Homework problems #4b

1. For polarization tensors $\varepsilon_{\mu\nu}^{(a)}(k)$ of a massive graviton, write down the most general form for $\sum_{a} \varepsilon_{\mu\nu}^{(a)}(k) \varepsilon_{\lambda\sigma}^{(a)}(k)$ using symmetry repeatedly. For example, it must be invariant under the exchange $\{\mu\nu \leftrightarrow \lambda\sigma\}$. You might end up with something like

$$AG_{\mu\nu}G_{\lambda\sigma} + B(G_{\mu\lambda}G_{\nu\sigma} + G_{\mu\sigma}G_{\nu\lambda}) + C(G_{\mu\nu}k_{\lambda}k_{\sigma} + k_{\mu}k_{\nu}G_{\lambda\sigma}) + D(k_{\mu}k_{\lambda}G_{\nu\sigma} + k_{\mu}k_{\sigma}G_{\lambda\nu} + k_{\nu}k_{\sigma}G_{\mu\lambda} + k_{\nu}k_{\lambda}G_{\mu\sigma}) + Ek_{\mu}k_{\nu}k_{\lambda}k_{\sigma}$$

where

$$G_{\mu\nu} = \eta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{m^2}$$

and A, \dots, E are unknown constants. Apply $k^{\mu} \sum_{a} \varepsilon_{\mu\nu}^{(a)}(k) \varepsilon_{\lambda\sigma}^{(a)}(k) = 0$ and find out what that implies for the constants. Proceeding this way, derive

$$\sum_{a} \varepsilon_{\mu\nu}^{(a)}(k) \varepsilon_{\lambda\sigma}^{(a)}(k) = (G_{\mu\lambda}G_{\nu\sigma} + G_{\mu\sigma}G_{\nu\lambda}) - \frac{2}{3}G_{\mu\nu}G_{\lambda\sigma}$$

2. Assuming the following interaction Lagrangian between the symmetric tensor field $h_{\mu\nu}(x)$ and a source $T^{\mu\nu}(x)$:

$$\mathcal{L}_{\rm int} = \lambda T^{\mu\nu}(x) h_{\mu\nu}(x)$$

show that the energy of the field configuration created by a stationary source $T_{\mu\nu}(\vec{x})$ could be written as

$$E = \frac{\lambda^2}{2} \int d^3 \vec{x} d^4 y T^{\mu\nu}(x) D_{\mu\nu\sigma\rho}(x-y) T^{\sigma\rho}(y)$$

where $D_{\mu\nu\sigma\rho}(x)$ is a propagator of $h_{\mu\nu}(x)$. Find E for $T_{\mu\nu}(x) = m_1 \delta_{\mu 0} \delta_{\nu 0} \delta^{(3)}(\vec{x}) + m_2 \delta_{\mu 0} \delta_{\nu 0} \delta^{(3)}(\vec{x} - \vec{z})$.