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The gauge-Higgs unification, its advantages and difficulties

• Fairlie, Manton, 1979, The gauge-Higgs unification: the Higgs boson as an extra
component of AN , e.g. in 5D, H = A4.

• No experimental evidence for extra dimensions → compactification and
Kaluza-Klein modes in 4D:
• Compactification on a circle S1

• Compactification on the orbifold S1/Z2, a circle with identified points, y → −y
⇓

F (x, y) = ±F (x,−y)
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The gauge-Higgs unification, its advantages and difficulties

F (x, y) = F (x, y + 2πR)
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where Fn(x) are Kaluza-Klein modes.
Equation of motion (momentum along 5th D → mass in 4D):

(∂µ∂µ + ∂4∂4)F (x, y) = 0 ⇒
»

∂µ∂µ +
“ n

R

”2
–

Fn(x) = 0 ⇒ mn =
n

R

• n = 0 → massless modes: gravity & electromagnetism,

• |n| > 0 → massive modes: “high” scale physics.

L4D =

Z

L5D dy
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The gauge-Higgs unification, its advantages and difficulties

The strategy for 5D:

• SM Higgs in the fundamental representation of SU(2). For A4 (adjoint) to have
iso-doublet components at least G = SU(3)w is required (a chance for unification
with SU(3)c) :

SU(3) : AM ≡ Aa
MTa = Aa
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• The initial gauge group G broken to SU(2)L × U(1)Y by the Scherk-Schwarz
mechanism .
Periodicity:

AM (x, y + 2πR) = TAM (x, y)T †

Orbifold boundary conditions:

Aµ(x,−y) = +PAµ(x, y)P † A4(x,−y) = −PA4(x, y)P
† ,

where T and P are elements of a global symmetry group (e.g. gauge).
For SU(3) → SU(2)L × U(1)Y :

• SU(2)L × U(1)y → U(1)EM by 〈A(0)
4 〉 through 1-loop effective potential (the

Hosotani mechanism). Higgs boson interactions are predicted by the theory.
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• The initial gauge group G broken to SU(2)L × U(1)Y by the Scherk-Schwarz
mechanism .
Periodicity:

AM (x, y + 2πR) = TAM (x, y)T †

Orbifold boundary conditions:

Aµ(x,−y) = +PAµ(x, y)P † A4(x,−y) = −PA4(x, y)P
† ,

where T and P are elements of a global symmetry group (e.g. gauge).
For SU(3) → SU(2)L × U(1)Y : P = T = exp(iπλ3) = diag(−1,−1, 1)

• SU(2)L × U(1)y → U(1)EM by 〈A(0)
4 〉 through 1-loop effective potential (the

Hosotani mechanism). Higgs boson interactions are predicted by the theory.
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The gauge-Higgs unification, its advantages and difficulties

Solution to the hierarchy problem (m2
H ∝ Λ2):

• The 5D gauge invariance and locality protects the Higgs mass from large quantum
corrections → in particular, no quadratic divergences appear.

• The Higgs boson mass is calculable and finite (1- and 2-loop confirmed).
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Non-standard boundary conditions

Motivation:
Generalization of the mechanism for CP violation found for 5D U(1) compactified on S1

(BG & J.Wudka PRL93:211603,2004, hep-ph/0401232) for the orbifold S1/Z2

A
(0)
4 must exist !

⇓

A4(y + L) = A4(y) and A4(−y) = A4(y)

⇓

Aµ(−y) = −Aµ(y) since F4µ = ∂4Aµ − ∂µA4

Aµ(−y) = −Aµ(y) and A4(−y) = A4(y)

Assume the standard fermionic orbifold transformation:

ψ(y) → ψ(−y) = eiβγ5ψ(y)

Then
ψ̄γN [∂N + ig5qAN ]ψ → ψ̄γN [∂N + ig5(−q)AN ]ψ
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Non-standard boundary conditions

We need to switch the sign of the charge q under orbifolding, so it suggests to adopt the
charge conjugation (ΨC = C(ψ̄)T ):

The periodicity BC

Aµ(y + L) = Aµ(y) , A4(y + L) = A4(y) , ψ(y + L) = eiαψ(y)

The orbifold BC

Aµ(−y) = −Aµ(y) , A4(−y) = A4(y) , ψ(−y) = eiβγ5ψ
C(y)

• L(ψ,AN ) is invariant.

