DIFFERENTIAL FORMS
AND VECTOR ANALYSIS

We are used to work in the Cartesian coordinate system in which points of the space
are identified by values of x, y and z. Associated with this system is the basis of
three vectors

These three vectors have by definition unit lengths (we will use the symbol e, for
Cartesian and e; for other unit length vectors) and are mutually orthogonal:

(eile;) =ei-ej =6
They also satisfy the rule
€ X € = €, € = €y €y -
From these rules, the identity
€ijk€kim — il 5jm - 5im5jl )

and the possibility of writing any vector V as a linear combination V = eiV(iei) =
e; V' all vector identities can easily be proven. For example

Ax(BxC)=e; x (e xe,)ABC™
=e; X e e AIBIC™
= € €ik €klm A'Blc™
— €;(0,u0im — Ojm0i) A'B'C™
=e; B/ (A'C") — e;C7(A'BY)
=B(A-C)-C(A B).

Usually in this type of calculations one does not write explicitly the unit vectors e;.
This makes the notation more economical but is possible only either if the vectors are
decomposed into the Cartesian unit vectors e,, e,, e,, or (for vectors decomposed
into unit vectors e1(&), es(§), e3(€) associated with some curvelinear coordinates
£l €2, €3 - see below), or if no differentiations are involved: for instance, if in the
example above C(£) = €;(£)C* (&) and B(§) = €;,(£)0/9€", where the differential
operator acts on everything standing to the right of it, then one cannot drop the
vectors e;(§) because they too should get differentiated.

In numerous special problems of classical electrodynamics it proves more co-
nvenient to use coordinate systems &' other than the Cartesian ones. Curvelinear



systems are introduced by giving three functions

=z, &8,
y=y(&' &, &Y,
z=2(¢", &, &).

Associated with each point of the space are then three vectors

0 ox oy 0z ox®
=e,— t+e = =

i;(£) = oc ~ S ag T ag te: 26 eaa—gia

(the notation 9/9¢" used by differential geometers - rézniczkowych ometréw zwanych
gdzieniegdzie jeszcze rozniczkowymi skoczybruzdami - should not terrify you as we
will not use it). More precisely, with each point p (identified by the values of
the coordinates £') of the space M (which should be thought of as a differential
manifold M) there is associated a vector space T,M (the tangent space) in which
vectors attached to this point live. The vectors i;(£) form a basis of the vector space
T,M attached to the point p labeled by &', €2, 3. The vectors iy, iz, i3 are not the
same for different points p and for an arbitrary choice of the coordinates £¢ are not
of unit length and even not mutually orthogonal. Their scalar product defines the
metric tensor g;; (&)

G(6) = (i4]ij) = @a_er 3y@+ 0z 0z _ Ox" Ox"
PSI = T ggiog T ogiog T ogiog ~ ogi 0

Here we work in the Euclidean three dimensional space and the metric tensor g;;(§)
can be computed directly because we assume that the three functions z(¢), y(&),
z(€) are given.! As in the usual algebra, any vector V attached to the point labeled
by £ or a vector field V(€) can be written in the form

V(€)= i(§) V() = k() VH(E),

where V(’f) is the notation borrowed from my famous Algebra notes indicating expli-
citly that these are components of the vector V in the basis iy. The scalar product
of two such vectors (vector fields) V and W is then given by

(VIW) = (i;]ig) VIWF = g VIW* = V;IV?.

We have defined here covariant components V; = g;;V7 of the vector V (as opposed
to its contravariant components V). Of course V' = ¢g”V; where g¥ is the matrix
inverse with respect to the matrix g;;. Mathematically V}, are components of a linear

In General Relativity we do not assume this and try instead to reconstruct all features of the
space-time from the metric tensor which in turn is determined by the differential Einstein’s equ-
ations; the space-time is then in most cases non-Euclidean, that is it has a nonvanishing curvature
- a characteristic which is independent of the choice of the coordinate system.



form or, if V; depend on &7, components of a field of forms called also a differential
one-form V = V;(€)d€’ (see below for the definition of the basis forms d¢?), associated
with the vector V (with the vector field V(£)) which on all vectors attached to the
point £ acts through the scalar product

V()= (V).

All linear forms attached to the point & form a vector space (the adjoint vector
space with respect to the vector space of vectors attached to this point) for which
different bases can be chosen; the two natural bases will be defined below.

