• The Principle of Equivalence and the Principle of General Covariance

• Tensors

• Curved Spaces

• Hydrodynamics

• The Einstein’s Field Equations

• The Friedmann-Lemaître-Robertson-Walker Metric and the Friedmann Equations

• The Schwarzschild Solution
The Principle of Equivalence and the Principle of General Covariance

♦ The Principle of Equivalence

The equations of motion for a system of moving with non-relativistic velocities under the influence of forces $\vec{F}(\vec{x}_n - \vec{x}_m)$ and an external gravitational field \vec{g} reads

$$m_n \frac{d^2 \vec{x}_n}{dt^2} = m_n \vec{g} + \sum_m \vec{F}(\vec{x}_n - \vec{x}_m)$$

Perform the following non-Galilean space-time coordinate transformation

$$\vec{x}' = \vec{x} - \frac{1}{2} \vec{g} t^2 \quad t' = t \quad (1)$$

Then \vec{g} will be canceled by an inertial "force" so that the equation of motion in the new reference frame become

$$m_n \frac{d^2 \vec{x}_n'}{dt^2} = \sum_m \vec{F}(\vec{x}_n' - \vec{x}_m')$$

Remarks:
• The observer O who uses the coordinates t, \vec{x} and his freely falling colleague O' with coordinates t', \vec{x}' are going to detect the same laws of mechanics but O' will conclude that there is no gravitational interactions while O will say that there is one.

• The gravitational field was homogeneous and static. Had \vec{g} depended on \vec{x} or t, we would not have been able to eliminate it through (1).

The equivalence principle (strong):
At every space-time point in an arbitrary gravitational field it is possible to choose a "locally inertial coordinate system" such that, within a sufficiently small region of the point in question, the laws of nature take the same form as in unaccelerated coordinate system, consistent with the special relativity and in the absence of gravity.

Comments:
• "locally inertial coordinate system" means that the gravitational field in the vicinity of the point in question could be considered as static and homogeneous.
Equation of Motion

Consider a particle moving freely under the influence of purely gravitational forces. From the Principle of Equivalence (PE) we conclude that there is a freely falling system of coordinates ξ^α such that the equations of motion (em) read

$$\frac{d^2 \xi^\alpha}{d\tau^2} = 0 \quad \text{for} \quad d\tau^2 = \eta_{\alpha\beta} d\xi^\alpha d\xi^\beta \quad \text{with} \quad \eta_{\alpha\beta} = \text{diag}(1, -1, -1, -1)$$

Note that the special relativity em are: $f^\alpha = m \frac{d^2 \xi^\alpha}{d\tau^2}$. In any other coordinate system $x^\mu \ (\xi^\alpha = \xi^\alpha(x^\mu))$ the em would look as follows:

$$0 = \frac{d^2 x^\lambda}{d\tau^2} + \Gamma^\lambda_{\mu\nu} \frac{dx^\mu}{d\tau} \frac{dx^\nu}{d\tau} \quad \text{for} \quad \Gamma^\lambda_{\mu\nu} \equiv \frac{\partial x^\lambda}{\partial \xi^\alpha} \frac{\partial^2 \xi^\alpha}{\partial x^\mu \partial x^\nu}$$

where $\Gamma^\lambda_{\mu\nu}$ is the affine connection. The proper time could also be expressed in the new frame:

$$d\tau^2 = \eta_{\alpha\beta} \frac{\partial \xi^\alpha}{\partial x^\mu} \frac{\partial \xi^\beta}{\partial x^\nu} dx^\mu dx^\nu = g_{\mu\nu} dx^\mu dx^\nu$$

where $g_{\mu\nu} \equiv \eta_{\alpha\beta} \frac{\partial \xi^\alpha}{\partial x^\mu} \frac{\partial \xi^\beta}{\partial x^\nu}$ is the metric tensor.
Metric v.s. Connection
From the definition of the metric one can derive the relation between $g_{\mu\nu}$ and $\Gamma^\lambda_{\mu\nu}$:

$$\Gamma^\sigma_{\lambda\mu} = \frac{1}{2} g^{\nu\sigma} \left\{ \frac{\partial g_{\mu\nu}}{\partial x^\lambda} + \frac{\partial g_{\lambda\nu}}{\partial x^\mu} - \frac{\partial g_{\mu\lambda}}{\partial x^\nu} \right\}$$

where $g^{\nu\sigma}$ is defined through

$$g^{\nu\sigma} g_{\kappa\nu} = \delta^\sigma_\kappa$$

The Newtonian Limit
Consider a particle moving slowly in a weak static gravitational field. Then the general em

$$0 = \frac{d^2x^\lambda}{d\tau^2} + \Gamma^\lambda_{\mu\nu} \frac{dx^\mu}{d\tau} \frac{dx^\nu}{d\tau}$$

will be simplified by neglecting $d\vec{x}/d\tau$ with respect to $dt/d\tau$ and by erasing $dg_{\mu\nu}/dt$:

$$0 = \frac{d^2x^\lambda}{d\tau^2} + \Gamma^\lambda_{00} \left(\frac{dt}{d\tau} \right)^2$$

Expanding to the first order in $h_{\mu\nu}$

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \quad \text{with} \quad |h_{\mu\nu}| \ll 1$$
one gets
\[\frac{d^2 \vec{x}}{dt^2} = -\frac{1}{2} \nabla h_{00} \]
to be compared with the Newtonian result
\[\frac{d^2 \vec{x}}{dt^2} = -\nabla \varphi \]

Finally, we get \(g_{00} = 1 + 2\varphi \).

♠ The Principle of General Covariance

A physical equation holds in a general gravitational field if

- The equation holds in the absence of gravitation; i.e., it agrees with the laws of special relativity when \(g_{\mu\nu} = \eta_{\mu\nu} \) and \(\Gamma^\alpha_{\mu\nu} = 0 \).

- The equation is generally covariant; i.e. it preserves its form under a general coordinate transformation \(x \to x' \).

\[\downarrow \]

It is useful to adopt quantities which have well defined transformation properties, i.e. tensors
Tensors

Contravariant vector V^μ transforms under a coordinate transformation $x^\mu \to x'^\mu$ as

$$V'^\mu = V^\nu \frac{\partial x'^\mu}{\partial x^\nu}$$

Covariant vector U_μ transforms as

$$U'_\mu = \frac{\partial x^\nu}{\partial x'^\mu} U_\nu$$

<typename> Covariant Derivative</typename>

The connection

$$\Gamma^\lambda_{\mu\nu} \equiv \frac{\partial x^\lambda}{\partial \xi^\alpha} \frac{\partial^2 \xi^\alpha}{\partial x^\mu \partial x^\nu}$$

is not a tensor

$$\Gamma'^\lambda_{\mu\nu} = \frac{\partial x'^\lambda}{\partial x^\rho} \frac{\partial x^\tau}{\partial x'_\mu} \frac{\partial x^\sigma}{\partial x'_\nu} \Gamma^\rho_{\tau\sigma} + \frac{\partial x'^\lambda}{\partial x^\rho} \frac{\partial^2 x^\rho}{\partial x'_\mu \partial x'_\nu}$$ \(2\)

A derivative of a tensor,

$$V'^\mu = V^\nu \frac{\partial x'^\mu}{\partial x^\nu}$$
in general, does not yield another tensor

\[
\frac{\partial V'\mu}{\partial x'\lambda} = \frac{\partial x'\mu}{\partial x\nu} \frac{\partial x^\rho}{\partial x'\lambda} \frac{\partial V^\nu}{\partial x^\rho} + \frac{\partial^2 x'\mu}{\partial x^\nu \partial x^\rho} \frac{\partial x^\rho}{\partial x'\lambda} V^\nu
\] (3)

