The Minimal Extension of the Standard Model

Bohdan GRZADKOWSKI University of Warsaw

- The little hierarchy vs. the fine-tunning problem
- The model and the little hierarchy problem
- Dark Matter
- Neutrino physics
- Summary and comments

B.G., J. Wudka, "Pragmatic approach to the little hierarchy problem: the case for Dark Matter and neutrino physics", arXiv:0902.0628

The little hierarchy vs. the fine-tunning problem

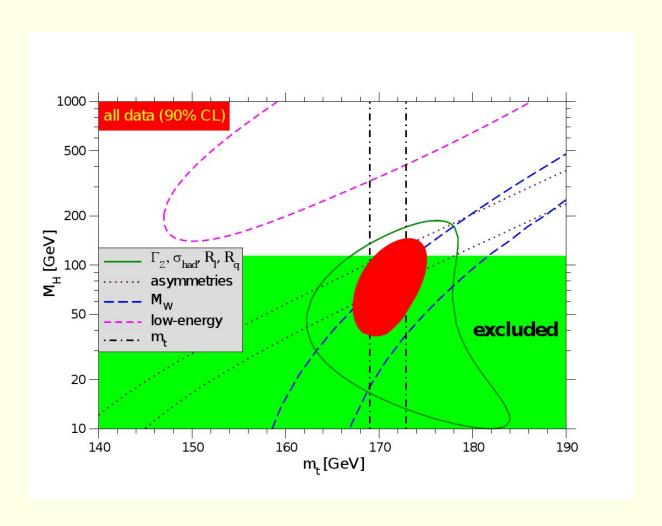


Figure 1: Red is the 90% CL allowed range, from PDG 2008. $m_h < 161$ GeV at the 95% CL.

The little hierarchy problem:

$$m_h^2 = m_h^{(B) 2} + \delta^{(SM)} m_h^2 + \cdots$$

$$\delta^{(SM)} m_h^2 = \frac{\Lambda^2}{\pi^2 v^2} \left[\frac{3}{2} m_t^2 - \frac{1}{8} \left(6 m_W^2 + 3 m_Z^2 \right) - \frac{3}{8} m_h^2 \right]$$

$$m_h = 130 \; {\rm GeV} \quad \Rightarrow \quad \delta^{(SM)} m_h^2 \simeq m_h^2 \qquad {\rm for} \qquad \Lambda \simeq 580 \; {\rm GeV}$$

• For $\Lambda \gtrsim 580$ GeV there must be a cancellation between the tree-level Higgs mass² $m_h^{(B)}$ and the 1-loop leading correction $\delta^{(SM)}m_h^2$:

$$m_h^{(B) 2} \sim \delta^{(SM)} m_h^2 > m_h^2$$

$$\downarrow \downarrow$$

the perturbative expansion is breaking down.

The SM cutoff is very low!

Solutions to the little hierarchy problem:

- \spadesuit Suppression of corrections growing with Λ at the 1-loop level:
- The Veltman condition, no Λ^2 terms at the 1-loop level:

$$\frac{3}{2}m_t^2 - \frac{1}{8}\left(6m_W^2 + 3m_Z^2\right) - \frac{3}{8}m_h^2 = 0 \qquad \Longrightarrow \qquad m_h \simeq 310 \text{ GeV}$$

In general

$$m_h^2 = m_h^{(B) 2} - 2\Lambda^2 \sum_{n=0}^{\infty} f_n(\lambda, \dots) \ln^n \left(\frac{\Lambda}{\mu}\right)$$

where

$$(n+1)f_{n+1} = \mu \frac{\partial}{\partial \mu} f_n = \beta_i \frac{\partial}{\partial \lambda_i} f_n$$

with

$$f_0 = \frac{1}{\pi^2 v^2} \left[\frac{3}{2} m_t^2 - \frac{1}{8} \left(6m_W^2 + 3m_Z^2 \right) - \frac{3}{8} m_h^2 \right]$$

and $f_n \propto 1/(16\pi^2)^{n+1}$.

