Gravitational Production of Particles and its Difficulties

Bohdan Grzadkowski

University of Warsaw

based on:

- Aqeel Ahmed, BG, Anna Socha, Phys.Lett.B 831 (2022) 137201, e-Print: 2111.06065
- Aqeel Ahmed, BG, Anna Socha, e-Print: 2207.11218

AstroParticle Symposium 2022, Paris-Saclay University, Nov. 4th 2022, Orsay

The α -attractor T-model

$$\mathcal{L}_{\phi} = \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi - V(\phi)$$

$$/(\phi) = \Lambda^{4} \tanh^{2n} \left(\frac{|\phi|}{\sqrt{6\alpha} M_{\mathrm{Pl}}} \right)$$

$$\simeq \begin{cases} \Lambda^{4} & |\phi| \gg M_{\mathrm{Pl}} \\ \left| \Lambda^{4} \left| \frac{\phi}{M_{\mathrm{Pl}}} \right|^{2n} \right| & |\phi| \ll M_{\mathrm{Pl}} \end{cases},$$

where n > 0, $\sqrt{6\alpha} \lesssim 10$, $\Lambda \lesssim 1.6 \times 10^{16}$ GeV.

$$\ddot{\phi} + 3H\dot{\phi} + V_{,\phi}(\phi) = 0$$

$$H^2 = \frac{1}{3M_{\rm Pl}^2} \left[\frac{1}{2} \dot{\phi}^2 + V(\phi) \right]$$

where $H \equiv \dot{a}/a$ is the Hubble rate.

$$\phi(t) = \varphi(t) \cdot \mathcal{P}(t)$$

- $\cdot \mathcal{P}(t)$ is a quasi-periodic, fast-oscillating function,
- $\varphi(t)$ denotes a slowly-varying envelope:

$$\rho_{\phi} = V(\varphi) \simeq \Lambda^4 \left(\frac{\varphi}{M_{\rm Pl}}\right)^{2n}$$

$$\dot{\varphi}(t) = -\frac{3}{n+1}H\varphi(t) \quad \Rightarrow \quad \varphi(a) = \varphi_e\left(\frac{a_e}{a}\right)^{\frac{3}{n+1}}$$
$$\dot{\mathcal{P}} \simeq \pm \frac{m_{\phi}}{\sqrt{n(2n-1)}}\sqrt{1-|\mathcal{P}|^{2n}} \quad \Rightarrow \quad \mathcal{P}(a) = \left[\mathcal{I}_z^{-1}\left(\frac{1}{2n},\frac{1}{2}\right)\right]^{\frac{1}{2n}}$$

where $\mathcal{I}_z^{-1}(i,j)$ is an incomplete beta function $\mathcal{I}_z^{-1}(i,j)$. The period of the oscillations, \mathcal{T} ,

$$\mathcal{T} = \frac{\sqrt{4\pi}}{m_{\phi}} \sqrt{\frac{2n-1}{n}} \frac{\Gamma\left(\frac{1}{2n}\right)}{\Gamma\left(\frac{n+1}{2n}\right)} \text{ with } m_{\phi}^2 \equiv \frac{\partial^2 V(\phi)}{\partial \phi^2} \Big|_{\phi=\varphi} = 2n(2n-1) \frac{\Lambda^4}{M_{\rm Pl}^2} \left(\frac{\rho_{\phi}}{\Lambda^4}\right)^{\frac{n-1}{n}}$$
$$\mathcal{P}(t) = \sum_{k=-\infty}^{\infty} \mathcal{P}_k e^{-ik\omega t}$$

3

Interactions

SM

4

The Higgs portal

$$m_{h_0}^2 = g_{h\phi} M_{\rm Pl} \varphi \begin{cases} |\mathcal{P}|, & \mathcal{P}(t) > 0\\ 2|\mathcal{P}|, & \mathcal{P}(t) < 0 \end{cases}$$

$$v_{h} = \begin{cases} 0, & \mathcal{P}(t) > 0 \\ \sqrt{|m_{h_{0}}^{2}|/(2\lambda_{h})}, & \mathcal{P}(t) < 0 \end{cases}$$

