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The gauge-Higgs unification, its advantages and difficulties

Fairlie, Manton, 1979, The gauge-Higgs unification: the Higgs boson as an extra
component of An, e.g. In5D, H = A4.

No experimental evidence for extra dimensions — compactification and
Kaluza-Klein modes in 4D:

Compactification on a circle S*
Compactification on the orbifold S! /Z5, a circle with identified points, y — —y
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The gauge-Higgs unification, its advantages and difficulties
F(z,y) = F(z,y + 2nR)
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where F, (x) are Kaluza-Klein modes.
Equation of motion (momentum along 5th D — mass in 4D):

n

n\ 2 "
("0, + 8%04)F(z,y) = 0 = {aﬂaﬂ+ (E) }F (0) =0 = my ==

n = 0 — massless modes: gravity & electromagnetism,

In| > 0 — massive modes: “high” scale physics.
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The gauge-Higgs unification, its advantages and difficulties

The strategy for 5D:

SM Higgs in the fundamental representation of SU(2). For A4 (adjoint) to have
iso-doublet components at least G = SU(3),, is required (a chance for unification
with SU(3).) :
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SU3): Ay =A% T, = A%,

HT B

The initial gauge group G broken to SU(2);, x U(1)y by the Scherk-Schwarz
mechanism .
Periodicity:

Ap(z,y + 27R) = TAp (2, y)T"

Orbifold boundary conditions:
Ay(z, —y) = —I—PAM(a:,y)PT Ag(z, —y) = —PA4(:1:,y)PT :

where T" and P are elements of a global symmetry group (e.g. gauge).
For SU(S) — SU(Q)L X U(l)yi

SU(2)L xU(1)y — U(1)gm by <AELO)> through 1-loop effective potential (the
Hosotani mechanism). Higgs boson interactions are predicted by the theory.
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The gauge-Higgs unification, its advantages and difficulties

Solution to the hierarchy problem (m?, oc A?):

The 5D gauge invariance and locality protects the Higgs mass from large quantum
corrections — in particular, no quadratic divergences appeatr.

The Higgs boson mass is calculable and finite (1- and 2-loop confirmed).



Non-standard boundary conditions

Motivation:
Generalization of the mechanism for CP violation found for 5D U (1) compactified on S!
(BG & J.Wudka PRL93:211603,2004, hep-ph/0401232) for the orbifold S /Z

Aflo) must exist !
{2
As(y+ L) = As(y) and  As(—y) = As(y)

Y

Au(—y) = —Au(y) since Fyy = 04A, —0uAs

Ap(—y) = —Au(y) and As(—y) = As(y)
Assume the standard fermionic orbifold transformation:
P(y) — P(—y) = ePysi(y)

Then
Dy [ON +igsqANTY — Py [ON +igs(—q) AN]Y



Non-standard boundary conditions

We need to switch the sign of the charge ¢ under orbifolding, so it suggests to adopt the
charge conjugation (¢ = C()7T):

The periodicity BC

Ap(y+ L) = Au(y), As(y + L) = Aa(y) ,(y + L) = e *¢(y)

The orbifold BC

Au(—y) = —Au(y), Aa(—y) = Aa(y) , (—y) = P59 (y)

L(¢Y, An) is invariant.
The consistency conditions are satisfied.
Majorana zero modes seem to be conceivable.

The 4D gauge field zero modes are disallowed by the BC, no 4D QED.



Non-standard boundary conditions

Periodicity
U(y+L) = TU(y)+ T 0(y)
B +UJAN(y)U1  (P1)
An(y+L) = {_U;LA%(y)Uz (P2)

where U, 2 are global elements of the gauge group.

7 r -+ . T, O
= A = T =
( —¥e ) ( r I~ ) ( 0 T4 )

The periodicity conditions:

A% (y + L) = Vo A% (3); x(y+ L) = Ax(y)

Requiring invariance of the kinetic term Wi~ D W gives the following conditions on the
acceptable BC:

A1, AT = Vo, ATA=1



Non-standard boundary conditions

Orbifold Parity

x(—y) = B x(y)
_ (—1)sNUJ AN ()01 (R1)
An(-y) = {(—1)18150%%@)02 (R2)

where sy = 0.4, (71,2 are global gauge transformations and
_T *

A% (—y) = (m1)°N 4V, AR (); x(—y) = —v5Bx(y)

=

The boundary conditions:

Requiring now the invariance of £ under the twist implies
BroB = Vyem, BIB=1

General solutions for A and B could be found in terms of U; and U;. (BG & J.Wudka,
PRD72:125012,2005, hep-ph/0501238)



Non-standard boundary conditions

Non-standard boundary conditions allow for:
bare fermion masses (relevant for the Hosotani-type CP violation)

Majorana fermionic KK modes

spontaneous CP violation through (AELO)) # 0
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Assumptions:

5D space-time
The high-energy gauge group is a Lie group
The low-energy group (massless vector bosons) is SU(2) x U(1)
Bulk gauge field, no brane kinetic terms, ...
E~ and H; are the root and Cartan generators of Lie algebra of the full theory

tr(HiHj) = 5ij7 tI’(E_I@Ea) = 5a,,8
Then the generators for the SM SU (2) sub-algebra must be of the form

1 2
JO — WQH J_|_ = QEQ J_ = (J+)T
(84

The SM hypercharge generator generates a U (1) subgroup and is of the form

Since the SM group is a product of SU(2) and U (1) therefore: y - o« =0
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Light scalar modes that can contribute to the mass matrix of light SU(2) x U (1) vector
bosons are associated with root generators Eg. Denote the scalar state which is an

eigenvector of Jy with the eigenvalue I that belongs to a multiplet of isospin

Imax(Imax + 1) by
=> vg|Eg)
3

then Jo |I) = I'|I) implies
a-B=|al?l

One can show that a single root-vector 3 can contribute to the sumin [I) = > 5 vg |Eg)
and that
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sin? Oy and p

The (canonically normalized) electroweak bosons correspond to the zero modes of the
gauge fields associated with the generators & - H, E+«, ¥y - H; (W9, W= and B).

Ay = WIEa+WiE_o+Wl& H+Buy -H+---
Ay = ¢Eg+¢'E_g

Assume that |I) is a member of a multiplet with maximum isospin I,ax and it is the
component that gets the (H) v/+/2, then the vector boson mass-terms (trFfM) in the
Lagrangian are

Lmass = {|O£| max max+1)_12]W+'W_ +(&,8WO+S’IBB)2}

which implies that the electroweak mixing angle is given by

A

sin? Oy =1 — (& - B)*

and the p parameter equals

, My Imax(Imax +1)
m?, cos? Oy 212

DN —
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However, the following condition must be satisfied

1 A m
—|I| = (&-B)? = —
= (a-B) =7

form = 0,1, 2,3, 4. Therefore only m = 1 and 4 are allowed, then sin? 0y, = %, 0!



Conclusions

The non-standard BCs offer
bare fermion masses (relevant for the Hosotani-type CP violation)

Majorana fermionic KK modes
CP violation on S'/Z5 (as well as for S*1)

5D space-time
The high-energy gauge group is a Lie group
The low-energy group (massless vector bosons) is SU(2) x U(1)

Only bulk gauge field, no brane kinetic terms, ...

then there is no way to satisfy p = 1 and sin? 6y ~ i.



Non-standard boundary conditions

Light Spectrum

The light gauge bosons will be denoted by A% and the light fermions by x (%), the light

modes associated with A ;y—4 behave as 4-dimensional scalars and will be denoted by
Op = A}A“V:LL. Using the y—independence of these modes we find

a b b
AL = VAl =VAL
" = Vpz0° = —V;pz0°,

L Ax(© = By ),

Light particles are associated with +1 eigenvalues of two matrices: +V and +V for the

gauge bosons; +V and —V for the scalars; and .4 and —~5 8 for the fermions.
The appropriate basis:



Non-standard boundary conditions

Example: single U (1) fermion with (P1 — R2) BC

. 1 0 _
P1: U(y+ L) =" *V(y) — U(y) = ﬁ Z wne%(%nJra)y/L

n=—oo

R2 : \II(—y) = 75¢C(y) = Y = ’75?70761

K-K modes are 4D Majorana fermions (Cy = vy97y2, Cs = 7173 = v5C5 = —iCly).

n = ( ~io2¢n ) (P1— R2)

Pn

Bare mass fermion term in the Lagrangian is allowed as under the orbifold twist
transformation, ¢» — 5, the 5D fermion mass term is invariant:

o — —PoY° = .
In addition, the kinetic term also generates a mass term:

O

L
/ dy¥ (iv*0s — M) U = )~ |:2Mg0,};g0n —
0

n=-—oo

(2mn + «)
L

(gogaggon + H.C.)}

(P1-R2)
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