Combining (2) and (3) we can define the covariant derivative of a contravariant vector which is a tensor:

\[
V^\mu;\lambda \equiv \frac{\partial V^\mu}{\partial x^\lambda} + \Gamma^\mu_{\lambda\kappa} V^\kappa \quad \text{with} \quad V'^\mu;\lambda = \frac{\partial x'\mu}{\partial x^\nu} \frac{\partial x^\rho}{\partial x'\lambda} V^\nu;\rho
\]

Similarly for the covariant derivative of a covariant vector

\[
U_{\mu;\nu} = \frac{\partial U_{\mu}}{\partial x^\nu} - \Gamma^\lambda_{\mu\nu} U_{\lambda} \quad \text{with} \quad U'_{\mu;\nu} = \frac{\partial x^\rho}{\partial x'\mu} \frac{\partial x^\sigma}{\partial x'\nu} U_{\rho;\sigma}
\]

♠ Gradient, Curl, and Divergence

Properties:

For a scalar

\[
S_{;\mu} = \frac{\partial S}{\partial x^\mu}
\]

\[
U_{\mu;\nu} - U_{\nu;\mu} = \frac{\partial U_{\mu}}{\partial x^\nu} - \frac{\partial U_{\nu}}{\partial x^\mu}
\]
\[V^\mu_{;\mu} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^\mu} \{ \sqrt{g} V^\mu \} \quad \text{and} \quad \int d^4x \sqrt{g} V^\mu_{;\mu} = 0 \]

where \(g \equiv -\det(g_{\mu\nu}) \).

\[T^\mu_{;\mu} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^\mu} \{ \sqrt{g} T^\mu_{\mu} \} + \Gamma^\nu_{\mu\lambda} T^\mu_{\lambda} \]

For \(A^\mu_{\nu} = -A^\nu_{\mu} \) one gets:

\[A^\mu_{\nu;\mu} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^\mu} \{ \sqrt{g} A^\mu_{\nu} \} \quad (4) \]

\[A^\mu_{\nu;\lambda} + A^\nu_{\lambda;\mu} + A^\lambda_{\mu;\nu} = \frac{\partial A^\mu_{\nu}}{\partial x^\lambda} + \frac{\partial A^\nu_{\lambda}}{\partial x^\mu} + \frac{\partial A^\lambda_{\mu}}{\partial x^\nu} \quad (5) \]

Electrodynamics

The Maxwell equations:

\[\frac{\partial}{\partial x^\alpha} F^{\alpha\beta} = J^\beta \quad \text{and} \quad \frac{\partial}{\partial x^\alpha} F_{\beta\gamma} + \frac{\partial}{\partial x^\beta} F_{\gamma\alpha} + \frac{\partial}{\partial x^\gamma} F^{\alpha\beta} = 0 \quad (6) \]
To make (6) covariant we replace ordinary derivatives by covariant derivatives and the Minkowski metric $\eta_{\mu\nu}$ by a general metric $g_{\mu\nu}$ (note raising and lowering indices):

$$F_{\mu
u}^{;\mu} = J^\nu \quad \text{and} \quad F_{\mu\nu;\lambda} + F_{\nu\lambda;\mu} + F_{\lambda\mu;\nu} = 0$$

Using identities (4) and (5) we get

$$\frac{\partial}{\partial x^\alpha} \sqrt{g} F^{\alpha\beta} = \sqrt{g} J^\beta \quad \text{and} \quad \frac{\partial}{\partial x^\lambda} F_{\mu\nu} + \frac{\partial}{\partial x^\nu} F_{\lambda\mu} + \frac{\partial}{\partial x^\mu} F_{\nu\lambda} = 0$$
Define the local curvature of two-dimensional surface as

\[k = \frac{3}{\pi} \lim_{l \to 0} \left(\frac{2\pi l - c}{l^3} \right) \]

where \(c \) is the circumference of a circle of a radius \(l \) on the surface.

Figure 1: A circle on the surface of a sphere.
Figure 2: The parallel transport on the surface of a sphere.

Figure 3: Curved spaces.
Figure 4: Positive and negative curvatures: the sum of angles in a triangle.

♣ The Riemann-Christoffel curvature tensor
The simplest tensor made out of $g_{\mu\nu}$ and its first and second derivatives:

$$ R^\lambda_{\mu\nu\kappa} = \frac{\partial \Gamma^\lambda_{\mu\nu}}{\partial x^\kappa} - \frac{\partial \Gamma^\lambda_{\mu\kappa}}{\partial x^\nu} + \Gamma^\eta_{\mu\nu} \Gamma^\lambda_{\kappa\eta} - \Gamma^\eta_{\mu\kappa} \Gamma^\lambda_{\nu\eta} $$

♣ Commutation of covariant derivatives
\[V_{\mu;\nu;\kappa} - V_{\mu;\kappa;\nu} = -V_\sigma R^\sigma_{\mu\nu\kappa} \]

Similar formulas for other tensors:

\[T^\lambda_{\mu;\nu;\kappa} - T^\lambda_{\mu;\kappa;\nu} = T^\sigma_\mu R^\lambda_{\sigma\nu\kappa} - T^\lambda_{\sigma} R^\sigma_{\mu\nu\kappa} \]

Conclusion: covariant derivatives of tensors commute if the metric is equivalent to \(\eta_{\mu\nu} \).

♠ Properties

\[R_{\lambda\mu\nu\kappa} = \frac{1}{2} \left[\frac{\partial^2 g_{\lambda\nu}}{\partial x^\kappa \partial x^\mu} - \frac{\partial^2 g_{\mu\nu}}{\partial x^\kappa \partial x^\lambda} - \frac{\partial^2 g_{\lambda\kappa}}{\partial x^\nu \partial x^\mu} + \frac{\partial^2 g_{\mu\kappa}}{\partial x^\nu \partial x^\lambda} \right] + g_{\eta\sigma} \left[\Gamma^\eta_{\nu\lambda} \Gamma^\sigma_{\mu\kappa} - \Gamma^\eta_{\kappa\lambda} \Gamma^\sigma_{\mu\nu} \right] \]

for \(R_{\lambda\mu\nu\kappa} \equiv g_{\lambda\sigma} R^\sigma_{\mu\nu\kappa} \)

- **Symmetry:** \(R_{\lambda\mu\nu\kappa} = R_{\nu\kappa\lambda\mu} \)

- **Antisymmetry:** \(R_{\lambda\mu\nu\kappa} = -R_{\mu\lambda\nu\kappa} = -R_{\lambda\mu\kappa\nu} = +R_{\mu\lambda\kappa\nu} \)

- **Cyclicity:** \(R_{\lambda\mu\nu\kappa} + R_{\lambda\nu\kappa\mu} + R_{\lambda\kappa\mu\nu} = 0 \)
- The Bianchi identities: $R_{\lambda\mu\nu\kappa;\eta} + R_{\lambda\mu\kappa;\eta\nu} + R_{\lambda\mu\eta;\nu\kappa} = 0$

 Contracting λ and ν one gets (using $g_{\mu\nu;\lambda} = 0$)

 $$G_{\mu;\mu} = 0 \quad \text{for} \quad G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R$$

- $R_{\mu\kappa} \equiv g^{\lambda\nu} R_{\lambda\mu\nu\kappa}$ is the Ricci tensor ($R_{\mu\kappa} = R_{\kappa\mu}$)
- $R \equiv g^{\lambda\nu} g^{\mu\kappa} R_{\lambda\mu\nu\kappa}$ is the Ricci scalar

