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i) The hierarchy problem.

ii) CP is violated spontaneously in 5D QED compactified on a circle.

iii) How to generalize the above mechanism for an orbifold?

2. General properties of 5-dimensional gauge theories:
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ii) options for CP violation: explicit versus spontaneous,

iii) the general solutions for the consistent boundary conditions.
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1. Motivations: i) The hierarchy problem

• Tree-level problem: why scalar masses are so different, e.g. doublet-triplet splitting

problem in the GUT SU(5) model.

• The loop hierarchy problem: stabilization of the lightest scalar mass in the perturbation

expansion (quadratic divergences).

Solutions to the hierarchy problem:

• SUSY: provides a mechanism to stabilize the scalar mass in the perturbation expansion,

no quadratic divergences.

• Extra dimensions:

– Higgsless models:

∗ orbifold (e.g. S1/Z2): gauge symmetry breaking by periodicity or orbifold re-

flection twist operators (the Scherk-Schwarz mechanism),

∗ interval: gauge symmetry breaking by boundary conditions.

– The Higgs boson as an extra component of a higher-dimensional gauge field:

∗ the tree level mass forbidden by the gauge symmetry, so no tree-level hierarchy

problem,

∗ scalar mass calculable and finite at the loop level, no divergences, so no loop

hierarchy problem.
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1. Motivations: ii) CP violation in 5D QED on a circle

LQED = −1

4
F 2
MN +

∑
i

ψ̄i
(
iγMDM −Mi

)
ψi + Lgf ,

where FMN = ∂MAN − ∂NAM , DM = ∂M + ie5qiAM , qi denotes the charge of ψi,

γM = (γµ, γ4 = iγ5) for γ5 = iγ0γ1γ2γ3, and Lgf stands for a gauge-fixing term.

Boundary conditions:

AM (xµ, y + L) = AM (xµ, y),

ψ(xµ, y + L) = eiαψ(xµ, y) , where L = 2πR .

KK expansion:

AM (x, y) =
1√
L

∞∑
n=−∞

AM n(x) eiωny for ωn = 2πn/L

ψ(x, y) =
1√
L

∞∑
n=−∞

ψn(x) eiω̄ny for ω̄n = ωn + α/L .

• A4n become 4D scalars & A4n
CP−→ −A4n.

• 〈A4n〉 6= 0 =⇒ possibility of spontaneous violation of CP.
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Symmetries:

• The Lagrangian and the BC are invariant under the gauge U(1) symmetry

ψ(x, y)
U(1)−→ e−ie5qΛ(x,y)ψ(x, y),

AM (x, y)
U(1)−→ AM (x, y) + ∂MΛ(x, y) .

• Discrete transformations

4D 5D

xµ ψ Aµ xM ψ AM

P xµ γ0ψ Aµ x0,−xi, x4 γ0γ4ψ A0,−Ai, A4

C xµ (γ0γ2)(ψ̄)T −Aµ xM (γ1γ3)(ψ̄)T −AM
where γ4 = iγ5 with γ5 ≡ iγ0γ1γ2γ3.

The action is symmetric under the 5D CP transformations:

x0,4 CP−→ +x0,4 , x1,2,3 CP−→ −x1,2,3

A0,4 CP−→ −A0,4 , A1,2,3 CP−→ +A1,2,3

ψ
CP−→ ηγ0γ2ψ? , |η| = 1 ,
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Fermionic kinetic terms

∫ L

0

LQED dy =⇒ Lψ =
∑
n

ψ̄n [iγµ∂µ −M + iγ5µn]ψn ,

where µn ≡ [2πn+ (α+ eqLa)] /L, with e ≡ e5/
√
L the 4D gauge coupling.

A chiral rotation to diagonalize the fermion mass:

ψn → eiγ5θnψn , tan(2θn) =
µn

M
; |θn| ≤ π/4

The physical fermion masses: mn =
√
M2 + µ2

n.

Interactions

Lϕψ = −eqϕ
∑
n

ψ̄nΓnψn , Γn ≡ sin(2θn)− iγ5 cos(2θn) ,

where ϕ ≡ A4 0.
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ϕ(x) ≡ A4 0(x) is a new, physical, tree-level massless, 4D degree of freedom, Yukawa

couplings of which appear to be CP-violating.

AM (x, y)
U(1)−→ AM (x, y) + ∂MΛ(x, y)

Λ(x, y) =
1√
L

+∞∑
n=−∞

Λn(x)eiωny

⇓
A4 k

U(1)−→ A4 k + iωkΛk with ωk =
2πk

L

⇓
ϕ

U(1)−→ ϕ

⇓

The gauge symmetry does not protect mϕ = 0 !!!
⇓

ϕ will receive calculable finite mass at higher orders.
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The effective potential
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• Dimensional regularization for the d4p integral.

• Summation over an infinite tower of KK modes.

After dropping an irrelevant constant contribution:

Veff(a) =
1

2π2L4

∑
i

[
x2
iLi3(rie

−xi ) + 3xiLi4(rie
−xi ) + 3Li5(rie

−xi ) + H.c.
]
,

xi ≡ LMi, Ei = (αi + eqiLa)/L, ri = exp(iLEi), Lin(x) =

∞∑
s=1

xs

sn
.
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1. Motivations: iii) How to generalize the mechanism of CP violation for an

orbifold?