In the following we will be concerned with a special class of coordinate systems
- the Lamé systems - singled out by the orthogonality (in each point of the space)
of the three vectors i;. In such systems the metric tensor is diagonal:

gi;(&) = h?(f) dij hi =/ (ii]is) = [ii] -

h; are called the Lamé coefficients. Of course, g”(&) = h;?(€) 6. In the Lamé
systems, to make vector analysis easier, i.e. to make it similar to the vector analysis
in the Cartesian coordinates, one introduces three normalized vectors

_ iz 1
€ =77 = h; 1,
Bt .
(no summation over i here) such that
(ei|ej) = h,z_lh,]_l(izﬁj) = hz_lh]_lgw = hl_lhj_lhlh]@] = 52']' .

(Of course, these vectors still depend on &, because their orientation in the space
varies from point to point). Any vector V can be then decomposed in two ways
(and, of course, in many other ways too)

V =i,V =iV
= ekV(IZ) = e, V.
From the relation between the vectors i; and e it follows that

Vigy =V = VE = V),

e)

(no summation over k here). The scalar product of two vectors can be then written
as

(VIW) = VW = v,

i.e. it looks as in the Cartesian system. The barred covariant components V;, of the
vector V are identical to the contravariant ones

%:Vka



and are related to the unbarred covariant components Vj of V by
Vi = h 'V,

(again no sum over k here). Thus, the whole point of introducing “physical” com-
ponents V* is to get rid of the metric tensor in the scalar product.

Gradient

Consider a function S defined on the space (on the manifold). In coordinates &' it
is a function S(&). At each point its total differential

oS

IS = o

de’,

is a linear form, or more precisely, a differential one-form. As every linear form, it is
a device with a hole into which one inserts a vector and obtains in return a number;
the action of such a form is linear. The differentials d¢® form a basis in the space of
one-forms; their action on any vector follows from the rule

and linearity. The factors 9S/0¢" are simply components of the one-form dS in
the natural basis d¢® of one-forms associated with the coordinates £. On a vector
0¢ = i,06F of a small displacement by 6¢% the total differential dS gives

%wwm—“wwwzﬁ

d5(5¢) = - %

0€" ~ S(& +6€) = S(€),

- the first approximation to the difference of S at & and the neighbouring point
£+ 6€° that is dS(6€) is what an average physicist, not mislead by mathematicians
(and their complicated symbolics), would call dS.

In the Lamé systems one introduces also another basis f? of one-forms singled
out by their action on the e; vectors:

f k(ej )= 5kj .
From linearity it then follows that

f* = hyde*,
because then

ffe) = fk(hj—lij) - h;lf'f(ij) = hithy dgR (i) = R thy 68, = 6%,

J

The action of a linear form W& = wydé* attached to the point & (or a field of
one-forms M (¢) defined for each point of the manifold, if the components w; are
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functions of ') on a vector V attached to the same point £ (or a vector field defined
on the manifold) is given by

WO(V) = wpde* (1,V7) = wpVF = hywy by 'VF = 0, VF

This shows that components of a one-form can be treated as (covariant) components
of a vector and the action of the one-form W& on a vector V can be represented by
the scalar product of V with the vector i; w’ = e; @" associated with the form M.

In Lamé systems the gradient (the “physical” gradient) of a function S is by
definition the total differential d.S referred to the basis f*:

_a_S k _ ia_s rk — o Q) fk
a5 = oer d€ = (hk agk)f = (V9"

The gradient of S : M — R, or in other words, the total derivative of S, is a liner
function mapping the vectors living in the tangent space 7,,M into R:

S ki 28 _
dS(V)=V! e dek (i) = vk % = VF(VS), .

Of course, in physical calculations the bars over “physical” components are omitted
(as components of vectors and forms in the bases i; and d&’ never appear in such
calculations).

Divergence

Divergence of a vector field V(§) = i,V*(¢) is in the most general case defined as
follows: We associate with the vector field V the already introduced one-form V:

V= Vid¢' = gikvk de’
and apply to it the Hodge star operation:
~ 1 ) .
V=2 VI epVEdE A dE

where g = det(g;;) and finally take the exterior derivative of the resulting two-form:

1 0
B €ijk (9_51

= 8% (VEV/g) dg" N dE> A dE> .

d(xV) = (V) det AdgF A dg?

We have used here the relations
dgl A dgz A dgj = €lij d€1 AN d§2 AN dfg s and €ijk€lij — 25“ .
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The “physical” divergence is the three-form d(*V) but referred to the canonical
volume form f! A f2 A f3:

’ 1 9 VEN & s . 23
d(V) = hihahs OEF <h1h2h3 )f NIENT.
ie.
o 1 0 %
divV =V.V = Tl 8£k (h1h2h3 hk)
Curl

Curl of a vector field V(£) = i, V¥(€) is defined as follows: first associate with V

the form V = Vid€t. Then take its exterior derivative
Dk
av = aer (gijVj) gt N dg',

obtaining a two-form. Finally apply the Hodge star operation:
¥ im d
x(dV) = \/_gklg 85’“ (QUV ) €tmn AE™ .