Def. A metric is equivalent to the Minkowski metric if there is a set of Minkowskian coordinates $\xi^\alpha(x)$ that everywhere satisfy the conditions

$$\eta^{\alpha\beta} = g^{\mu\nu}(x) \frac{\partial \xi^\alpha(x)}{\partial x^\mu} \frac{\partial \xi^\beta(x)}{\partial x^\nu}$$

Theorem:

The necessary and sufficient conditions for a metric $g_{\mu\nu}(x)$ to be equivalent to the Minkowski metric $\eta_{\mu\nu}$ are:

- $R^\lambda_{\mu\nu\kappa} = 0$

- At some point X, the matrix $g_{\mu\nu}(X)$ has three negative and one positive eigenvalues.
A perfect fluid is defined as having at each point a velocity \vec{v}, such that an observer moving with this velocity sees the fluid around him as isotropic. Suppose that we are in a frame of reference in which the fluid is at rest at some particular position and time. Then at this point the isotropy implies

$$\tilde{T}^{ij} = p \delta^{ij}, \quad \tilde{T}^{i0} = \tilde{T}^{0i} = 0, \quad \tilde{T}^{00} = \rho$$

where p and ρ are the pressure and energy density, respectively. After a Lorentz transformation to the lab frame we get the general form of the energy-momentum tensor for the perfect fluid

$$T^{\alpha\beta} = -p \eta^{\alpha\beta} + (p + \rho) U^\alpha U^\beta$$

where U^α is the velocity four-vector

$$U^0 = \frac{dt}{d\tau} = \gamma, \quad \vec{U} = \frac{d\vec{x}}{d\tau} = \gamma \vec{v} \quad \text{for} \quad \gamma = \frac{1}{\sqrt{1 - \beta^2}}$$
Note that $U_\alpha U^\alpha = 1$.

The "energy-momentum conservation" implies

$$0 = \partial_\beta T^{\beta\alpha} = \frac{\partial p}{\partial x^\alpha} + \frac{\partial}{\partial x^\beta} [(\rho + p)U^\alpha U^\beta]$$

The particle number conservation

$$0 = \frac{\partial N^\alpha}{\partial x^\alpha} = \frac{\partial}{\partial x^\alpha}(nU^\alpha)$$

where n is the particle density. Consider a fluid composed of point particles

$$I_M = - \sum_n m_n \int_{-\infty}^{\infty} dp \left[g_{\mu\nu}(x_n(p)) \frac{dx_n^\mu(p)}{dp} \frac{dx_n^\nu(p)}{dp} \right]^{1/2}$$

The energy momentum tensor is defined by

$$\delta I = -\frac{1}{2} \int d^4x g^{1/2} T^{\mu\nu} \delta g_{\mu\nu}$$
So for the action I_M we get

$$T^{\alpha\beta} = \sum_n \frac{p_n^\alpha p_n^\beta}{E_n} \delta^3(\vec{x} - \vec{x}_n)$$

- For non relativistic gas $\rho \simeq nm + \frac{3}{2}p$
- For highly relativistic gas $\rho \simeq 3p$

In the presence of gravity the energy-momentum tensor reads

$$T^{\alpha\beta} = -pg^{\alpha\beta} + (p + \rho)U^\alpha U^\beta$$

The energy-momentum conservation implies:

$$0 = T^{\alpha\beta}_{;\beta} = -\frac{\partial p}{\partial x_\beta}g^{\alpha\beta} + g^{-1/2}\frac{\partial}{\partial x^{\beta}}\left[g^{1/2}(\rho + p)U_\alpha U^\beta\right] + \Gamma^\alpha_{\beta\lambda}(p + \rho)U^\beta U^\lambda$$
The energy-momentum tensor for a system described by the action \(I = \int d^4x g^{1/2} \mathcal{L} \):

\[
\delta I = -\frac{1}{2} \int d^4x g^{1/2} T^{\mu\nu} \delta g_{\mu\nu}
\]

for the variation of the metric \(g_{\mu\nu}(x) \rightarrow g_{\mu\nu}(x) + \delta g_{\mu\nu}(x) \) such that \(\delta g_{\mu\nu}(x) \rightarrow 0 \) for \(|x^\lambda| \rightarrow \infty \). For instance for electrodynamics:

\[
\mathcal{L} = -\frac{1}{4} g^{\mu\nu} g^{\lambda\rho} F_{\mu\lambda} F_{\nu\rho}
\]

Then
\[
T^{\lambda\kappa} = \frac{1}{4} g^{\lambda\kappa} F_{\mu\nu} F^{\mu\nu} - F_{\mu}^{\lambda} F^{\mu\kappa}.
\]

The Einstein’s Field Equations:

\[
R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -8\pi G T_{\mu\nu}
\]
Contracting μ and ν one gets: $R = 8\pi GT^\lambda_\lambda$, hence

$$R_{\mu\nu} = -8\pi G \left(T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T^\lambda_\lambda \right)$$

Gravitational Radiation

The weak field approximation: $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ for $|h_{\mu\nu}| \ll 1$. First we calculate the connection expanding in powers of $h_{\mu\nu}$:

$$\Gamma^\sigma_{\lambda\mu} = \frac{1}{2} g^{\nu\sigma} \left\{ \frac{\partial g_{\mu\nu}}{\partial x^\lambda} + \frac{\partial g_{\lambda\nu}}{\partial x^\mu} - \frac{\partial g_{\mu\lambda}}{\partial x^\nu} \right\}$$

Then the Ricci tensor:

$$R_{\mu\kappa} = \frac{\partial \Gamma_{\mu\nu}^\nu}{\partial x^\kappa} - \frac{\partial \Gamma_{\mu\kappa}^\nu}{\partial x^\nu} + \Gamma^\eta_{\mu\nu} \Gamma^\nu_{\kappa\eta} - \Gamma^\eta_{\mu\kappa} \Gamma^\nu_{\nu\eta}$$

Finally we get

$$R_{\mu\nu} = \frac{1}{2} \left(\partial_\alpha \partial^\alpha h_{\mu\nu} - \partial_\lambda \partial_\mu h^\lambda_{\nu} - \partial_\lambda \partial_\nu h^\lambda_{\mu} + \partial_\mu \partial_\nu h^\lambda_{\lambda} \right) + \mathcal{O}(h^2)$$
Coordinate transformations of the form

\[x^\mu \rightarrow x'^\mu = x^\mu + \varepsilon^\mu(x) \]

is reflected in transformations of \(h_{\mu\nu} \) (it is assumed that \(\frac{\partial \varepsilon_\mu}{\partial x^\nu} \sim h_{\mu\nu} \)):

\[
\begin{align*}
g'^{\mu\nu} &= \frac{\partial x'^\mu}{\partial x^\lambda} \frac{\partial x'^\nu}{\partial x^\rho} g^{\lambda\rho} \quad \implies \quad h_{\mu\nu}(x) \rightarrow h'_{\mu\nu}(x) = h_{\mu\nu}(x) - \partial_\mu \varepsilon_\nu - \partial_\nu \varepsilon_\mu
\end{align*}
\]

(Note that \(g^{\mu\nu} = \eta^{\mu\nu} - h^{\mu\nu} + \mathcal{O}(h^2) \).)