A4 0 must exist !

⇓

A4(y + L) = A4(y) and A4(−y) = A4(y)

⇓

Aµ(−y) = −Aµ(y) since F4µ = ∂4Aµ − ∂µA4

Aµ(−y) = −Aµ(y) and A4(−y) = A4(y)

Assume the standard fermionic orbifold transformation:

ψ(y) → ψ(−y) = eiβγ5ψ(y)

Then

ψ̄γN [∂N + ig5qAN ]ψ → ψ̄γN [∂N + ig5(−q)AN ]ψ

8



We need to switch the sign of the charge q, so it suggests to adopt the charge conjugation:

The periodicity BC

Aµ(y + L) = Aµ(y) , A4(y + L) = A4(y) , ψ(y + L) = eiαψ(y)

The orbifold BC

Aµ(−y) = −Aµ(y) , A4(−y) = A4(y) , ψ(−y) = eiβγ5ψ
C(y)

• L(ψ,AN ) is invariant.

• The consistency conditions are satisfied.

• Majorana zero modes seem to be conceivable.

• The gauge field zero modes are disallowed by the BC, no 4D QED.
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2. i) Periodicity, orbifolding and the consistency conditions

L = −1

4

∑
a

1

g2a
FaMNF

a MN + Ψ̄(iγNDN −M)Ψ ,

where DN = ∂N + ig5AN , AN = AaNT
a.

• xµ, µ = 0, . . . , 3 are the M4 coordinates, y the extra component: S1/Z2, 0 ≤ y ≤ L, y

identified with −y and M = 0, 1, 2, 3, 4.

• Topology: is M4 × (S1/Z2).

• Flat matric gNM = diag(1,−1,−1,−1,−1) with the last entry associated with S1/Z2.
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Periodicity

Ψ(y + L) = ΓΨ(y) + Υ∗Ψc(y)

AN (y + L) =

{
+U†1AN (y)U1 (P1)

−U†2ATN (y)U2 (P2)
,

where U1,2 are global elements of the gauge group.

χ ≡
(

Ψc

Ψ

)
, A ≡

(
Γ −Υ∗

Υ Γ∗

)

in terms of which the fermionic periodicity conditions are simply

χ(y + L) = A∗χ(y) .

Requiring invariance of the kinetic term Ψ̄iγNDNΨ gives the following conditions on the

acceptable BC:

A†A = 1,
P1 : [τa,U1A] = 0

P2 : [τa,U2A] = 0 with

τa ≡
(

Ta 0

0 −T ∗a

)
, U1 ≡

(
U1 0

0 U∗1

)
, U2 ≡

(
0 U∗2
U2 0

)
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Orbifold Parity

χ(−y) = γ5B∗χ(y)

AN (−y) =

{
(−1)sN Ũ†1AN (y)Ũ1 (R1)

(−1)1−sN Ũ†2A
T
N (y)Ũ2 (R2)

,

where sN = δN,4, Ũ1,2 are global gauge transformations and

B ≡
(

−Γ̃ Υ̃∗

Υ̃ Γ̃∗

)
.

Requiring now the invariance of L under the twist implies

B†B = 1 ,
R1 : [τa, Ũ1B] = 0

R2 : [τa, Ũ2B] = 0 with

Ũ1 ≡
(

Ũ1 0

0 Ũ∗1

)
Ũ2 ≡

(
0 Ũ∗2
Ũ2 0

)
.
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Consistency Conditions

The periodicity and reflection transformations are not independent since

−y = [−(y + L)] + L and −(−y) = y, therefore

B = ABA , (1)

B2 = 1

for the fermions. For the Pi−Rj BC (i, j = 1, 2) the corresponding constraints on the gauge

bosons give (no sum over i and j)

[τa, ṼjViṼjV†i ] = 0 , (2)

[τa, Ṽ2
i ] = 0 ,

where V1 = U1, Ṽ1 = Ũ1 and V2 = U∗2 , Ṽ2 = Ũ∗2 .

These conditions imply that ṼjViṼjV†i and Ṽ2
i belong to the center of the group. If the

representation generated by {τa} is split into its irreducible components, the projection of

these matrices onto each irreducible subspace must be proportional to the unit matrix as a

consequence of the Schur’s lemma.
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2. ii) Options for CP violation: explicit versus spontaneous

Under CP we obtain

χ
CP−→ γ0γ4Dχ ≡ γ0γ4

(
0 −1

1 0

)
χ

while the gauge fields transform as

Ai
CP−→+ATi , A0,4

CP−→−AT0,4 ,

where i = 1, 2, 3.

In order to conserve CP we need to satisfy:

• Γ,Υ, Γ̃, Υ̃ real,

• 〈A4〉 = 0.
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2. iii) The general solutions for the consistent boundary conditions.

For the real or pseudoreal representation generators satisfy

T
(r̄)
a =

[
−T (r)

a

]∗
= ST

(r)
a S† ,

for some unitary matrix Su that is (anti)symmetric for (pseudo)real representations.

