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i) The hierarchy problem.
ii) CP is violated spontaneously in 5D QED compactified on a circle.

iii) How to generalize the above mechanism for an orbifold?

General properties of 5-dimensional gauge theories:
i) periodicity, orbifolding and the consistency conditions,
ii) options for CP violation: explicit versus spontaneous,

iii) the general solutions for the consistent boundary conditions.
Properties of zero modes: Majorana fermions, gauge symmetry.
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1. Motivations: i) The hierarchy problem

e Tree-level problem: why scalar masses are so different, e.g. doublet-triplet splitting
problem in the GUT SU(5) model.

e The loop hierarchy problem: stabilization of the lightest scalar mass in the perturbation

expansion (quadratic divergences).
Solutions to the hierarchy problem:

e SUSY: provides a mechanism to stabilize the scalar mass in the perturbation expansion,

no quadratic divergences.

e Extra dimensions:

— Higgsless models:
+ orbifold (e.g. S'/Z5): gauge symmetry breaking by periodicity or orbifold re-
flection twist operators (the Scherk-Schwarz mechanism),

x interval: gauge symmetry breaking by boundary conditions.

— The Higgs boson as an extra component of a higher-dimensional gauge field:

x the tree level mass forbidden by the gauge symmetry, so no tree-level hierarchy
problem,

x scalar mass calculable and finite at the loop level, no divergences, so no loop

hierarchy problem.



1. Motivations: ii) CP violation in 5D QED on a circle

1 — /.
LoED = _ZF]%“V + Z%’ (’WMDM — Mi) Vi +Lyg
i
where Fopyn = OnfAN — ONAn, Dy = Oy + tesq; Ang, q; denotes the charge of ;,

Ym = (Y, va = iys5) for 45 = iyPv1y2~3, and L, stands for a gauge-fixing term.

Boundary conditions:

Ap (et y+L) = Am(zh,y),
Yz, y+ L) = e"“Y(zt,y), where L =27R.

KK expansion:
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Y(x,y) = % Z Y (x)e“nY  for @p =wn +oa/L.

nN=—oo

o A4, become 4D scalars & A4p, ASLR —A4qn.

o (A4n)#0 = possibility of spontaneous violation of CP.



Symmetries:

e The Lagrangian and the BC are invariant under the gauge U(1) symmetry
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where v4 = iv5 with v5 = i79y1y2~3.
The action is symmetric under the 5D CP transformations:
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Fermionic kinetic terms
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where i, = [2mn + (o + eqLa)] /L, with e = e5/V/L the 4D gauge coupling.
A chiral rotation to diagonalize the fermion mass:

b — V500 tan(20,) = “M”; 10| < /4

The physical fermion masses: m, = 1/ M? + p2.

Interactions

L,y = —eqp Z Yulntn, TD'n =sin(20,) — iv5 cos(20,),

where ¢ = Ay0.



o(xr) = Aso(x) is a new, physical, tree-level massless, 4D degree of freedom, Yukawa

couplings of which appear to be CP-violating.
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The gauge symmetry does not protect m, = 0 !!!
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@ will receive calculable finite mass at higher orders.



The effective potential
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e Dimensional regularization for the d*p integral.
e Summation over an infinite tower of KK modes.

After dropping an irrelevant constant contribution:

1
Vet (a) = 5-2[4 E [:U,?Li3 (rie” 1) 4+ 3x;Lia(rie” ") + 3Lis(r;e” Ft) + H.c.} :
x; =LM;, FE;= (a;+eq;La)/L, 1r;=exp(iLFE;), Lin(x)= z
Sn
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1. Motivations: iii) How to generalize the mechanism of CP violation for an

orbifold?

Aso0 must exist !

U

Ag(y+ L) = Asg(y) and Ag(—y) = As(y)

Au(—y) = —Au(y) since Fyy = 044, — 0 A4

Ap(—y) = —Au(y) and  Ays(—y) = As(y)

Assume the standard fermionic orbifold transformation:

W(y) — P(—y) = ePys(y)

Then
DyN 0N +igsgAN]Y — Yy [On +igs(—q) AN]Y



We need to switch the sign of the charge g, so it suggests to adopt the charge conjugation:

The periodicity BC

Au(y+ L) = Au(y), As(y + L) = As(y) ,¥(y + L) = €Y (y)

The orbifold BC

Au(—y) = —Au(y), Aa(—y) = As(y) ,p(—y) = P59 (y)

e L(¢,An) is invariant.
e The consistency conditions are satisfied.

e Majorana zero modes seem to be conceivable.

e The gauge field zero modes are disallowed by the BC, no 4D QED.



2. i) Periodicity, orbifolding and the consistency conditions

1 1 _
L=-2) = FiyyFo N + B(iyN Dy — M),

4 g2

a
where Dy = On +1g5AN, ANy = A?VTOJ.

o z, 1 =0,...,3 are the M* coordinates, y the extra component: S1/Z>, 0 <y <L,y
identified with —y and M = 0,1, 2, 3, 4.

e Topology: is M* x (S1/Z3).

e Flat matric gy = diag(1l,—1,—1,—1, —1) with the last entry associated with S1/Zs.
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Periodicity

U(y+L) = Ty + T T y)

) +Ufanvmun (P

where U1 2 are global elements of the gauge group.

e r -Tr*
A =
Y T r*

<
1l

in terms of which the fermionic periodicity conditions are simply

x(y+L)=A"x(y).