It is convenient to adopt the harmonic coordinate conditions

\[
\Gamma^\lambda \equiv g^{\mu\nu} \Gamma^\lambda_{\mu\nu} = 0 \quad \iff \quad \partial_\kappa (g^{1/2} g^{\lambda\kappa}) = 0
\]

Up to the first order in \(h \): \(\partial_\mu h^{\mu\nu} = \frac{1}{2} \partial_\nu h^{\mu\mu} \). Then the equations of motion in vacuum \((R_{\mu\nu} = 0)\) simplify

\[\Box^2 h_{\mu\nu} = 0 \]

(Together with the gauge condition.)
Plane wave solutions:

\[h_{\mu\nu}(x) = e_{\mu\nu}e^{ik_\lambda x^\lambda} + e^*_{\mu\nu}e^{-ik_\lambda x^\lambda} \]

with \(k_\mu k^\mu = 0 \) and \(k_\mu e^\mu_\nu = \frac{1}{2} k_\nu e^\mu_\mu \) and \(e_{\mu\nu} = e_{\nu\mu} \). Using the residual gauge freedom \((e'_\mu_\nu \rightarrow e'_\mu_\nu = e_{\mu\nu} + k_\mu \varepsilon_\nu + k_\nu \varepsilon_\mu)\) one concludes that there are only two degrees of freedom (as it should be), e.g. \(e_{11} \) and \(e_{12} \) \((e_{22} = -e_{11})\), then the solution (gravitational plane waves) is

\[
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & e_{11} & e_{12} & 0 \\
0 & e_{12} & -e_{11} & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} e^{ik_\lambda x^\lambda} + \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & e^*_{11} & e^*_{12} & 0 \\
0 & e^*_{12} & -e^*_{11} & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} e^{-ik_\lambda x^\lambda}
\]
The Action Principle

The action for a charged material particles in the electromagnetic field and gravitational background

\[
I_M = - \sum_n m_n \int_{-\infty}^{\infty} dp \left[g_{\mu\nu}(x_n(p)) \frac{dx_n^\mu(p)}{dp} \frac{dx_n^\nu(p)}{dp} \right]^{1/2} \\
- \frac{1}{4} \int d^4x g^{1/2}(x) F_{\mu\nu}(x) F^{\mu\nu}(x) + \sum_n e_n \int_{-\infty}^{\infty} dp \frac{dx_n^\mu}{dp} A^\mu(x_n(p))
\]

The gravitational action

\[
I_{GR} = \frac{1}{16\pi G} \int g^{1/2}(x) R(x) d^4x
\]
The Friedmann-Lemaître-Robertson-Walker Metric and the Friedmann Equations

The Friedmann-Lemaître-Robertson-Walker (FLRW) metric describes a homogeneous, isotropic expanding or contracting universe. If the space-time is homogeneous and isotropic, then it is possible to choose coordinates such that the length element reads:

\[d\tau^2 \equiv g_{\mu\nu} dx^\mu dx^\nu = dt^2 - R^2(t) \left\{ \frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2 \right\} \]

where \(R(t) \) is the scale factor and \(k = \pm 1, 0 \).
The two sphere first

![Figure 5: The two sphere.](image)

\[x_1^2 + x_2^2 + x_3^2 = R^2 \]

\[d\hat{l}^2 = dx_1^2 + dx_2^2 + dx_3^2 \]

Eliminate the fictitious coordinate \(x_3 \):

\[x_1^2 + x_2^2 + x_3^2 = R^2 \implies x_1 dx_1 + x_2 dx_2 + x_3 dx_3 = 0 \]
\[
\begin{align*}
\frac{dx_3}{x_3} &= -\frac{x_1 dx_1 + x_2 dx_2}{x_3} = -\frac{x_1 dx_1 + x_2 dx_2}{(R^2 - x_1^2 - x_2^2)^{1/2}} \\
\downarrow \\
d\vec{l}^2 &= dx_1^2 + dx_2^2 + \frac{(x_1 dx_1 + x_2 dx_2)^2}{R^2 - x_1^2 - x_2^2} \\
\end{align*}
\]

Introduce new coordinates \((r', \theta)\): \(x_1 = r' \cos \theta, \quad x_2 = r' \sin \theta\).

Then

\[
\begin{align*}
dx_1^2 + dx_2^2 &= dr'^2 + r'^2 d\theta^2 \quad x_1 dx_1 + x_2 dx_2 = r' dr' \quad x_1^2 + x_2^2 = r'^2
\end{align*}
\]

In terms of \((r', \theta)\) we get

\[
d\vec{l}^2 = \frac{R^2 dr'^2}{R^2 - r'^2} + r'^2 d\theta^2
\]

Define \(r \equiv \frac{r'}{R}\), then

\[
d\vec{l}^2 = R^2 \left[\frac{dr^2}{1 - r^2} + r^2 d\theta^2 \right]
\]

Note similarity between that and the FLRW metric for \(k = 1\).

Another convenient coordinate system is \((\theta, \varphi)\):

\[
x_1 = R \sin \theta \cos \varphi \quad x_2 = R \sin \theta \sin \varphi \quad x_3 = R \cos \theta
\]
Then
\[d\vec{l}^2 = R^2(d\theta^2 + \sin^2 \theta d\varphi^2) \implies g_{ij} = R^2 \left(\begin{array}{cc} 1 & 0 \\ 0 & \sin^2 \theta \end{array} \right) \]

The volume:
\[V = \int d^2x g^{1/2} = \int_0^\pi d\theta \int_0^{2\pi} d\varphi g^{1/2} = R^2 \int_0^\pi d\theta \sin \theta \int_0^{2\pi} d\varphi = 4\pi R^2 \]

- Cosmological Principle \(\implies R = R(t) \) (homogeneity)

- As the sphere expands or contracts, the coordinates \((r, \theta)\) remain unchanged (the comoving coordinates)

- The physical distance scales with \(R(t)\)

- For the negative curvature: \(R \to iR \)

\[d\vec{l}^2 = R^2 \left[\frac{dr^2}{1 + r^2} + r^2 d\theta^2 \right] \]

♠ The two sphere \(\rightarrow \) the three sphere

\[d\vec{l}^2 = dx_1^2 + dx_2^2 + dx_3^2 + \frac{(x_1dx_1 + x_2dx_2 + x_3dx_3)^2}{R^2 - x_1^2 - x_2^2 - x_3^2} \]
\[x_1 = r' \sin \theta \cos \varphi \quad x_2 = r' \sin \theta \sin \varphi \quad x_3 = r' \cos \theta \]

After rescaling \(r' (r \equiv \frac{r'}{R}) \) one gets

\[
\vec{d\ell}^2 = R^2 \left[\frac{dr^2}{1 - r^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2 \right]
\]

In the spherical 4-d coordinates (see class)

\[
x_1 = R \sin \chi \sin \theta \cos \varphi \\
x_2 = R \sin \chi \sin \theta \sin \varphi \\
x_3 = R \sin \chi \cos \theta \\
x_4 = R \cos \chi
\]

\[
\vec{d\ell}^2 = R^2 [d\chi^2 + \sin^2 \chi (d\theta^2 + \sin^2 \theta d\varphi^2)] \implies g_{ij} = R^2 \text{ diag}(1, \sin^2 \chi, \sin^2 \chi \sin^2 \theta)
\]

The volume

\[
V = \int d^3 x g^{1/2} = 2\pi^2 R^3
\]
Introducing time we get the FLRW metric

\[d\tau^2 \equiv g_{\mu\nu} dx^\mu dx^\nu = dt^2 - R^2(t) \left\{ \frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2 \right\} \]

where \(R(t) \) is the scale factor and \(k = \pm 1, 0 \). Note that \(r \) is dimensionless.