In a Lamé system, components of the resulting one-form in the basis fl are just
what is called the “physical” curl of V:

(dV) = hyhghs hi2h7? (V) Bt fr = (VX V), f*.

0
€kin 8—£k
Simplifying a bit, the “physical” components of the curl of V are

I 0
hhahs " OgF

(VxV), = (heV*) .
Laplacian

The Laplacian acting on a function S(&) is just the divergence of its gradient - it is
the three-form:

d(xdS) = (V2S) f* A f2 A f3.
Explicitly:

) L .
d( (88 )) 3¢ 8§Z\/§glk€klmd§l/\d§m)
1
20

9 wy)mmwAwA%m

J 85@
0
:a_<fgw (%)dg AdEP N dEP.



We have used the same relations as in the derivation of the divergence. The “physical
Laplacian” (in Lamé coordinate systems) is referred to the canonical volume three-
form:

g | 8<h1h2h385)

hihshs 061\ 2 9€

Examples
We illustrate all these considerations on two examples.

A. The spherical coordinates (£7,&2,€%) = (r,0, ¢) are introduced through the well
known relations

xr=rsinfcoso,

y =rsinfsing,

z=rcost.
One then has
sin 6 cos ¢ 7 cos 6 cos ¢ —rsin fsin ¢
i, = | sinfsing |, ig= | rcosfsing |, iz=| rsinfcos¢
cos —7rsinf 0

The Lamé coefficients read

he =/ (i ]i;) =1,  hg=+/(elig) =7, hg=1/(glig) =rsind,

and the vectors e,, ey, e, have the form

sin @ cos ¢ cosf cos o —sin ¢
e, = | sinfsing |, e = | coslsing |, e,=| cos¢
cos —sind 0

The canonical volume three-form
FPAfON O =r2sinfdr AdOAdo,

looks familiar for anybody who at least once has integrated something over a three
dimensional domain using spherical coordinates, but what do these “A’s” serve for?!
Be patient and look below how the integration of differential forms is defined.

Using the Lamé coefficients given above it is straightforward to write down “phy-
sical” components of the gradient of a function S

—— 08 —— 108 — 1 0S
V=% =15 (9%=rg55"
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of the rotation of a vector field V = e, V" + eV’ + e,V

1 0 - oV’
VxV) = V?si — _
(VxV), = rsin 0 (89< sinf) ) ’

1 9V 19 o
rsinf d¢  r Or

as well as the “physical divergence” of V:

1 ove

V-V= rsinf 9¢

1o, o,
2o VIt g ae (VSO +

and the “physical” Laplacian of a function S(§):
10 oS 1 0 oS 1 0%S
2g_ + O [ 200 Y (enp?2 il
VS = r? Or (T 07“) T g 90 (sm@ 09) T asmZe dp?

B. Another, less familiar example are the parabolic coordinates

r=1/Encos,
y=+/&nsing,

1
225(5—77),

with £&,7 > 0 and 0 < ¢ < 27. One then has

b fEeoss 3/$ cos V7 sing

i = 5\/§Sm¢ , g = %\/%singb ;o gy = v£n0008¢
1 1

2 2

It is easy to see that i¢-i, = 0, i¢-iy = 0, i,-iy = 0 - the parabolic coordinates form
an orthogonal system. The Lamé coefficients read

he=flilhe) = /ST =l =[S R =yl = Ven,

and the normalized vectors e, e,, e, have the form

1 /71 €0S ¢ 1 VEcosd —sin¢
e =——— | sing |, e=—=| VEsing |, e;=/| cos¢ |.
¢ VE+T VE ’ vVE+Tn /7 v 0



Having the above components of the vectors e; (i.e. e, e, and ey) in the basis
formed by the vectors e,, that is: e,, e,, e,, we have the transition matrix Re,e,):

1/&cosgb ,/&cosgb —sin ¢
(e, €, €5) = (5, €y, €.) | 4 /£+n sin ¢ ﬁ sing cos¢
/& ./
&+n &+n 0

It allows to find the e, basis components of a vector field V from its e; basis com-
ponents:

V = ei‘/(iei) = ea[R(eaFei)]aiv(Zi) ’

that is, Vg ) = [Re, (_ei)]“iv(iei). Since the vectors of the basis e; differ from the
vectors of the basis i; only by normalization, it is easy to write down also the
transition matrix Re,«i,). Indeed,

V = ea [R(eaeei)]ai‘/(i

ei)

= ea[R(eaeei)]ai(hiv(éi)) =€ [R(ea‘—ii)]ai‘/(é

11') Y

so that the matrix R(,,) is obtained by multiplying the i-th column of the matrix
Re,«e;) by hi. Of course, the same matrix R(e,«i,) can immediately be obtained
from the components of the vectors i; in the basis e,:

%\/?comﬁ %\/%comﬁ —/E&nsin ¢
Rie,eiy) = %\/?sirub %\/%simﬁ VEncos ¢

1 1
2 2 0

Since the two bases e; and e, are orthonormal, the matrix R(c,«e,), the inverse
of R(e,«e,) is just given by the transposition of Re,«e;):

[ [ n_ £
- cos ¢ £+ sin ¢ e
Riejen) = A /545-77 cos¢ 4/ &—gm sin ¢ —\/%

—sin ¢ cos ¢ 0
Finally, the matrix Rj,e,) (the inverse of R(e,.j,) can be quickly obtained from
R(eﬁ—ea):
ea‘/([éa) = ei[R(ei&ea)]ia‘/(za) = (iihi_1>[R(ei<—ea)]ia‘/(Za)v

50 R(i,«e,) is obtained by dividing the i-th row of R(e,«e,) by hi:

2 2 2
gf; cos ¢ 6‘{; sin ¢ %
_ | 2 2 2
Riijceq) = gf; cos ¢ S‘J/r; sing  — %

\/1_nsmgz§ \/—ncosgb 0
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In the parabolic coordinates we have two sets of basis one-forms: d¢, dn, d¢ dual
to the basis vectors i, i,, is, and one-forms f¢, f7, f¢ dual to the basis vectors e,
e,, €,. The canonical volume form is

FERFIA ¢ = 5+ m)de A dn A dg.

Of course, the factor i (£ +n) is the traditional Jacobian of the change of variables
from the Cartesian ones to the parabolic ones.

The “physical” (barred) gradient components in this coordinate system are

(iﬁ 19 ii): 4 o0 A 9 1 9
he 08" hy O’ hy 09 E+ndE NV E+ndn Vindp )

In the traditional approach to get this result one would have to write

0 0 080 omo 0¢ 0
:em( 6——1— 77—+ ¢—)—|—...

grad:e$%+ey8—y+ezg %8& %87] %8¢

expressing next the derivatives 0¢(z,y, z)/0x computed using the relations (inverse
to those defining the parabolic coordinates)

§= 2+ Va2 +y?+ 22,
n=—z+\a?+y*+ 22,
¢ = arctg(y/z),

back through the variables® ¢, n and ¢ and finally writing the basis vectors e,, e,,
e as linear combinations of e, e,, e, using the matrix R ., and finally grouping
together terms multiplying each of these vectors. All this requires a lot of work!

It is instructive to express the one-forms dz® (i.e. dx, dy and dz) through the
canonical forms f¢ (that is f¢, f7, f®). To this end we write
Vw(V) = wl (e, Ve = wll f(ea) [Ro,ce)"; Ve

J €

— wi(f) [Pf—mlma]ib dl’b(ea)[Reaeei]a »Vj

J e’

2A trick allowing to simplify this work is to realize that the required derivatives 9¢/dz etc.
form the Jacobian matrix of the transformation of variables (£,, ¢) — (z,y, z) which is inverse to
the Jacobian matrix of the transformation (z,y,z) = (§,n, ¢):
0¢/0x  0E)dy  DE)Dz ox/0¢ Ox/dy dx/op\
( ) = (3y/3€ dy/on 8y/a¢> :
0z/0¢ 0z/0n 0z/0d

on/dx On/dy On/dz
0p/0x 0¢/0y 0¢/0z

In this way one gets the derivatives 9¢/0x expressed directly in terms of &, 7, ¢. But this still
requires inverting a complicated 3 x 3 matrix...
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Since Mw(V) can also be written as w(f fi, it follows that
Pf%dwa = [Rew—ei]_l = Rei<—ea-

Therefore

A

dz® = [Pdma%f]aifi _ [Re(ﬁ—ei]ai.fl .

For the parabolic coordinated one gets in this way

d:z::f6

517] cos g+ f7 §f-n cosd — fPsin g,

etc. This is of course a complicated way of obtaining the result which can be found
by treating = = x(£,n, ¢) as a function of the parabolic coordinates and taking its
exterior derivative:

dz = dw(€,1,0) = d(/E) cos o)
— %\/? cos ¢ d€ + %\/% sin ¢ dn — \/5 sinpdo,

and then inserting here d§ = hgl ¢, ete.

We now find the divergence in the parabolic coordinates. We assume a vector
field V is given by its components V(’éi), that is V¢, V", V™ are known. We have
found that the divergence of V is the three-form

. 0 1 9
d(xV) = o (Vg V*)de' ndg® nde® = el DEF (hg nhe I ) FEnFIAF?
= (divV) fEA TN f2.