Kinematic suppression

$$\dot{\rho}_{\phi} + \frac{6n}{n+1} H \rho_{\phi} = -\langle \Gamma_{\phi} \rangle \rho_{\phi}$$

$$\dot{\rho}_{\rm SM} + 4H \rho_{\rm SM} = \langle \Gamma_{\phi \to \rm SM \, SM} \rangle \rho_{\phi} - 2\langle E_X \rangle \overline{\left[S_{\rm SM} \right]} - \langle E_{h_0} \rangle \mathcal{D}_{h_0}$$

$$\dot{n}_X + 3Hn_X = \mathcal{D}_{\phi} + \mathcal{S}_{\phi} + \overline{\left[S_{\rm SM} \right]} + \mathcal{D}_{h_0}$$
with the Hubble rate $H^2 = \frac{1}{3M_{\rm Pl}^2} \left(\rho_{\phi} + \rho_{\rm SM} + \rho_X \right)$

$$\dot{\rho}_{\phi} + \frac{6n}{n+1} H \rho_{\phi} = -\langle \Gamma_{\phi} \rangle \rho_{\phi}$$

$$\dot{\rho}_{\rm SM} + 4H \rho_{\rm SM} = \langle \Gamma_{\phi \to \rm SM \, SM} \rangle \rho_{\phi} - 2\langle E_X \rangle S_{\rm SM} - \langle E_{h_0} \rangle \overline{\mathcal{D}_{h_0}}$$

$$\dot{n}_X + 3Hn_X = \mathcal{D}_{\phi} + S_{\phi} + S_{\rm SM} + \overline{\mathcal{D}_{h_0}}$$
with the Hubble rate $H^2 = \frac{1}{3M_{\rm Pl}^2} \left(\rho_{\phi} + \rho_{\rm SM} + \rho_X \right)$

11

$$\dot{\rho}_{\phi} + \frac{6n}{n+1} H \rho_{\phi} = -\langle \Gamma_{\phi} \rangle \rho_{\phi}$$
$$\dot{\rho}_{SM} + 4H \rho_{SM} = \langle \Gamma_{\phi \to SM SM} \rangle \rho_{\phi} - 2\langle E_X \rangle S_{SM} - \langle E_{h_0} \rangle \mathcal{D}_{h_0}$$
$$\dot{n}_X + 3Hn_X = \mathcal{D}_{\phi} + \overbrace{\mathcal{S}_{\phi}}^{\infty} + \mathcal{S}_{SM} + \mathcal{D}_{h_0}$$
with the Hubble rate $H^2 = \frac{1}{3M_{P1}^2} \left(\rho_{\phi} + \rho_{SM} + \rho_X\right)$

Non-instantaneous reheating

$$\rho_{\phi}(a) \overset{H \gg \Gamma_{\phi}}{\simeq} 3M_{\mathrm{Pl}}^{2}H_{e}^{2}\left(\frac{a_{e}}{a}\right)^{3(1+\overline{w})}$$

$$\rho_{\mathcal{R}}(a) = \frac{6M_{Pl}^{2}H_{e}\Gamma_{\phi}^{e}}{5-3\overline{w}-2\beta} \left[\left(\frac{a_{e}}{a}\right)^{\beta+3(1+\overline{w})/2} - \left(\frac{a_{e}}{a}\right)^{4}\right]$$

$$\rho \propto a^{0}$$

$$\rho \propto a^{-3(1+\overline{w})}$$
the dominant term
for $\beta \leq (n+4)/(n+1)$

$$A \propto a^{-\beta-3(1+\overline{w})/2}$$

$$\rho \propto a^{-4}$$

$$Hold = Hold = Hold$$

Gravitational DM production

$$\mathcal{L}_{\rm DM} = -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} + \frac{1}{2} m_X^2 X_\mu X^\mu + \mathcal{L}_{\rm int}$$

$$\mathcal{L}_{\rm int} = \frac{h_{\mu\nu}}{M_{\rm Pl}} \left(T_{\phi}^{\mu\nu} + T_X^{\mu\nu} + T_{\rm SM}^{\mu\nu} \right)$$

M. Garny <u>et al.</u>, arXiv:1511.03278 Y. Tang <u>et al.</u>, arXiv:1708.05138 M. Garny <u>et al.</u>, arXiv:1709.09688