Comments:

- The spatial coordinates \(r, \theta, \varphi \) form a comoving system in the sense that typical galaxies have constant spatial coordinates \(r, \theta, \varphi \).

- Since \(\Gamma_{tt}^\mu = 0 \) for the FLRW metric, it is easy to show (see class) that the trajectories \(\vec{x} = \text{const.} \) are geodesics. Thus the statement that a galaxy has constant \(r, \theta, \varphi \) is perfectly consistent with the supposition that galaxies are in free fall.
The recession velocity and the Hubble law

The proper (physical) distance to the object located at the coordinate \(r \) (defined along the surface of constant time \(dt = 0 \)) at the moment \(t \):

\[
D(t) = R(t) \int_0^r \frac{dr'}{(1 - kr'^2)^{1/2}}
\]

The recession velocity is related (by definition) to the change of \(D(t) \) caused by the evolution of \(R(t) \) for a constant comoving coordinate \(r \), therefore

\[
v_{\text{rec}}(t) = \dot{R}(t) \int_0^r \frac{dr'}{(1 - kr'^2)^{1/2}}
\]

So we get the Hubble law as

\[
v_{\text{rec}}(t) = \dot{R}(t) \int_0^r \frac{dr'}{(1 - kr'^2)^{1/2}} = \left(\frac{\dot{R}(t)}{R(t)} \right) \left(R(t) \int_0^r \frac{dr'}{(1 - kr'^2)^{1/2}} \right) = H(t)D(t)
\]

The recession velocity could be calculated (see class) as a function the time at which we would like to know the velocity, the time of emission \((t_{\text{emitt}})\) and detection \((t_{\text{observ}})\)
of the observed object (galaxy)

\[v_{\text{rec}}(t) = \dot{R}(t) \int_{0}^{r} \frac{dr'}{(1 - kr'^2)^{1/2}} = \dot{R}(t) \int_{t_{\text{emitt}}}^{t_{\text{observ}}} \frac{dt'}{R(t')} \]

and then assuming that the observation is performed now \((z = 0)\) the velocity could be expressed (see class) as a function the redshift \((z \leftrightarrow t_{\text{emitt}})\) of the observed object

\[v_{\text{rec}}(t) = \dot{R}(t) \int_{0}^{z} \frac{dz'}{H(z')} \]

where \(H(z')\) is a known function parameterized by \(\Omega\)’s of universe constituents. For \((\Omega_m, \Omega_\Lambda) = (0.3, 0.7)\) object with \(z > 1.46\) have \(v_{\text{rec}} > 1.\)

For farther reading see
The Hubble sphere and horizons

The Hubble sphere is defined as the surface that separates the region of the Universe beyond which the recession velocity exceeds the speed of light. So we have the following condition for the proper (physical) distance $D(t)$:

$$v_{\text{rec}} = 1 = \dot{D}(t) = \dot{R} \int_0^{r_{Hs}(t)} \frac{dr'}{(1 - kr'^2)^{1/2}} = \left(\frac{\dot{R}}{R} \right) \left(R \int_0^{r_{Hs}(t)} \frac{dr'}{(1 - kr'^2)^{1/2}} \right) = H(t) D_{Hs}(t)$$

where $r_{Hs}(t)$ are $D_{Hs}(t)$ are the coordinate and the distance to the sphere, respectively. So we get

$$D_{Hs}(t) = H^{-1}(t)$$

The particle horizon

The fundamental question in cosmology: what fraction of the Universe is in causal contact?

More precisely:

For comoving observer with coordinates $(r_0, \theta_0, \varphi_0)$ for what values of (r, θ, φ) would a light signal emitted at $t = 0$ reach the observer at, or before, time t? The particle horizon is a surface of the region from which a light signal emitted at $t = 0$ may reach an observer at $r_0 = 0$.
• homogeneity \Rightarrow we can choose $r_0 = 0$, while θ_0 and φ_0 are irrelevant constants

• for the light signal $d\tau^2 = 0$

\[
d\tau^2 = dt^2 - R^2(t)\frac{dr^2}{1 - kr^2} \quad \Rightarrow \quad \frac{dt'}{R(t')} = \pm \frac{dr}{\sqrt{1 - kr^2}}
\]

Emission at $(0, r_{ph}, \theta_0, \varphi_0)$, detection at $(t, 0, \theta_0, \varphi_0)$, hence

\[
\int_0^t \frac{dt'}{R(t')} = \int_0^{r_{ph}} \frac{dr}{\sqrt{1 - kr^2}} \quad \Rightarrow \quad r_{ph} = r_{ph}(t) \tag{7}
\]

Note that the signal is moving toward us, so $\frac{dr}{dt} < 0$.

The distance to the horizon at time t:

\[
d_{ph}(t) = \int_0^{r_{ph}(t)} g^{1/2}_{rr} dr = R(t) \int_0^{r_{ph}(t)} \frac{dr}{\sqrt{1 - kr^2}}
\]

Adopting (7) one gets

\[
d_{ph}(t) = R(t) \int_0^t \frac{dt'}{R(t')}
\]
• If \(d_{\text{ph}}(t) \) is finite, then our past light cone is limited by the particle horizon (boundary between the visible part of the Universe and the remaining from where the light has not reached us yet).

• the finiteness is determined by \(R(t) \) around \(t = 0 \), in the standard cosmology \(d_{\text{ph}}(t) \) is finite since \(\lim_{t \to 0} [t/R(t)] = 0 \) (\(R \to 0 \) slower than \(t \) as \(t \to 0 \)).

• The event horizon

The event horizon is a surface of the region from which a light signal emitted at \(t = t_1 \) may reach an observer at \(r_0 = 0 \) if the observer waits long enough.

\[
\int_{0}^{r_1} \frac{dr'}{(1 - kr'^2)^{1/2}} = \int_{t_1}^{\infty} \frac{dt'}{R(t')}
\]

The above allows to determine events \((t_1, r_1)\) that are observable if we waited infinitely long (this is applicable for universes which expands forever). If the integral on the rhs diverges then the whole universe is observable if we wait long enough \((r_1 \to \infty)\).

Then the distance at a given time \(t \) to the horizon reads

\[
D_{eh}(t, t_1) = R(t) \int_{0}^{r_1} \frac{dr'}{(1 - kr'^2)^{1/2}} = R(t) \int_{t_1}^{\infty} \frac{dt'}{R(t')}
\]
Usually the case with $t_1 = t$ is discussed, so in other words how far at the time t is the region beyond which we will never see signals emitted at the same time t, e.g. t could correspond to the present moment.
The most useful formula in cosmology

We will show that

\[
\frac{\lambda_{\text{emit}}}{R(t_{\text{emit}})} = \frac{\lambda_{\text{obs}}}{R(t_{\text{obs}})}
\]

