments

• The addition of a real scalar singlet ϕ to the SM may ameliorate the little hierarchy
problem (by lifting the cutoff Λ to 50− 100 TeV range). Fine tuning remains.

• It also provides a realistic candidate for DM.

• Since m∼> 10 TeV therefore ϕ can properly describe the PAMELA results both for
e+ and p̄.

• The Z2 symmetry implies a realistic texture for the neutrino mass matrix.

• ϕ cannot be assumed to be responsible neither for inflation nor for dark energy.

March 24th, 2009, University of Warsaw, Seminar for Cosmology and Elementary Particles 19