The “physical” divergence (the coefficient of the canonical volume three-form) the-
refore reads

divvzgi[gg (h, h¢V)+§(hsh¢V") a¢(h§h V‘z’)}
= e Lo (VI V) + g (Ve ) + g (5727

Let us check this on a simple example. Let V = z e,, so that every physicist
knows that divV = 1. Using the matrix Re,.e, We get

V:xem:\/@comﬁ(eu/gzn cos¢+e7”/$cos¢— e, sin¢>>.

11




We read off that

I_/f:mlﬁ cos’ ¢ V”z@/# cos® ¢ V‘b:—\/asingbcosqb.

Inserting these components in the formula written above we find

8 0
divV = 5—?— {85 (&ncos® @) + (Sncos ?) +8_q5 (—%(f%—n)singbcosgb)}
2

= m [(§+7Z) cos® ¢ — §(§+n)(cos2¢— sin2¢)] 1

The rotation of a vector field V = e;V* is the one-form

. Ry o o
=" €. (B V7 )
*(dV) h1h2h3 €ijk 852 ( ]V )f

In the parabolic coordinates we find:

¢ 2 o ( [etn_,)]
VW) = |5, (fW) a_< —V)
2 /5“7 _ﬁ ;
(V>V) n(&+n) ( ) 3 V)
AT
v - (v ) (5|

Let us check this formula computing curl of the vector field

V:—yez:—\/@sinq§<eu/£j_n cos¢+en1/% cos ¢ — ey siné).

From the formulae given above one finds

(VxV)d) x 83 (—1152_”51/ il sin¢cos<b>

( \/5—!—77 \/f—l— smgbcosgb)
—5 (——fsmqﬁcosqﬁ) - —77 <—§7751H¢C05¢)

12




(V><V)f = 2 [677 <\/7\/7nsm gb)

VEE+n)
N N s/
5 < e 19 §+n81nqbcosq5>

_ 2 esn?ht Letcos? o —sina| = ]S
GG [fsm gb—l—2§(cos¢ sin gb)] 1
and finally
n §+m £ .
(VxV) f(f—l—n ( \/ \/5‘“7 smgbcosgb)

—% (Ven v/en sin® as)]

0
2 1 N R BT
_7§(§+n) [ 217((305 ¢ — sin” ¢) — nsin qﬁ} = e

This is of course what one should get, because in the Cartesian coordinates VxV =

e., that is
§ 1
VXV:eZ:e — —e -
Vern Vet

Of course, strictly speaking curl is a one-form, but the barred components of the
vector are simply equal to the barred components (that is components in the basis
f% of one-forms) of the one-form W associated with the given vector W (and for
this reason an average physicist perceive curl as a vector).

Finally the Laplacian. It is a three-form. For a physicst it is the coefficient

L0 (uhahy 95
hnhohy 965\ h2  9¢I

V2S =

of the canonical volume three-form. In the parabolic coordinates this is

4 E+n 4 85) <§+n 4n 85)
V25 = EELER s ~ 1 L2
£+n[£< 4 &+n 0 T\ §+mn On

+__<§iﬁ;£9§)}
0¢ 4 &n 09
_ui{ﬁ<9%+3<@%+ﬁﬁfq
“etnloe\~ag) T oy 4én 0¢? |

This can be easily tested on the function S = 2% 4+ y? + 22 = 1({ + n)%. Of course
V28 = 6 both in the Cartesian and in the parabolic coordinates, as it should be.
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Integration of p-forms over p-dimensional domains

A pform P& = w;, ; (§) dé" A ... AdE™ can be integrated over a p-dimensional
domain (a p-dimensional submanifold) €, of the d-dimensional space (d-dimensional
manifold). The integral

/ g = / wir_1y (E)dEM A A dE™
Q, Qp

is defined as follows. We have first to parametrize the domain €2, with p parameters

N

One then has p vector fields t(y), ..., ty:

1 ad
to) =1 ; - +ig ;Z ,

all of which are tangent to the submanifold €2,,. It is easy to see that t(;) is tangent to
the curve traced in €2, by varying the parameter 7* keeping all other 7’s fixed. The
ordering of the tangent vectors t(y),...,t(,) fixes the relative (with respect to the
orientation of the “big” space M defined in turn by the ordering of the coordinates
¢l ... €% orientation of the submanifold ©,. By definition

/(p)dJ:/dTl.../dprilmip(g(T))dgh/\...Adgip(t(l),...,t(p)).
QP

1=1,...,p.