Emission at \(t = t_1 \) and \(r = r_1 \), detection at \(t = t_0 \) and \(r = 0 \)

\[
\int_{t_1}^{t_0} \frac{dt'}{R(t')} = \int_{0}^{r_1} \frac{dr}{\sqrt{1 - kr^2}} = f(r_1)
\]

where the rhs is fixed (independent of time) as the comoving coordinate of the source remains unchanged. Consider two subsequent emissions at \(t = t_1 \) and \(t = t_1 + \delta t_1 \) (corresponding to two successive wave-crests), which were detected at \(t = t_0 \) and \(t = t_0 + \delta t_0 \). Then the rhs of (8) does not change, so we get

\[
\int_{t_1}^{t_0} \frac{dt'}{R(t')} = \int_{t_1 + \delta t_1}^{t_0 + \delta t_0} \frac{dt'}{R(t')} = \int_{t_1}^{t_0 + \delta t_0} \frac{dt'}{R(t')} - \int_{t_1}^{t_1 + \delta t_1} \frac{dt'}{R(t')} + \int_{t_0}^{t_0 + \delta t_0} \frac{dt'}{R(t')}
\]

\[
\downarrow
\]

\[
\int_{t_1}^{t_1 + \delta t_1} \frac{dt'}{R(t')} = \int_{t_0}^{t_0 + \delta t_0} \frac{dt'}{R(t')}
\]
Assume that $\delta t_i = \lambda_i \ (c = 1), \ i = 1, 2$, are small enough such that $R(t) \simeq \text{const.}$ in the integrand, so

$$\frac{\delta t_1}{R(t_1)} = \frac{\delta t_0}{R(t_0)}$$

\[\Downarrow\]

emission $\rightarrow \frac{\lambda(t_1)}{R(t_1)} = \frac{\lambda(t_0)}{R(t_0)} \leftarrow \text{detection}$
The Friedmann Equations

We will solve the Einstein’s equations

\[R_{\mu\nu} = -8\pi G \left(T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T^\lambda_\lambda \right) \]

for

\[T^{\alpha\beta} = -p g^{\alpha\beta} + (p + \rho) U^\alpha U^\beta \]

for \(U^t = 1 \) and \(U^i = 0 \) (this is a consequence of the cosmological principle). Using the FLRW metric

\[
d\tau^2 \equiv g_{\mu\nu} dx^\mu dx^\nu = dt^2 - R^2(t) \left\{ \frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right\}
\]

The metric \(g_{\mu\nu} \):

\[g_{tt} = 1, \quad g_{it} = 0, \quad g_{ij} = -R^2(t) \tilde{g}_{ij}(x) \]

with \(\tilde{g}_{rr} = (1 - kr^2)^{-1}, \tilde{g}_{\theta\theta} = r^2, \tilde{g}_{\phi\phi} = r^2 \sin^2 \theta \) and \(\tilde{g}_{ij} = 0 \) for \(i \neq j \).

The inverse metric \(g^{\mu\nu} \) (\(g^{\lambda\rho} g_{\rho\kappa} \equiv \delta^{\lambda}_\kappa \)):

\[g^{tt} = 1, \quad g^{it} = 0, \quad g^{ij} = -R^{-2}(t) \tilde{g}^{ij}(x) \]
with \(\tilde{g}^{rr} = (1 - kr^2) \), \(\tilde{g}^{\theta \theta} = r^{-2} \), \(\tilde{g}^{\varphi \varphi} = r^{-2} \sin^{-2} \theta \) and \(\tilde{g}^{ij} = 0 \) for \(i \neq j \). Then we calculate the affine connection from the metric

\[
\Gamma^\sigma_{\lambda \mu} = \frac{1}{2} g^{\nu \sigma} \left\{ \frac{\partial g_{\mu \nu}}{\partial x^\lambda} + \frac{\partial g_{\lambda \nu}}{\partial x^\mu} - \frac{\partial g_{\mu \lambda}}{\partial x^\nu} \right\}
\]

Non-zero entries (see class) are

\[
\begin{align*}
\Gamma^t_{ij} &= R \ddot{\tilde{R}} \tilde{g}_{ij} \\
\Gamma^i_{tj} &= \frac{\dot{R}}{R} \delta^i_j \\
\Gamma^i_{jk} &= \frac{1}{2} \tilde{g}^{il} \left\{ \frac{\partial \tilde{g}_{kl}}{\partial x^j} + \frac{\partial \tilde{g}_{jl}}{\partial x^k} - \frac{\partial \tilde{g}_{jk}}{\partial x^l} \right\} = \tilde{\Gamma}^i_{jk}
\end{align*}
\]

Then the Ricci tensor

\[
R_{\mu \kappa} = \frac{\partial \Gamma^\nu_{\mu \kappa}}{\partial x^\nu} - \frac{\partial \Gamma^\nu_{\mu \kappa}}{\partial x^\nu} + \Gamma^\eta_{\mu \nu} \Gamma^\nu_{\kappa \eta} - \Gamma^\eta_{\mu \kappa} \Gamma^\nu_{\nu \eta}
\]

The non-vanishing elements (see class) are:

\[
R_{tt} = 3 \frac{\dddot{R}}{\dot{R}}, \quad R_{ij} = \tilde{R}_{ij} - \tilde{g}_{ij} (R \dddot{R} + 2 \dot{R}^2)
\]
It is easy to show that $\tilde{R}_{ij} = -2k\tilde{g}_{ij}$ (see class), hence

$$R_{ij} = -\tilde{g}_{ij}(R\ddot{R} + 2\dot{R}^2 + 2k)$$

We also need the components of the rhs of the Einstein equations:

$$S_{\mu\nu} \equiv T_{\mu\nu} - \frac{1}{2}g_{\mu\nu}T^\lambda_\lambda = (\rho + p)U_\mu U_\nu - \frac{1}{2}(\rho - p)g_{\mu\nu}$$

for $T^{\mu\nu} = -pg^{\mu\nu} + (p + \rho)U^\mu U^\nu$ ($T^\alpha_\alpha = \rho - 3p$, as $g^{\mu\nu}g_{\nu\alpha} = \delta^\mu_\alpha$ and $U^\mu U_\mu = 1$).

So for $U^t = 1$ and $U^i = 0$ we have

$$R_{tt} = 3\frac{\ddot{R}}{R} \quad S_{tt} = \frac{1}{2}(\rho + 3p), \quad S_{it} = 0$$

$$R_{ij} = -\tilde{g}_{ij}(R\ddot{R} + 2\dot{R}^2 + 2k) \quad S_{ij} = \frac{1}{2}(\rho - p)R^2\tilde{g}_{ij}$$

Substituting $g_{\mu\nu}$ into the Einstein’s equations

$$R_{\mu\nu} = -8\pi G \left(T_{\mu\nu} - \frac{1}{2}g_{\mu\nu}T^\lambda_\lambda \right) = -8\pi GS_{\mu\nu}$$

One gets the celebted Friedmann’s equations.
\[R_{tt} = 3\frac{\dot{R}}{R} \]
\[R_{ij} = -\tilde{g}_{ij}(R\ddot{R} + 2\dot{R}^2 + 2k) \]
\[S_{tt} = \frac{1}{2}(\rho + 3p), \quad S_{it} = 0 \]
\[S_{ij} = \frac{1}{2}(\rho - p)R^2\tilde{g}_{ij} \]

Substituting \(g_{\mu\nu} \) into the Einstein's equations

\[
R_{\mu\nu} = -8\pi G \left(T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T^\lambda_\lambda \right) = -8\pi G S_{\mu\nu}
\]

One gets the Friedmann's equations

- \((0, 0)\) component:

\[3\ddot{R} = -4\pi G(\rho + 3p)R \] (9)

- \((i, i)\) component:

\[R\ddot{R} + 2\dot{R}^2 + 2k = 4\pi G(\rho - p)R^2 \] (10)