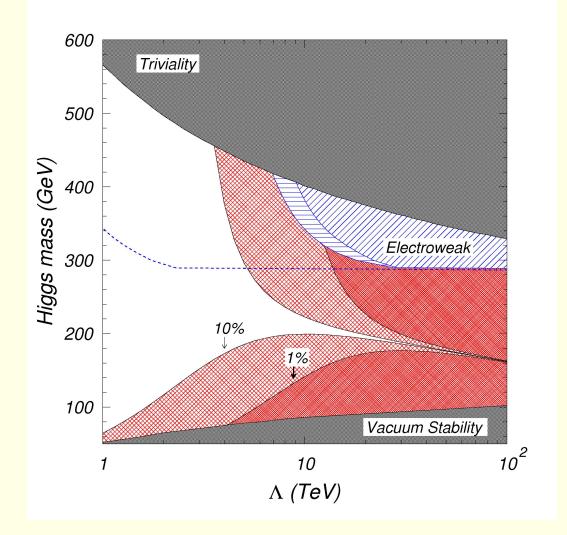


Figure 2: Contour plots of D_t corresponding to $D_t = 10 \ (10\%)$ and $100 \ (1\%)$ for $n \le 2$, from Kolda & Murayama hep-ph/0003170.

$$D_t \equiv \frac{\delta^{(SM)} m_h^2}{m_h^2} = \frac{2\Lambda^2}{m_h^2} \sum_{n=0}^{\infty} f_n(\lambda, \dots) \ln^n \left(\frac{\Lambda}{\mu}\right)$$

To understand the region allowed by $D_t \leq 10,100$ in the SM:

Assume m_h is such that the Veltman condition is satisfied:

$$\frac{3}{2}m_t^2 - \frac{1}{8}\left(6m_W^2 + 3m_Z^2\right) - \frac{3}{8}m_h^2 = 0,$$

- ullet then at the 1-loop level Λ could be arbitrarily large, however
- ullet higher loops limit Λ since the Veltman condition implies no Λ^2 only at the 1-loop level, while higher loops grow with Λ^2 .

 \Rightarrow SUSY

$$\delta^{(SUSY)} m_h^2 \sim m_{\tilde{t}}^2 \frac{3\lambda_t^2}{8\pi^2} \ln\left(\frac{\Lambda^2}{m_{\tilde{t}}^2}\right)$$

then for $\Lambda \sim 10^{16-18}$ GeV one gets $m_{\tilde{t}}^2 \lesssim 1$ TeV in order to have $\delta^{(SUSY)} m_h^2 \sim m_h^2$.

 \spadesuit Increase of the allowed value of the m_h : the inert Higgs model by Barbieri, Hall, Rychkov, arXiv:hep-ph/0603188, (see also Ma) $\Rightarrow m_h \sim 400-600$ GeV, (m_h^2) terms in T parameter canceled by $m_{H^{\pm}}, m_A, m_S$ contributions).

Our goal: to lift up the cutoff to multi TeV range preserving $\delta^{(SM)}m_h^2 \leq m_h^2$.

- Extra gauge singlet φ with $\langle \varphi \rangle = 0$ (to prevent $H \leftrightarrow \varphi$ mixing from $\varphi^2 |H|^2$).
- Symmetry \mathbb{Z}_2 : $\varphi \to -\varphi$ (to eliminate $|H|^2\varphi$ couplings).
- Gauge singlet neutrinos: ν_{Ri} for i = 1, 2, 3.

$$V(H,\varphi) = -\mu_H^2 |H|^2 + \lambda_H |H|^4 + \mu_\varphi^2 \varphi^2 + \frac{1}{24} \lambda_\varphi \varphi^4 + \lambda_x |H|^2 \varphi^2$$

$$\langle H \rangle = \frac{v}{\sqrt{2}}, \qquad \langle \varphi \rangle = 0 \qquad \text{for} \qquad \mu_\varphi^2 > 0$$

then

with

$$m_h^2 = 2\mu_H^2 \qquad \text{and} \qquad m^2 = 2\mu_\varphi^2 + \lambda_x v^2$$

- Positivity (stability) in the limit $h, \varphi \to \infty$: $\lambda_H \lambda_\varphi > 6\lambda_x^2$
- Unitarity in the limit $s\gg m_h^2, m^2$: $\lambda_H\leq \frac{4\pi}{3}$ (the SM requirement) and $\lambda_{\varphi}\leq 8\pi$, $\lambda_x < 4\pi$

$$\delta^{(\varphi)} m_h^2 = -\frac{\lambda_x}{8\pi^2} \left[\Lambda^2 - m^2 \log \left(c + \frac{\Lambda^2}{m^2} \right) \right]$$
$$|\delta m_h^2| = |\delta^{(SM)} m_h^2 + \delta^{(\varphi)} m_h^2| = D_t m_h^2$$
$$\downarrow \qquad \qquad \downarrow$$
$$\lambda_x = \lambda_x(m, m_h, D_t, \Lambda)$$