Y. Mambrini <u>et al.</u>, arXiv:2102.06214 M.R. Haque <u>et al.</u>, arXiv:2112.14668 S. Clery <u>et al.</u>, arXiv:2112.15214

Gravitational DM production

Gravitational DM production

Heavy DM particles are produced

Summary

• The α -attractor T-model potential for the inflaton field has been adopted:

$$V(\phi) = \Lambda^4 \tanh^{2n} \left(\frac{|\phi|}{\sqrt{6\alpha} M_{\rm Pl}} \right) \simeq \begin{cases} \Lambda^4 & |\phi| \gg M_{\rm Pl} \\ & |\phi| \ll M_{\rm Pl} \end{cases}$$

• The reheating has been triggered by

$$\mathcal{L}_{int} = g_{h\phi} M_{\rm Pl} \phi |\mathbf{h}|^2$$

- It has been shown that both duration of reheating and evolution of radiation energy density, $\rho_{\mathcal{R}}$, are sensitive to the shape of the inflaton potential (*n*).
- The role of kinematical suppression emerging from \mathcal{L}_{int} has been investigated. It has been shown that the non-zero mass of the Higgs boson leads to the elongation of the reheating period, changes the $\rho_{\mathcal{R}}(a)$ and $\mathcal{T}(a)$ evolution, and favors reduced \mathcal{T}_{max} .

,

• It has been shown that purely gravitational perturbative production of DM is possible.

• Purely gravitation perturbative reheating needs to be investigated.

Problems to consider

1. Classical inflaton background (condensate)

$$\ddot{\phi} + 3H\dot{\phi} + V_{,\phi}(\phi) = 0$$

$$H^2 = \frac{1}{3M_{\rm Pl}^2} \left[\frac{1}{2} \dot{\phi}^2 + V(\phi) \right]$$

Assume:

$$\begin{aligned} \dot{\psi}(\phi,h) &= V_{\phi}(\phi) + V_{h}(h) + g_{h\phi}M_{\mathrm{Pl}}\phi|h|^{2} + \lambda_{h\phi}\phi^{2}|h|^{2} \\ & \Downarrow \\ \ddot{\phi} + 3H\dot{\phi} + V_{,\phi}(\phi,h) &= 0 \\ \ddot{h} + 3H\dot{h} + V_{,h}(\phi,h) &= 0 \\ H^{2} &= \frac{1}{3M_{\mathrm{Pl}}^{2}} \Big[\frac{1}{2}\dot{\phi}^{2} + \frac{1}{2}\dot{h}^{2} + V(\phi,h) \Big] \\ & \rho_{\phi} + \rho_{h}} \Big] \end{aligned}$$

Then

$$\phi(t) = \bar{\phi}(t) + \delta\phi(x), \qquad h(t) = \bar{h}(t) + \delta h(x)$$

with $\bar{\phi}(t)$, $\bar{h}(t)$ being classical homogeneous background while $\delta\phi(x)$, $\delta h(t)$ are quantum fluctuations ($\bar{\phi}(t)$, $\bar{h}(t) \rightarrow T_{\mu\nu}$)

2 Choice of the background metric: Minkowski versus FRWL?

$$g_{\mu\nu}(x) = \bar{g}_{\mu\nu}(x) + \frac{h_{\mu\nu}}{M_{\rm Pl}}(x) \qquad \bar{g}_{\mu\nu}(x) = \begin{cases} \eta_{\mu\nu} \\ g_{\mu\nu}^{FLRW}(t) \end{cases}$$

- graviton propagator
- \cdot contractions
- scalar, fermion and vector propagators

3 Renormalization of $T_{\mu\nu}$

The equation of motion for longitudinally-polarized modes

$$\tilde{\mathcal{X}}_{L}^{\prime\prime}$$
 + $\omega_{L}^{2}(\tau)\tilde{\mathcal{X}}_{L}$ = 0

where the time-dependent frequency ω_L^2 reads

$$\omega_L^2(\tau) \equiv k^2 + m_X^2 a^2 - \frac{k^2}{k^2 + m_X^2 a^2} \frac{a''}{a} + 3 \frac{k^2 m_X^2 a'^2}{(k^2 + m_X^2 a^2)^2}$$