Eliminating \(\dddot{R} \) one gets the Friedmann equation which determines the evolution of the Hubble parameter \(H(t) \)

\[
\dot{R}^2 + k = \frac{8\pi G}{3} \rho R^2 \quad \Rightarrow \quad H^2(t) = \frac{8\pi G}{3} \rho - \frac{k}{R^2(t)} \quad \text{for} \quad H(t) \equiv \frac{\dot{R}}{R} \] (11)
Using (11) one can eliminate ρ from the second equation to obtain the acceleration equation

$$2\frac{\ddot{R}}{R} + \left(\frac{\dot{R}}{R}\right)^2 + \frac{k}{R^2} = -8\pi G p$$

To investigate the consequences of the energy-momentum conservation let’s recall the following identity

$$T^\mu_{\nu \mu} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^\mu} \{\sqrt{g} T^\mu_{\nu \mu}\} + \Gamma^\nu_{\mu \lambda} T^\mu_{\lambda \nu}$$

For the energy-momentum tensor $T^\mu_{\nu \mu} = -pg^\mu_{\nu} + (p + \rho) U^\mu U^\nu$ one gets for the "energy-momentum conservation" ($T^\mu_{\nu ; \mu} = 0$):

$$0 = T^\alpha_{\beta ; \beta} = -\frac{\partial p}{\partial x^\beta} g^\alpha_{\beta \beta} + g^{-1/2} \frac{\partial}{\partial x^\beta} \left[g^{1/2} (p + \rho) U^\alpha U^\beta \right] + \Gamma^\alpha_{\beta \lambda} (p + \rho) U^\beta U^\lambda$$ \hspace{1cm} (12)

Are the "energy-momentum conservation" (12) and the Friedmann equations independent?

Hint: the Bianchi identities.

It is easy to find (see class) that the time component of $T^\mu_{\nu ; \nu} = 0$ implies

$$\dot{p} R^3 = \frac{d}{dt} \left[R^3 (\rho + p) \right]$$
\[\dot{p}R^3 = \dot{R} \frac{d}{dR} (R^3 \rho) + \frac{d}{dt} (R^3 p) = \dot{R} \frac{d}{dR} (R^3 \rho) + 3R^2 \dot{R} p + R^3 \dot{p} \Rightarrow \frac{d}{dR} (\rho R^3) = -3pR^2 \]

(13)

The above equation could be rewritten in a more familiar way

\[d(\rho R^3) = -pd(R^3) \]

(14)

that comprise the first law of thermodynamics and has a simple interpretation: the rate of change of the total energy in a volume element of size \(V = R^3 \) is equal minus the pressure times the change of volume, \(-pdV\), which is the work responsible for the energy change. Note however, that in the case of cosmology that kind of reasoning is hardly applicable, since a change of energy \(d(\rho R^3) \) is \textit{not} equivalent to work done against a piston as such does not exist. Therefore in cosmology, although we can calculate change of energy using (14) but we can not say where is the energy coming from or going to. We must conclude that the energy of the fluid is not conserved.
If \(p = p(\rho) \) (the equation of state) is known then using (13) one can determine \(\rho = \rho(R) \). For instance:

- If \(p \ll \rho \) then
 \[
 \frac{d}{dR} (R^3 \rho) = 0 \quad \implies \quad \rho \propto R^{-3}
 \]
 Then the total energy contained in a volume \(V(t) \propto R^3(t) \) scales as
 \[
 E(t) \propto R^3(t) \cdot \rho(t) \propto R^3(t) \cdot R^{-3}(t) = \text{const}.
 \]
 So for the dust its energy is conserved.

- For ultra-relativistic fluid \(p = \frac{1}{3}\rho \), then
 \[
 \frac{d}{dR} (\rho R^3) = \frac{d\rho}{dR} R^3 + \rho 3R^2 = -3pR^2 = -3 \frac{1}{3} \rho R^2
 \]
 \[
 \downarrow
 \]
 \[
 \frac{d\rho}{\rho} = -4 \frac{dR}{R} \quad \implies \quad \rho \propto R^{-4}
 \]
Then the total energy contained in a volume \(V(t) \propto R^3(t) \) scales as

\[
E(t) \propto R^3(t) \cdot \rho(t) \propto R^3(t) \cdot R^{-4}(t) \propto R^{-1}(t)
\]

So for the radiation its energy is not conserved.

The fundamental equations are:

- The Friedmann equation

\[
\dot{R}^2 + k = \frac{8\pi G}{3} \rho R^2 \quad \implies \quad H^2(t) = \frac{8\pi G}{3} \rho - \frac{k}{R^2(t)} \quad \text{for} \quad H(t) \equiv \frac{\dot{R}}{R}
\]

- The acceleration equation:

\[
2\frac{\ddot{R}}{R} + \left(\frac{\dot{R}}{R}\right)^2 + \frac{k}{R^2} = -8\pi Gp
\]

- The "energy-momentum conservation" (the first law of thermodynamics):

\[
\dot{p}R^3 = \frac{d}{dt} \left[R^3(\rho + p)\right] \quad \implies \quad \frac{d}{dR} \left(\rho R^3\right) = -3pR^2
\]
However, only two of the above three equations are independent!
The Schwarzschild Solution

We are looking for a solution of the Einstein equations which are static and isotropic. So the metric does not depend on t but only on $|\vec{x}|$ while $d\tau^2$ may contain $\vec{x} \cdot d\vec{x}$:

$$d\tau^2 = F(r)dt^2 - 2E(r)dt \vec{x} \cdot d\vec{x} - D(r)(\vec{x} \cdot d\vec{x})^2 - C(r)d\vec{x}^2$$

for $r \equiv |\vec{x}|$. In the spherical coordinates

$$x^1 = r \sin \theta \cos \varphi \quad x^2 = r \sin \theta \sin \varphi \quad x^3 = r \cos \theta$$

we get

$$d\tau^2 = F(r)dt'^2 - 2rE(r)dt'dr - r^2D(r)dr^2 - C(r)\left[dr^2 + r^2d\theta^2 + r^2 \sin^2 \theta d\varphi^2\right]$$

Define new time: $t' \equiv t + \phi(r)$, so that

$$dt = dt' - \frac{d\phi}{dr}dr \quad \text{and} \quad dt^2 = dt'^2 - 2\frac{d\phi}{dr}dt'dr + \left(\frac{d\phi}{dr}\right)^2 dr^2$$
Then

\[d\tau^2 = F(r)dt'^2 - 2 \left[\frac{d\phi}{dr} F(r) + rE(r) \right] dt' dr + \]
\[+ \left[\left(\frac{d\phi}{dr} \right)^2 F(r) + 2rE(r) \frac{d\phi}{dr} - r^2 D(r) \right] dr^2 + \]
\[-C(r)[dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2] \]

Choose \(\phi(r) \) such that: \(\frac{d\phi}{dr} F(r) + rE(r) = 0 \), so \(\frac{d\phi}{dr} = -r \frac{E(r)}{F(r)} \) then

\[\left(\frac{d\phi}{dr} \right)^2 F(r) + 2rE(r) \frac{d\phi}{dr} - r^2 D(r) = -r^2 \left[D(r) + \frac{E^2(r)}{F(r)} \right] \equiv -G(r) \]

Finally we can redefine the radius: \(r'^2 \equiv C(r) r^2 \), hence

\[dr^2 = \frac{4r^2 C(r)}{[2rC(r) + r^2 C'(r)]^2} dr'^2 \text{ for } C'(r) \equiv \frac{dC(r)}{dr} \]

Then we obtain the *standard form* of the length element

\[d\tau^2 = B(r')dt'^2 - A(r')dr'^2 - r'^2(d\theta^2 + \sin^2 \theta d\phi^2) \]
for

\[B(r') \equiv F(r) \quad \text{and} \quad A(r') \equiv \left[1 + \frac{G(r)}{C(r)} \right] \left[1 + \frac{r}{2C(r)C'(r)} \right]^{-2} \]