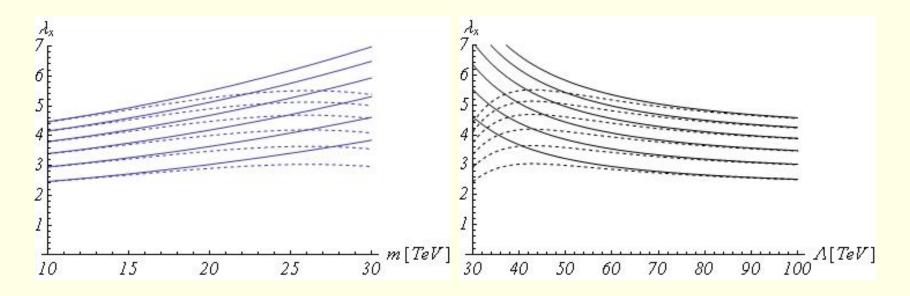


Figure 3: Plot of λ_x corresponding to $\delta m_h^2>0$ as a function of m for $D_t=1$, $\Lambda=56$ TeV (left panel) and λ_x as a function of Λ for $D_t=1$, m=20 TeV (right panel). The various curves correspond to $m_h = 130, 150, 170, 190, 210, 230$ GeV (starting with the uppermost curve). The solid (dashed) lines correspond to c=+1 (c=-1). Note that $\lambda_x < 4\pi$.

Comments:

ullet When $m \ll \Lambda$, the λ_x needed for the amelioration of the hierarchy problem is insensitive to m, D_t or Λ :

$$\lambda_x = \left\{ 4.8 - 3 \left(\frac{m_h}{v} \right)^2 + 2 D_t \left[\frac{2\pi}{(\Lambda/\text{ TeV})} \right]^2 \right\} \left[1 - \frac{m^2}{\Lambda^2} \ln \left(\frac{m^2}{\Lambda^2} \right) \right] + \mathcal{O} \left(\frac{m^4}{\Lambda^4} \right) .$$

ullet Since we consider $\lambda_x>1$ higher order corrections could be important. In general

$$\left| \delta^{(SM)} m_h^2 + \delta^{(\varphi)} m_h^2 + \Lambda^2 \sum_{n=1}^n f_n(\lambda_x, \dots) \left[\ln \left(\frac{\Lambda}{m_h} \right) \right]^n \right| = D_t m_h^2,$$

where the coefficients $f_n(\lambda_x, \dots)$ can be determined recursively (see Einhorn & Jones):

$$f_n(\lambda_x,\dots) \sim \left[\frac{\lambda_x}{(16\pi^2)}\right]^{n+1}$$

If $\Lambda=100$ TeV, $m_h=120-250$ GeV and m=10-30 TeV the relative next order correction remains in the range 4-12%.

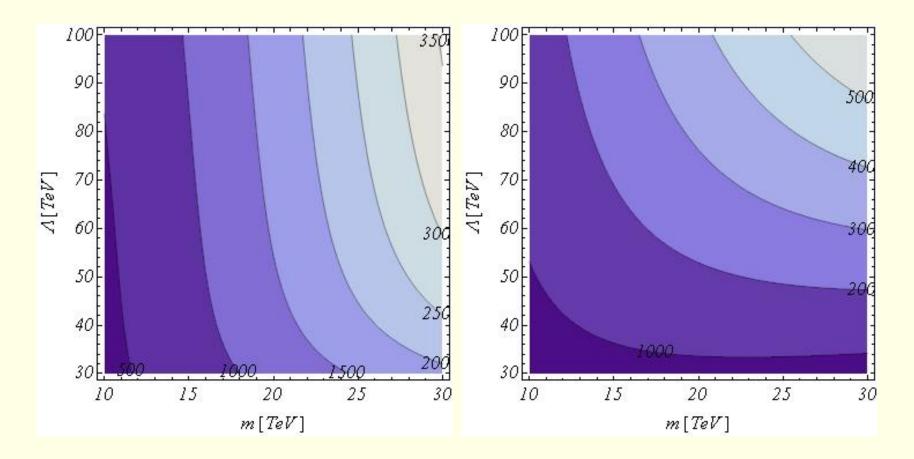


Figure 4: Contour plots of the Barbieri-Giudice parameters Δ_{Λ} (left panel) and Δ_{m} (right panel) for $m_h=150$ GeV and $\lambda_x=3.68$.