The domain of integration over the parameters 7 follows of course from the para-
metrization of €, (this is an ordinary iterated integral). Since (see the definition of
the action of a general p-form on p vectors)

A€M A N dE (b, ngn H(tr() - - dE™ (b))

0 k1 o kp . -
= _sgn(m) 3T£7r(1) aﬁr(p) dg* (ip,) - . . d€™ (ix, )

agil 852'1’ B (521 gzp)
= ngn(ﬂ-) 07_7r(1) T 87-77(17) - 8(71 an)

A€M AL NAEP (b, b)) = D sen(m) dET (ter)) - - dE (b))



ok 3 i1 (s ip (3
= sgn(n) o ey 967 () - dE (i)

ogh _ o(en,... &)
o ) (e, )

I
n
a3
=
3
D
T
Il

The final, practical formula for the integral reads
. aEn, ..., &)
_ 1 ) )
/Qp(p)w = /dT .../dprilmip(g(T)) A )

Stokes theorem

The fundamental Stokes theorem states that

/d((p—l)@):/ (p—l)@’
Qp o,

where 0€2, is the p — 1-dimensional boundary of the domain €2,,.

Exterior derivative of a zero-form, i.e. of a function S(§) is a one-form d.S which
can be integrated over a curve I'4p going from a point A to a point B. The Stokes
theorem reduces then to the trivial statement that

/F dS:/aF S = S(B) — S(A),

because the boundary of the curve I' 4p consists of the points A and B.

What is the physical interpretation of an integral of a one form M@ = w;d¢* over
a curve I'yg? Let’s see. To evaluate the integral we parametrize the curve with
some parameter 7 € [74,7p]: & = £(7), where £'(74) = &4 and £'(75) = £4. Since
the curve is a one dimansional manifold, there is a single tangent vector t and

[ 0a= [Caragemac

:"B ) d k B d k
- [Tarateenae (i E) = [Maraern

To get the physical interpretation let’s assume £° are coordinates of a Lamé system
and rewrite the integrand differently:

/FAB% - /d a6 5 (0



where t' are the components of the tangent vector in the basis of ortonormal vectors
e;, which is dual to the basis f* of one-forms. Since the contraction @;t* can be
treated as a scalar product of two vectors, it is clear that

/ <%:/ dl-V,
Iy} 1Y}

where V is a vector field associated with the one-form V& and dl = drt. Thus, it
is just the ordinary integral of the vector field associated V along the curve I'45.

The alternative way to see this is as follows: we rewrite the integrand in the form

wids \ " ar i\ ok dr T ek ar T % 9ek dr

Il
&l

w f (e d—x—l—e @—l—e dz
! “dr Ydr “dr )

We have used here the definition of the vectors iy and the ordinary chain differen-
tiation rule. On the other hand, in the Lamé systems one can also write

@i P = o f* + @, fY + @, f?,

because both (@,, @y, @,) and (f*, f¥, f7) = (dz, dy, dz) are related to (@, @, @s)
and (f1, f2, f3) (associated with the coordinates £7) by the same orthogonal trans-
formation. Introducing a vector field V with the Cartesian components V* = @,,
VY=, V?=w, we get

B
/ <%:/ a7 &) -V(I‘(T)):/ A1V,
Tas TA dr Tas

where V is a vector field associated with the one-form M&. The last equality is
obvious from ordinary mechanics: dl = dr (dr(7r)/dr) is just the vector of the
displacement along the curve I'4p corresponding to the change of the parameter
from 7 to T 4 d7; the integral of the scalar product of dl and V(7) is just what one
calls the integral of V along the curve I'4p.

Thus, to compute the integral of a vector field V along a curve I' one takes this
field decomposed into vectors i associated with some curvelinear coordinates £ and
integrates the form V =V, d¢' = g;; V7 d¢'.

And how to get a flux of a vector field V through a surface 7 To get a hint
let’s look at the Stokes theorem and compare it with the ordinary Gauss theorem
for a closed surface ¥ = 09 (£ being a three-dimensional domain):

/diVV d(Volume) = /d(*V) = Stokes Th. :/ V.
Q 0

o0N
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This shows that %V must be the right object to integrate over X, i.e.

/*v
>

should give the flux of the vector field V through the surface . Indeed,
~ 1 ) .
/*V = /—@e,jk VEdet A ded
b =2

1 _ A A~
= //d71d72 5 hlhghg €ijk h,;l\/k fz N f] (t(l), t(2)) .

hih;
Due to the presence of the totally antisymmetric symbol €;;;, the three Lamé coeffi-
cients h; 'h; 1hj_1 must be simply h;'hy hs! and they cancel out the factors hyihyhs,
so that

/*V //dTldT vk Z e”k( t! ) t’ t] //dTldT Vke”kt

The factor e, (d7't], )(defgz)) is nothing else than the vector perpendicular to the
parallelogram spanned by the vectors dr't(;) and drt(y) of the infinitesimal displa-
cements corresponding to varying the two parameters from 7! and 72 to 7! 4+d7! and
72 4+ d7? respectively, and has the length equal to the area of this parallelogram. It
follows that the expression under the integral is just what one physically interprets
as the flux of V through the small element of area of the surface ¥. This completes
the demonstration.