We drop primes from now on, so the metric and its inverse read:

\[
\begin{align*}
g_{tt} &= B(r), & g_{rr} &= -A(r), & g_{\theta \theta} &= -r^2, & g_{\varphi \varphi} &= -r^2 \sin^2 \theta \\
g_{tt} &= \frac{1}{B(r)}, & g_{rr} &= -\frac{1}{A(r)}, & g_{\theta \theta} &= -\frac{1}{r^2}, & g_{\varphi \varphi} &= -\frac{1}{r^2 \sin^2 \theta}
\end{align*}
\]

Then we calculate the affine connection from the metric

\[
\Gamma^\sigma_{\lambda \mu} = \frac{1}{2} g^{\nu \sigma} \left\{ \frac{\partial g_{\mu \nu}}{\partial x^\lambda} + \frac{\partial g_{\nu \lambda}}{\partial x^\mu} - \frac{\partial g_{\mu \lambda}}{\partial x^\nu} \right\}
\]

Non-zero entries (see class) are:

\[
\begin{align*}
\Gamma^t_{tr} &= \Gamma^t_{rt} = \frac{1}{2} B' B^{-1} \\
\Gamma^r_{tt} &= \frac{1}{2} B' A^{-1} \\
\Gamma^\theta_{r\theta} &= \Gamma^\theta_{\theta r} = -r^{-1} \\
\Gamma^\varphi_{r\varphi} &= \Gamma^\varphi_{\varphi r} = r^{-1}
\end{align*}
\]

\[
\begin{align*}
\Gamma^r_{rr} &= \frac{1}{2} A' A^{-1} & \Gamma^r_{\theta \theta} &= -r A^{-1} & \Gamma^r_{\varphi \varphi} &= -r A^{-1} \sin^2 \theta \\
\Gamma^\theta_{\varphi \varphi} &= -\sin \theta \cos \theta & \Gamma^\varphi_{\theta \theta} &= \cot \theta
\end{align*}
\]
Then the Ricci tensor
\[R_{\mu \kappa} = \frac{\partial \Gamma^\nu_{\mu \nu}}{\partial x^\kappa} - \frac{\partial \Gamma^\nu_{\mu \kappa}}{\partial x^\nu} + \Gamma^\eta_{\mu \nu} \Gamma^\nu_{\kappa \eta} - \Gamma^\eta_{\mu \kappa} \Gamma^\nu_{\nu \eta} \]

The non-vanishing elements (see class) are:

\[R_{tt} = -\frac{B''}{2A} + \frac{1}{4A} \left(\frac{B'}{B} + \frac{A'}{A} \right) - \frac{1}{r} \frac{B'}{A} \]
\[R_{rr} = \frac{B''}{2B} - \frac{1}{4B} \left(\frac{B'}{B} + \frac{A'}{A} \right) - \frac{1}{r} \frac{A'}{A} \]
\[R_{\theta \theta} = -1 + \frac{r}{2A} \left(\frac{B'}{B} - \frac{A'}{A} \right) + \frac{1}{A} \]
\[R_{\phi \phi} = \sin^2 \theta R_{\theta \theta} \]
\[R_{\mu \nu} = 0 \text{ for } \nu \neq \mu \]

Now we are ready to look for solutions of the Einstein’s equations in the empty space
\[R_{\mu \nu} = 0 \]
It is sufficient to require $R_{rr} = R_{\theta\theta} = R_{tt} = 0$. Note also that

$$\frac{R_{rr}}{A} + \frac{R_{tt}}{B} = -\frac{1}{r A} \left(\frac{B'}{B} + \frac{A'}{A} \right)$$

Therefore $R_{\mu\nu} = 0$ implies that $\frac{B'}{B} + \frac{A'}{A} = 0$, so

$$A \cdot B = \text{const.}$$

The constant is determined by the boundary conditions: $g_{\mu\nu} \xrightarrow{r \to \infty} \eta_{\mu\nu}$. Since

$$d\tau^2 = B(r)dt^2 - A(r)dr^2 - r^2(d\theta^2 + \sin^2 \theta d\varphi^2)$$

that implies

$$B(r) \xrightarrow{r \to \infty} +1, \quad A(r) \xrightarrow{r \to \infty} +1, \quad \Rightarrow \quad A(r) = \frac{1}{B(r)}$$

Now it is sufficient to impose

$$R_{rr} = 0 \quad \text{and} \quad R_{\theta\theta} = 0$$
Eliminate \(A(r) \) through \(A = B^{-1} \left(A' = -\frac{B'}{B^2} \right) \), then

\[
R_{\theta\theta} = -1 + \frac{r}{2A} \left(\frac{B'}{B} - \frac{A'}{A} \right) + \frac{1}{A} = -1 + rB' + B
\]

\[
R_{rr} = \frac{B''}{2B} - \frac{1}{4B} \left(\frac{B'}{B} + \frac{A'}{A} \right) - \frac{1}{rA} = \frac{B''}{2B} + \frac{1}{rB} = \frac{R'_{\theta\theta}}{2rB}
\]

Therefore it is sufficient to require

\[
R_{\theta\theta} = 0
\]

\[
\downarrow
\]

\[
rB' + B = 1 \quad \Rightarrow \quad \frac{d}{dr}(rB) = 1 \quad \Rightarrow \quad B(r) = 1 + \frac{\text{const.}}{r}
\]

Again the boundary behavior determines the constant, since at large \(r \) the \((0,0)\) component of the metric should be related to the Newton’s gravitational potential:

\[
g_{tt} \sim \lim_{r \to \infty} 1 + 2\phi = 1 - 2 \frac{GM}{r}
\]
Therefore the constant \(= -2GM\), hence

\[
B(r) = \frac{1}{A(r)} = 1 - \frac{r_s}{r} \quad \text{for} \quad r_s = 2GM
\]

So, finally the solution for a space-time outside of a static massive body of mass \(M\):

\[
d\tau^2 = \left(1 - \frac{r_s}{r}\right)dt^2 - \frac{1}{1 - r_s/r}dr^2 - r^2(d\theta^2 + \sin^2\theta\,d\varphi^2)
\]

where \(r_s = 2GM\) is the Schwarzschild radius.

Comments:

- A test particle which orbits around a central mass on an elliptical orbit will undergo "perihelion motion", which means a rotation of the long axis of the ellipse with respect to distant stars. (Measured e.g. for Mercury is one the earliest triumphs of GR.)

- A passing light-ray which travels at the closest distance \(b\) from the central body will be deflected by an angle \(\Delta \theta = 4GM/b\). (Measured for a starlight near the obscured Sun during the eclipse.)
• Look at a photon \((d\tau^2 = 0) \), traveling radially in the Schwarzschild metric, then
\[
cdt = \frac{dr}{1 - r_s/r},
\]
so that the time to leave from \(r = r_s \) to an outside point becomes infinite. Thus, if an object is so dense that its radius is inside the Schwarzschild radius, the object does not emit any light - it is a black hole.

• In deriving the Schwarzschild metric, it was assumed that the metric was in the vacuum, spherically symmetric and static. In fact, the static assumption is stronger than required, as Birkhoff's theorem states that any spherically symmetric vacuum solution of Einstein's field equations is stationary; then one obtains the Schwarzschild solution. Birkhoff's theorem has the consequence that any pulsating star which remains spherically symmetric cannot generate gravity waves (as the region exterior to the star must remain static).