$$\Delta_{\Lambda} \equiv \frac{\Lambda}{m_h^2} \frac{\partial m_h^2}{\partial \Lambda} \qquad \Delta_m \equiv \frac{m}{m_h^2} \frac{\partial m_h^2}{\partial m}$$

$$\frac{\delta m_h^2}{m_h^2} = \Delta_{\Lambda} \frac{\delta \Lambda}{\Lambda} \qquad \frac{\delta m_h^2}{m_h^2} = \Delta_m \frac{\delta m}{m}$$

model	δm_h^2	Λ
SM	$\underbrace{\Lambda^2 \left(\frac{3\lambda_t^2}{4\pi^2} + \cdots \right)}_{1-\text{loop } SM} + \underbrace{\Lambda^2 f_1^{(SM)} \ln \left(\frac{\Lambda}{\mu} \right)}_{2-\text{loop } SM}$	see plots
SUSY	$m_{\tilde{t}}^2 \frac{3\lambda_t^2}{8\pi^2} \ln\left(\frac{\Lambda^2}{m_{\tilde{t}}^2}\right)$	$m_{\tilde{t}} \lesssim 1 \text{ TeV}$
		for $\Lambda \sim 10^{16-18}~{ m GeV}$
Arr SM $+ arphi$	$\left[\Lambda^2 \left(\frac{3\lambda_t^2}{4\pi^2} + \cdots \right) - \frac{\lambda_x}{8\pi^2} \left[\Lambda^2 - m^2 \ln(c + \frac{\Lambda^2}{m^2}) \right] \right]$	For $D_t = 1$
	$+\underbrace{\left(f_1^{(SM)}+f_1^{(\varphi)}\right)\ln\left(\frac{\Lambda}{\mu}\right)}^{1-\operatorname{loop}\varphi}$	$\Lambda \sim 60$ TeV, $m \sim 20$ TeV

For $D_t = 1$ (no fine-tuning) and $m_h = 130$ GeV:

- SM: $\Lambda \simeq 1$ TeV, while
- SM $+ \varphi$: $\Lambda \simeq 60$ TeV for $\lambda_x = \lambda_x(m)$ (fine tuning!) with m = 20 TeV,
- The range of (m_h, Λ) space corresponding to a given D_t is expected to be larger when φ is added to the SM, if $\lambda_x = \lambda_x(m, m_h, D_t, \Lambda)$.

Dark Matter

- 1. V. Silveira and A. Zee, Phys. Lett. B 157, 191 (1985)
- 2. J. McDonald, Phys. Rev. D 50, 3637 (1994)
- 3. C. P. Burgess, M. Pospelov and T. ter Veldhuis, Nucl. Phys. B 619, 709 (2001)
- 4. H. Davoudiasl, R. Kitano, T. Li and H. Murayama, Phys. Lett. B 609, 117 (2005)
- 5. J. J. van der Bij, Phys. Lett. B **636**, 56 (2006)
- S. Andreas, T. Hambye and M. H. G. Tytgat, JCAP 0810, 034 (2008)

It is possible to find parameters Λ , λ_x and m such that both the hierarchy is ameliorated to the prescribed level and such that $\Omega_{\varphi}h^2$ is consistent with Ω_{DM} .

$$\varphi \varphi \to hh, W^+W^-, ZZ \quad \Rightarrow \quad \langle \sigma v \rangle = \frac{1}{8\pi} \frac{\lambda_x^2}{m^2}$$

The Boltzmann equation
$$\Rightarrow x_f \left(\equiv \frac{m}{T_f} \right) \simeq \ln \left[0.038 \frac{m_{Pl} m \langle \sigma v \rangle}{g_\star^{1/2} x_f^{1/2}} \right]$$

$$\Omega_{\varphi}h^2 \simeq 1.06 \cdot 10^9 \frac{x_f}{g_{\star}^{1/2} m_{Pl} \langle \sigma v \rangle \text{ GeV}}$$

$$x_f \simeq 30 \quad \Rightarrow \quad m \ge x_f T_c \simeq 8 \text{ TeV}$$

$$\Omega_{\varphi} = \Omega_{DM} \quad \Rightarrow \quad \lambda_x \sim \frac{1}{4} \, \frac{m}{\text{TeV}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad |\delta m_h^2| = D_t m_h^2 \quad \Rightarrow \quad m = m(\Lambda)$$