Finally let us clarify how the usual Stokes theorem, stating that

/ds-rotA: dl-A
b r=oy

arises in this picture. Rotation of a vector field A, as defined above, is the one-form
*dfl, and is, hence, not suitable for integrationg over two-dimentional surfaces like
Y. Instead, this one-form (in Cartesian, or Lamé systems) should be treated as a
one-form V associated with a vector fiels V = rotA: to compute its flux through
a surface ¥ it has to be coverted to a two-form by applying to the the Hodge star
operation. Since *x =id, one interates over ¥ the two-form dA and the usual Stokes
theorem follows then readily.
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Example

As an example let us compute the flux of the electric field E produced by a uniformly
charged ball (of radius R and total charge @)) through a flat disc also of radius R,
tangent to the ball.

Outside the ball the electric field has the form as if it was produced by the
point charge () located in the center of the ball. We will work with the spherical
coordinates £! = r, €2 = 0, €3 = ¢ with the origin (r = 0) in the center of the
ball. In these coordinates only the radial component of the electric field is nonzero:
E" = E" = k;Q/r? (because h, = 1). According to the general considerations the
flux is given by

A 1 ) .
Flux :/ ) :/ 5 VI € EFdET A dg
disc disc

:/ TQSine( IQ) do N do.
disc 7’

We have used /g = h,hohy = r?sin @ and the specific form of the components of
the electric field E.

We parametrize the disc by the parameters o € [0, 7] and 3 € [0, 27]:

r=R/cosa,

0=,
¢=7,
so that the tangent vectors read
b = or v, 2 + i, 20 0¢ _i Rsin i)
" da 0 [3Je! cos? a

b = i O 43, 20 43,99 5
B) = aﬁ 68ﬁ ¢aﬁ ¢

Hence,

df A do (t(a), ts) = db (tw) do (t) — db (ts) do (b)) =1-0=1,

and

2w w/4
Flux = / dﬁ/ dakiQ sina = k1Qm(2 —V/2).
0 0
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Lengths, areas, volumes, etc.

All these quantities are encoded in the metric tensor g;;. Let us consider first a
hypersurface (a curve, a surface, etc.) embedded in the ordinary R™ space with
canonical Cartesian coordinates % and a system of orthogonal vectors e, (forming
in fact a basis of a tangent space at each point of R": since the space is “flat” -
whatever this imprecise term may mean here - the corresponding basis vectors atta-
ched at different points of R” can be simply identified). In this case we (arbitrarily)
ascribe the unit length to these vectors and this “physical” unit is used to measure
everything. The measure of the intrinsic “volume” A, (length, area, volume etc.)
of a k-dimensional hypersurface ;) C R" is then universally given by the formula

A(k):/ dTl...di g(k),
Ak)

in which ¢g(®) is the determinant of the metric tensor (the subscript k indicates that
it is a k& x k matrix) induced (for a more precise formula, see below) on X by the
canonical n X n metric tensor gfg) = 0ap = €, - €, of R". A, is the domain of the

parameters 71, ...,7" covering ).

Length. A curve is specified by giving the functions 2% = x%(7), where 7 is a real
parameter. The vector t tangent to the curve at each its point is then given by

dx®
t=e,—,

dr

and the metric tensor g™ on the curve induced from R™ is given by

Hence, the length L of a segment of the curve delimited by some values 71 and 75 of
the parameter 7 is given by

L:/ dT\/g(l):/ dr v z0x0

T1

where &% = dx®/dr. This formula is physically obvious: |t dr| = dry/gV is the
length of the infinitesimal vector of a displacement from a given point on a curve in
the direction tangent to it, when 7 changes from 7 to 7 + d7.

Area. A two-dimensional surface ¥y is specified by giving the functions ¢ =
2°(7t, 7%) of two real parameters 7' and 72. At each point of ¥ there are then two
tangent vectors

¢ _edx“ ¢ _edx“
1) — adTla 2) — ad7_2>
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in terms of which the metric tensor gg)

2 — ot oxr* 8x o — @ ox*
R A
To justify the formula

is given by

Ap) = / dridr®\/g®@,
A2
in which A(y) is the appropriate domain of 7' and 72, we notice that

2
2 = det(g))) =t th) — (b t@)? = (ba)xt@)?.