Requiring invariance of the kinetic term Wiy Dy ¥ gives the following conditions on the
acceptable BC:

Pl: [1q,U1A]=0

ATA =1,
P2: [1q,U2A] =0 with
Tq 0 U 0 0 Us
T = , U = ! , Uz = 2
0o =T 0 Uf Uz 0
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Orbifold Parity

x(—y) = B x(y)
(—1)*NUT AN (y) 01
(-1 = sn T AL ()0

where sy = 0N 4, Ul,g are global gauge transformations and

Requiring now the invariance of £ under the twist implies

R1 : [Ta,z;llB] =0

B'B=1, -
R2 . [TQ,Z/[QB] — O
3 U, 0 - 0
U = - 2 = ~
0 Uy Us
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Consistency Conditions

The periodicity and reflection transformations are not independent since
—y=|—(y+ L)]+ L and —(—y) = y, therefore

B = ABA, (1)
B2 = 1

for the fermions. For the Pi— Rj BC (i, = 1, 2) the corresponding constraints on the gauge

bosons give (no sum over i and j)

[Taa vjvz]}jvj] =0, (2)
[Ta,f/?] =0,

where V1 = U1, 1}1 21;11 and Vo = U, \}2 =L~{5
These conditions imply that ﬁjvii}jvj and 9@2 belong to the center of the group. If the
representation generated by {74} is split into its irreducible components, the projection of

these matrices onto each irreducible subspace must be proportional to the unit matrix as a

consequence of the Schur’s lemma.
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2. ii) Options for CP violation: explicit versus spontaneous

Under CP we obtain

CP 0 -1
X — 7074DXx = 7074 ) X
while the gauge fields transform as

CP T CcP T
Ai— + A; Apa— — Ag gy

where 1 =1, 2, 3.
In order to conserve CP we need to satisfy:
e I'T, T, T real,
o (Ay) =0.
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2. iii) The general solutions for the consistent boundary conditions.

For the real or pseudoreal representation generators satisfy
T = [—Ty)} = sT." st

for some unitary matrix S, that is (anti)symmetric for (pseudo)real representations.

The following comments originate from the general solution for the consistent boundary

conditions:
e The matrices I', T, [ and T do not mix Y, and g unless r is equivalent to s or s.

e For the BC P1 and R1 (P2 and R2), in the subspace spanned by all multiplets in the
same complex irreducible representation r, the matrices T and T (I" and f‘) vanish. In
contrast, I' and T (T and T) are direct products of unitary rotation in flavor indices

and global gauge transformation in gauge indices.

e In the subspace spanned by all multiplets carrying the same (pseudo) real irreducible

representation r in general T () and I' (I') are non-zero.
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3. Properties of zero modes

(1 —A%)x0o=0 (1 —v5B*)x0 =0.

where

¢
(1—-T)¢L =7 (Cr)" (14+T) ¢ =-T*(Cr)"
¢ = (I — 1) (Cr)° ¢ = (T —1) (Cr)°

The standard strategy:
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The generalized Majorana 4D condition

¢ =NCs(O)T,

where C} is the 4D charge conjugation operator (C4 = ~oy2 while the 5D one is C5 = v173.
Note that v5Cs = —iC4.), and N acts on flavor and gauge indices. Then

Noop*
%)

where ¢ denotes a 2-component spinor. Consistency of this expression requires NN* = 1.
For the Majorana spinor (, the zero-mode conditions become

(1 —De+il*o2p* =0, (N*T —T*N*)p=0, (N*T*—7TN)p*=0
(N +iY*)oop* =T =0, (N*IT4+T*N*)p=0, (N*T*+TN)p*=0.

It is useful to illustrate the above conditions by certain special cases:

e If I' = 0 then there is always a Majorana zero mode with N = —iYt. This case is
illustrated by the BC (P1 — R2) for a single Abelian fermion with N = —i.

e IfY =0,I* # 1 and Y is invertible (so charge conjugated field appears in the periodicity
BC) then again there exists a Majorana zero mode for N = —Y~1(1 — I'™)I"™*. For an
Abelian model this case requires more than one flavor.
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The gauge invariance of the zero-mode sector

For y-independent {2 and for non-complex representations the BC are preserved by gauge
transformations that obey

Pl: [U,Q] =0 Rl1: [U1,9]=0
P2: [ST.U2,Ql=0 R2: [st.U,,0] =0,

Let us consider SU(2) gauge theory with a single doublet of fermions, adopt the P1 — R1 BC
and choose

I'=03 T=0 U; =103

~ - (3)
I'=1 T=0 U; =1,

wi(y) = —wiy+L)= +wi(-y)
wa(y) = —wa(y+L)= +wa(-y)
w3(y) = Hws(y+L)= +ws(-y)
Zero-mode for w1 2 is forbidden, whereas zero-mode for ws is allowed: SU(2) — U(1).

The zero-mode fermion obey

(=0 (03—-1)(r)"=0.

The zero-mode sector contains only the Ag’ massless gauge bosons and a right-handed, charged
(and therefore massless), fermion.
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4. Conclusions

e We have considered a generic gauge theory in a 5-dimensional space compactified on
M* x (S1/Z2), and studied the effects of a generalized set of boundary conditions that
allow for mixing between particles and anti-particles after a translation by the size of

the extra dimension or after an orbifold reflection.

e The general form of the periodicity and orbifold conditions that are allowed by consis-

tency requirements was found.

e General conditions for the presence of massless Kaluza-Klein modes were formulated.
Gauge symmetry of the zero-mode sector was determined. It was shown that if the orb-
ifold twist operation transforms particles into anti-particles then the zero-mode fermions

are 4-dimensional Majorana fermions.

e We have determined the conditions under which CP would be violated (explicitly) by
the BC as well as spontaneously, through a possible vacuum expectation value of the
fifth component of the gauge fields. It turns out that two Abelian fermions with (P1-R2)
boundary conditions lead to spontaneous CP violation through (A4) # 0 (the Hosotani
mechanism). The U(1) gauge symmetry of the zero-mode sector is broken in that case.
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