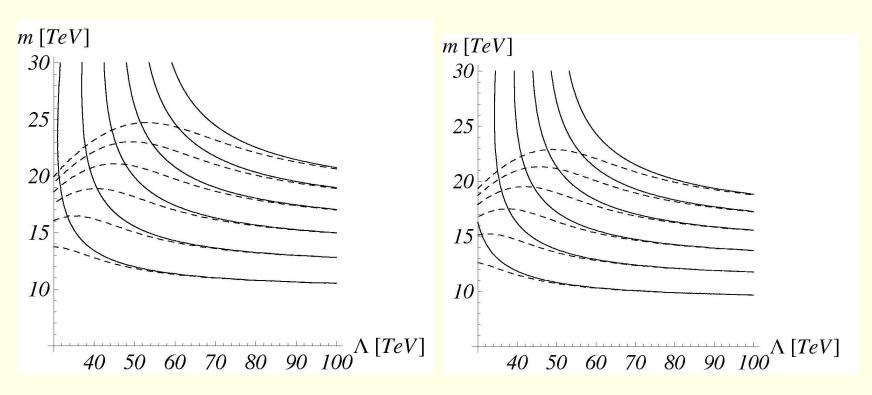


Figure 5: Plot of m as a function of the cutoff Λ when $D_t = 1$ and $\Omega_{arphi} = \Omega_{DM}$ at the 1σ level: $\Omega_{\varphi}h^2=0.114$ (left panel) and $\Omega_{\varphi}h^2=0.098$ (right panel); for $m_h = 130, 150, 170, 190, 210, 230 \,\, {
m GeV}$ (starting with the uppermost curve) and for c = +1solid curves and c = -1 (dashed curves).

Neutrino physics

$$\mathcal{L}_Y = -\bar{L}Y_l H l_R - \bar{L}Y_\nu \tilde{H} \nu_R - \frac{1}{2} \overline{(\nu_R)^c} M \nu_R - \varphi \overline{(\nu_R)^c} Y_\varphi \nu_R + \text{H.c.}$$

$$\mathbb{Z}_2: H \to H, \ \varphi \to -\varphi, \ L \to S_L L, \ l_R \to S_{l_R} l_R, \ \nu_R \to S_{\nu_R} \nu_R$$

The symmetry conditions $(S_i S_i^{\dagger} = S_i^{\dagger} S_i = 1)$:

$$S_L^{\dagger} Y_l S_{l_R} = Y_l, \quad S_L^{\dagger} Y_{\nu} S_{\nu_R} = Y_{\nu}, \quad S_{\nu_R}^T M S_{\nu_R} = +M, \quad S_{\nu_R}^T Y_{\varphi} S_{\nu_R} = -Y_{\varphi}$$

The implications of the symmetry:

$$S_{\nu_{R}}^{T}MS_{\nu_{R}} = +M \quad \Rightarrow \quad S_{\nu_{R}} = \pm 1, \qquad S_{\nu_{R}} = \pm \operatorname{diag}(1, 1, -1)$$

$$S_{
u_R} = \pm \mathbb{1} \ \ \, \Rightarrow \ \ \, Y_{arphi} = 0 \ \, ext{or} \ \, S_{
u_R} = \pm \operatorname{diag}(1,1,-1) \ \ \, \Rightarrow \ \ \, Y_{arphi} = \left(egin{array}{ccc} 0 & 0 & b_1 \ 0 & 0 & b_2 \ b_1 & b_2 & 0 \end{array}
ight)$$

$$S_L^{\dagger} Y_l S_{l_R} = Y_l \quad \Rightarrow \quad S_L = S_{l_R} = \operatorname{diag}(s_1, s_2, s_3), \quad |s_i| = 1$$

$$S_L^{\dagger} Y_{\nu} S_{\nu_R} = Y_{\nu} \quad \Rightarrow \quad 10 \text{ Dirac neutrino mass textures}$$