The following comments originate from the general solution for the consistent boundary

conditions:

• The matrices Γ, Υ, Γ̃ and Υ̃ do not mix ψr and ψs unless r is equivalent to s or s̄.

• For the BC P1 and R1 (P2 and R2), in the subspace spanned by all multiplets in the

same complex irreducible representation r, the matrices Υ and Υ̃ (Γ and Γ̃) vanish. In

contrast, Γ and Γ̃ (Υ and Υ̃) are direct products of unitary rotation in flavor indices

and global gauge transformation in gauge indices.

• In the subspace spanned by all multiplets carrying the same (pseudo) real irreducible

representation r in general Υ (Υ̃) and Γ (Γ̃) are non-zero.
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3. Properties of zero modes

(1−A∗)χ0 = 0 (1− γ5B∗)χ0 = 0 .

where

χ(x, y) =
∑

χn(x)vn(y) χ0 =

(
ζc

ζ

)

(1− Γ) ζL = Υ∗ (ζR)c
(
1+ Γ̃

)
ζL = −Υ̃∗ (ζR)c

ΥζL = (Γ∗ − 1) (ζR)c Υ̃ζL =
(
Γ̃∗ − 1

)
(ζR)c .

The standard strategy:

Υ = Υ̃ = 0 =⇒
{

Γ = 1, Γ̃ = +1 ζL = 0

Γ = 1, Γ̃ = −1 ζR = 0
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The generalized Majorana 4D condition

ζ = NC4(ζ̄)T ,

where C4 is the 4D charge conjugation operator (C4 = γ0γ2 while the 5D one is C5 = γ1γ3.

Note that γ5C5 = −iC4.), and N acts on flavor and gauge indices. Then

ζ =

(
Nσ2ϕ∗

ϕ

)
,

where ϕ denotes a 2-component spinor. Consistency of this expression requires NN∗ = 1.

For the Majorana spinor ζ, the zero-mode conditions become

(1− Γ)ϕ+ iΥ∗σ2ϕ∗ = 0 , (N∗Γ− Γ∗N∗)ϕ = 0 , (N∗Υ∗ −ΥN)ϕ∗ = 0

(N + iΥ̃∗)σ2ϕ∗ − Γ̃ϕ = 0 , (N∗Γ̃ + Γ̃∗N∗)ϕ = 0 , (N∗Υ̃∗ + Υ̃N)ϕ∗ = 0 .

It is useful to illustrate the above conditions by certain special cases:

• If Γ̃ = 0 then there is always a Majorana zero mode with N = −iΥ̃†. This case is

illustrated by the BC (P1−R2) for a single Abelian fermion with N = −i.
• If Υ̃ = 0, Γ∗ 6= 1 and Υ is invertible (so charge conjugated field appears in the periodicity

BC) then again there exists a Majorana zero mode for N = −iΥ−1(1− Γ∗)Γ̃∗. For an

Abelian model this case requires more than one flavor.
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The gauge invariance of the zero-mode sector

For y-independent Ω and for non-complex representations the BC are preserved by gauge

transformations that obey

P1 : [U1,Ω] = 0 R1 : [Ũ1,Ω] = 0

P2 : [S† · U2,Ω] = 0 R2 : [S† · Ũ2,Ω] = 0 ,

Let us consider SU(2) gauge theory with a single doublet of fermions, adopt the P1−R1 BC

and choose

Γ = σ3 Υ = 0 U1 = iσ3

Γ̃ = 1 Υ̃ = 0 Ũ1 = 1 ,
(3)

ω1(y) = −ω1(y + L) = +ω1(−y)
ω2(y) = −ω2(y + L) = +ω2(−y)
ω3(y) = +ω3(y + L) = +ω3(−y)

Zero-mode for ω1,2 is forbidden, whereas zero-mode for ω3 is allowed: SU(2) → U(1).

The zero-mode fermion obey

ζL = 0 (σ3 − 1) (ζR)c = 0 .

The zero-mode sector contains only the Aµ3 massless gauge bosons and a right-handed, charged

(and therefore massless), fermion.
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4. Conclusions

• We have considered a generic gauge theory in a 5-dimensional space compactified on

M4 × (S1/Z2), and studied the effects of a generalized set of boundary conditions that

allow for mixing between particles and anti-particles after a translation by the size of

the extra dimension or after an orbifold reflection.

• The general form of the periodicity and orbifold conditions that are allowed by consis-

tency requirements was found.

• General conditions for the presence of massless Kaluza-Klein modes were formulated.

Gauge symmetry of the zero-mode sector was determined. It was shown that if the orb-

ifold twist operation transforms particles into anti-particles then the zero-mode fermions

are 4-dimensional Majorana fermions.

• We have determined the conditions under which CP would be violated (explicitly) by

the BC as well as spontaneously, through a possible vacuum expectation value of the

fifth component of the gauge fields. It turns out that two Abelian fermions with (P1-R2)

boundary conditions lead to spontaneous CP violation through 〈A4〉 6= 0 (the Hosotani

mechanism). The U(1) gauge symmetry of the zero-mode sector is broken in that case.
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