• The consistency conditions are satisfied.

• Majorana zero modes seem to be conceivable.

• The 4D gauge field zero modes are disallowed by the BC, no 4D QED.
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Non-standard boundary conditions

Periodicity

Ψ(y + L) = ΓΨ(y) + Υ∗Ψc(y)

AN (y + L) =

(

+U†
1AN (y)U1 (P1)

−U†
2A

T
N (y)U2 (P2)

,

where U1,2 are global elements of the gauge group.

χ ≡
 

Ψ

−Ψc

!

A ≡
 

Γ −Υ∗

Υ Γ∗

!

τa ≡
 

Ta 0

0 −T ∗
a

!

The periodicity conditions:

Aa
N (y + L) =

�

abA
b
N (y); χ(y + L) = Aχ(y)

Requiring invariance of the kinetic term Ψ̄iγNDNΨ gives the following conditions on the
acceptable BC:

AτaA† =

�

baτb, A†A =

�
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Non-standard boundary conditions

Orbifold Parity

χ(−y) = γ5B∗χ(y)

AN (−y) =

(

(−1)sN Ũ†
1AN (y)Ũ1 (R1)

(−1)1−sN Ũ†
2A

T
N (y)Ũ2 (R2)

,

where sN = δN,4, Ũ1,2 are global gauge transformations and

B ≡
 

−Γ̃ Υ̃∗

Υ̃ Γ̃∗

!

The boundary conditions:

Aa
N (−y) = (−1)δN,4 ˜ �

abA
b
N (y); χ(−y) = −γ5Bχ(y)

Requiring now the invariance of L under the twist implies

BτaB† = ˜ �

baτb, B†B =

�

General solutions for A and B could be found in terms of Ui and Ũi. (BG & J.Wudka,
PRD72:125012,2005, hep-ph/0501238)
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Non-standard boundary conditions

Non-standard boundary conditions allow for:

• bare fermion masses (relevant for the Hosotani-type CP violation)

• Majorana fermionic KK modes

• spontaneous CP violation through 〈A(0)
4 〉 6= 0
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sin2 θW and ρ

Assumptions:

• 5D space-time

• The high-energy gauge group is a Lie group

• The low-energy group (massless vector bosons) is SU(2) × U(1)

• Bulk gauge field, no brane kinetic terms, . . .

Eα and Hi are the root and Cartan generators of Lie algebra of the full theory

tr(HiHj) = δij , tr(E−βEα) = δα,β

Then the generators for the SM SU(2) sub-algebra must be of the form

J0 =
1

|α|2 α · H J+ =

√
2η

|α| Eα J− = (J+)†

The SM hypercharge generator generates a U(1) subgroup and is of the form

Y = ŷ · H

Since the SM group is a product of SU(2) and U(1) therefore: ŷ · α = 0
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sin2 θW and ρ

Light scalar modes that can contribute to the mass matrix of light SU(2) × U(1) vector
bosons are associated with root generators Eβ . Denote the scalar state which is an
eigenvector of J0 with the eigenvalue I that belongs to a multiplet of isospin
Imax(Imax + 1) by

|I〉 =
X

β

vβ

˛

˛Eβ

¸

then J0 |I〉 = I |I〉 implies

α · β = |α|2I

One can show that a single root-vector β can contribute to the sum in |I〉 =
P

β vβ

˛

˛Eβ

¸

and that

ŷ =
β − (α̂ · β)α̂

|β − (α̂ · β)α̂|
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sin2 θW and ρ

The (canonically normalized) electroweak bosons correspond to the zero modes of the
gauge fields associated with the generators α̂ · H, E±α, ŷ · H; (W 0,W± and B).