For instance the solution corresponding to $s_{1,2,3}=\pm 1$:

$$Y_{\nu} = \left(\begin{array}{ccc} a & b & 0 \\ d & e & 0 \\ g & h' & 0 \end{array}\right)$$

$$\mathcal{L}_m = -(\bar{n}M_n n + \bar{N}M_N N)$$

with the see-saw mechanism explaining $M_n \ll M_N$:

$$M_N \sim M$$
 and $M_n \sim (vY_
u) rac{1}{M} (vY_
u)^T$

where

$$u_L = n_L + M_D \frac{1}{M} N_L \qquad \text{and} \qquad \nu_R = N_R - \frac{1}{M} M_D^T n_R$$

$$Y_{\nu} = \begin{pmatrix} a & b & 0 \\ d & e & 0 \\ q & h' & 0 \end{pmatrix} \quad \Rightarrow \quad M_{D} = Y_{\nu} \frac{v}{\sqrt{2}} \quad \Rightarrow \quad M_{n}$$

To compare our results with the data, we use the following approximate lepton mixing matrix (tri-bimaximal lepton mixing) that corresponds to $\theta_{13}=0$, $\theta_{23}=\pi/4$ and $\theta_{12}=\arcsin(1/\sqrt{3})$:

$$U = \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} \end{pmatrix}$$

Writing the diagonal light neutrino mass matrix as

$$m_{\mathrm{light}} = \mathsf{diag}(m_1, m_2, m_3)$$

we find

$$M_n = U m_{\text{light}} U^T$$

$$\downarrow \downarrow$$

$$Y_{\nu} = \left(\begin{array}{ccc} a & b & 0 \\ -\frac{a}{2} & b & 0 \\ -\frac{a}{2} & b & 0 \end{array} \right) \quad \begin{array}{ccc} m_1 = -3a^2\frac{v^2}{M_1} \\ m_2 = -6b^2\frac{v^2}{M_2} \\ m_3 = 0 \end{array} \quad \text{and} \quad Y_{\nu} = \left(\begin{array}{ccc} a & b & 0 \\ a & -\frac{b}{2} & 0 \\ a & -\frac{b}{2} & 0 \end{array} \right) \quad \begin{array}{ccc} m_1 = -3b^2\frac{v^2}{M_2} \\ m_2 = -6a^2\frac{v^2}{M_1} \\ m_3 = 0 \end{array}$$

Does $Y_{\varphi} \neq 0$ imply $\varphi \rightarrow n_i n_j$ decays?

$$Y_{\nu} = \begin{pmatrix} a & b & 0 \\ d & e & 0 \\ g & h' & 0 \end{pmatrix}, Y_{\varphi} = \begin{pmatrix} 0 & 0 & b_1 \\ 0 & 0 & b_2 \\ b_1 & b_2 & 0 \end{pmatrix} \Rightarrow \varphi \to N_{1,2}^{\star} N_3 \to \underbrace{n_{1,2,3} h}_{N_{1,2}^{\star}} N_3$$

that can be kinematically forbidden by requiring $M_3 > m$.

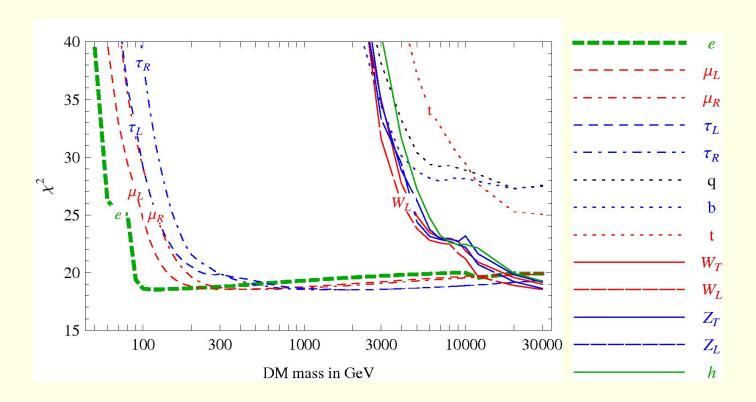


Figure 6: Combined fit of different DM annihilation channels to the PAMELA positron and PAMELA anti-proton data, from Cirelli, Kadastik, Raidal and Strumia, arXiv:0809.2409.

Summary and comments

- The addition of a real scalar singlet φ to the SM may ameliorate the little hierarchy problem (by lifting the cutoff Λ to 50-100 TeV range). Fine tuning remains.
- It also provides a realistic candidate for DM.
- Since $m \gtrsim 10$ TeV therefore φ can properly describe the PAMELA results both for e^+ and \bar{p} .
- The \mathbb{Z}_2 symmetry implies a realistic texture for the neutrino mass matrix.
- ullet arphi cannot be assumed to be responsible neither for inflation nor for dark energy.