For $max[am_X, aH_I] \ll k$

$$\begin{aligned} \frac{d\rho_L}{d\ln k} &= \frac{k^3}{4\pi^2 a^4} \left\{ \frac{k}{2} + \left(\frac{k^4}{(k^2 + a^2 m_X^2)^2} a^2 H_l^2 + k^2 + a^2 m_X^2 \right) \frac{1}{2k} \right\} \\ &= \frac{k^4}{4\pi^2 a^4} + \frac{k^2 \left(H_l^2 + m_X^2 \right)}{8\pi^2 a^2} - \frac{H_l^2 m_X^2}{4\pi^2} + \frac{3a^2 H_l^2 m_X^4}{8\pi^2 k^2} + \mathcal{O}\left(k^{-4} \right) \end{aligned}$$

The first three terms are divergent in the limit $k \to \infty$.

Cristian Moreno-Pulido and J. Sola Peracaula, "Running vacuum in quantum field theory in curved space-time: renormalizing $\rho_{\rm vac}$ without $\sim m^4$ terms", Eur. Phys. J. C (2020) 80:692

- \cdot adiabatic regularization procedure (ARP) introducing a scale M
- subtraction prescription (equivalent to subtraction of the Minkowski result)

• The cut-off:

$$k < \Lambda \equiv a_e H_I$$

Quantum interference in gravitational particle production

Edward Basso,^a Daniel J. H. Chung,^a Edward W. Kolb,^b and Andrew J. Long^a

^aDepartment of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA

^bKavli Institute for Cosmological Physics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA

^cDepartment of Physics and Astronomy, Rice University, Houston, TX 77005, USA

E-mail: ebasso@wisc.edu, danielchung@wisc.edu, rocky.kolb@uchicago.edu, andrewjlong@rice.edu

ABSTRACT: Previous numerical investigations of gravitational particle production during the coherent oscillation period of inflation displayed unexplained fluctuations in the spectral density of the produced particles. We argue that these features are due to the quantum interference of the coherent scattering reactions that produce the particles. We provide accurate analytic formulae to compute the particle production amplitude for a conformallycoupled scalar field, including the interference effect in the kinematic region where the production can be interpreted as inflaton scattering into scalar final states via graviton exchange.

$$S_{\phi \to XX}^{(2)} = \frac{\rho_{\phi}}{M_{\rm Pl}^2} \sum_{k} \mathcal{P}_{k}^{2n} \mathcal{M}_{V}(k) (2\pi)^4 \delta(k\omega - p_1^0 - p_2^0) \delta^{(3)}(\vec{p}_1 + \vec{p}_2),$$

$$\Downarrow$$

- No interference between k and $k' \neq k$.
- However, periodicity of $\mathcal{P}(t)$ is approximate.
- The decomposition of $\phi(t) = \varphi(t) \cdot \mathcal{P}(t)$ is not unique.

- 5 Bogoliubov versus Boltzmann. ⇒ Kunio Kaneta
- 6 Thermal corrections to $V(\phi, h)$.
- 7 RGE corrections to parameters of $V(\phi, h)$.

Limits on $g_{h\phi}$

• Perturbativity $(h_i\phi \rightarrow h_i\phi)$

$$\mathsf{g}_{h\phi}\lesssim \left(rac{\Lambda^2}{\phi M_{
m Pl}}
ight),$$

- The inflationary dynamics is dominated by the cosmological constant term $\sim \Lambda^4$ therefore

$$g_{h\phi} \lesssim \sqrt{\lambda_h} \left(rac{\Lambda^2}{\phi M_{
m Pl}}
ight),$$

• If $m_{h_0} > 3H_I/2$ the Higgs field fluctuations during inflation are strongly suppressed ensuring stability (J. R. Espinosa, et al. , [arXiv:1505.04825]), therefore

$$g_{h\phi}\gtrsim rac{3}{4}\sqrt{6lpha}\left(rac{\Lambda^2}{\phi M_{
m Pl}}
ight)^2\left(rac{\phi}{M}
ight).$$

$$6\cdot 10^{-11} \lesssim g_{h\phi} \lesssim 3\cdot 10^{-6}$$