Aµ = W+
µ Eα +W−

µ E−α +W 0
µα̂ · H +Bµŷ · H + · · ·

A4 = φEβ + φ†E−β

Assume that |I〉 is a member of a multiplet with maximum isospin Imax and it is the

component that gets the 〈H〉 v/
√

2, then the vector boson mass-terms (trF 2
4µ) in the

Lagrangian are

Lmass =
v2

2

˘

|α|2[Imax(Imax + 1) − I2]W+ ·W− + (α̂ · βW 0 + ŷ · βB)2
¯

which implies that the electroweak mixing angle is given by

sin2 θW = 1 − (α̂ · β̂)2

and the ρ parameter equals

ρ ≡ m2
W

m2
Z cos2 θW

=
Imax(Imax + 1)

2I2
− 1

2
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sin2 θW and ρ

ρ = 1 =⇒ (I, Imax) =

„

1

2
,
1

2

«

, (2, 3),

„

15

2
,
25

2

«

, · · ·

However, the following condition must be satisfied

1

2
|I| = (α̂ · β̂)2 =

m

4

for m = 0, 1, 2, 3, 4. Therefore only m = 1 and 4 are allowed, then sin2 θW = 3
4
, 0!
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Conclusions

• The non-standard BCs offer
• bare fermion masses (relevant for the Hosotani-type CP violation)
• Majorana fermionic KK modes
• CP violation on S1/Z2 (as well as for S1)

• If
• 5D space-time
• The high-energy gauge group is a Lie group
• The low-energy group (massless vector bosons) is SU(2) × U(1)

• Only bulk gauge field, no brane kinetic terms, . . .

then there is no way to satisfy ρ = 1 and sin2 θW ' 1
4

.
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Non-standard boundary conditions

Light Spectrum

The light gauge bosons will be denoted by Aâ
µ and the light fermions by χ(0), the light

modes associated with AN=4 behave as 4-dimensional scalars and will be denoted by
φr̂ = Ar̂

N=4. Using the y−independence of these modes we find

Aâ
µ =

�

âb̂A
b̂
µ = ˜ �

âb̂A
b̂
µ,

φr̂ =

�

r̂ŝφ
ŝ = − ˜ �

r̂ŝφ
ŝ,

χ(0) = Aχ(0) = −γ5Bχ(0).

Light particles are associated with +1 eigenvalues of two matrices: +

�

and + ˜ �

for the

gauge bosons; +

�

and − ˜ �

for the scalars; and A and −γ5B for the fermions.
The appropriate basis:

B =

„ �
0

0 − �

«

, ˜ �

=

„ �

0
0 − �

«
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Non-standard boundary conditions

Example: single U(1) fermion with (P1 − R2) BC

P1 : Ψ(y + L) = eiαΨ(y) ⇒ Ψ(y) =
1√
L

∞
X

n=−∞

ψne
i(2πn+α)y/L

R2 : Ψ(−y) = γ5ψ
C(y) ⇒ ψn = γ5ψ

c
n

K-K modes are 4D Majorana fermions (C4 = γ0γ2, C5 = γ1γ3 ⇒ γ5C5 = −iC4).

ψn =

 

−iσ2ϕ∗
n

ϕn

!

(P1 − R2)

Bare mass fermion term in the Lagrangian is allowed as under the orbifold twist
transformation, ψ → γ5ψc, the 5D fermion mass term is invariant:

ψ̄ψ → −ψ̄cψc = ψ̄ψ .

In addition, the kinetic term also generates a mass term:

Z L

0
dyΨ̄

`

iγ4∂4 −M
´

Ψ =
∞
X

n=−∞

»

2Mϕ†
nϕn − (2πn+ α)

L

“

ϕT
nσ2ϕn + H.c.

”

–

(P1−R2)
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