Since [t()d7' xt(2)dT?|, as has been already discussed, is the area of an infinitesimal
parallelogram spanned by two infinitesimal displacements dTl and t(o) dr? from
a point on Xy in the directions tangent to ¥(z), the formula obviously gives what
one usually takes for area.

For example if a surface X(9) in R? is specified by the function z = f(z,y), then
x and y themselves furnish a natural parametrization of X(). The components of
the two tangent vectors are

1 0
t(l) - 0 5 t(Q) - ]_ 5
fa fy

and

gD =1+ YA+ 2 = (fof))?

One recovers in this way the well-known formula

:/dxdy 1+f:;2+fé2,

Volume. In this case there are three vectors, t(1), t(2) and t(3) and

o |fto tote to)te
P =det(g) = [ty tn) teyte te) te
te)ta) te)te) te)-te
=ty iy tls) + 2(60) t2) (be) b)) (b ta)
—t{) (b b))’ —t(z)(tu)'t(s)) — t7) (t()t(3)” -

By a direct calculation it is easy® to show that

B) = [ty (bo) x tm)|*

3To simplify the task, one can assume, that the Cartesian vectors e, are rotated in such a way,
that t(;) has nonzero only the first component, t (o) only the first and the second one and t(3) only
the first three. Then [t(1)-(t(2) xt(3))|* = (1)t 13s))”-
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Since |tydr"- (t)T* X t(3)d7?)| is evidently the volume of a parallelogram spanned
by three vectors of infinitesimal displacements, that formula is again justified.
In a more general setting, the metric tensor gi(;b) (&) of an n-dimensional manifold

M, covered by a system of coordinates &1, ..., " (not necessarily an orthogonal
ones) always defines all metric relations on the manifold. g§;‘>(§) fixes the lengths
squared and scalar products of the system of vectors 9/0¢' = i; tangent to the
manifold M,y without any reference to an underlying R™ space (and its canonical

vectors e,). Any k-dimensional submanifold ¥y C M, is then specified by giving

the functions &' = £(71, ..., 7%) and the metric tensor gi(f) (7) is then given by
#) (o — () 98 0&;
W) = gl 6(r)) 2 s

It is clear that gﬁlz)(T) is the matrix of scalar products of vectors

. o¢
t =1 =,
(") or”
tangent to the submanifold ¥;). The scalar products of t(,) are determined by the
scalar products of the vectors i; associated with the coordinates £° of the manifold
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Useful formulae

1. A p-form P is a p-linear totally antisymmetric mapping of p vectors into R.
p-forms form a vector space; for their basis one can take Z (d is the space

dimension) antisymmetrized tensor products of p basic one-forms d¢*:

dg™ A dER AL N dE = Z sgn(r) dg" 0 ® dg @ .. @ gl

7 is a permutation and sgn(7) its sign. Action of a general p-form
P = wiysy 4 dET NAE? NN dE,
on p vectors V(j) = iy, V(]B, o Vi) = ikpv(l;’)’ is given by:
(V. Vi) = Vi Vi wiy oy dEY AL N dEP (i, ik,
= sen(m) Vi) Vi @iviaiy 46" (i) JAE 2 () - - dE™ i)

k k
= Z sgn(m) V(ﬁ . V(p’)’ W (1)) -

2. Exterior derivative of a p-form P& = w;, ; (§)dEMAdEZA. . . AdE™ is a p+1-form:

Owi, i, (§)

d(Po) = de¥ NdET N dER N N dET

3. Action of the Hodge star operation which maps p-forms into (d — p)-forms on the
basic p-forms d€ A ... A dgip is defined by

#(dEM AL NdER) = VIgI g g A€ AN N

(d— )‘

In d = 3 dimensions one then has on zero-forms:
1
*(1) = 5y Vg €in A&t N d&d N dER = (g det A dE* A dE?R,
(we have used €;;,€;;, = 3!); on basic one-forms
*(dg") = \/_9 Extm dEL N dE™;
on basic two-forms
*(dgz A dé’]) = \/Egm gjl €kim dgm )
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and on the three-form

1
dl/\d2/\d3 1z 13 P —
(€™ N dE™ N dE”) = 0,\fggge]k 7

Action on general one- and two-forms follows from linearity of the x operation.
We can also check that #x =Id:
x(x(d€) = * (v/g 9" exam d€' A dE™ )
1 )
=5 fglk €rim * (€' N dE™)
— \/*gzk Erim \/_gl_] msejsp dé—p
ik 1lj ms

1 .
2 59 (g g g 6Iflm) €jsp dgp = dgl

because the expression in the last bracket is just det(g*') ¢ (and det(g") is the
inverse of g = det(g;;)) and €”%¢;y, = 20",

Similarly,
*(x(d€' A dg?)) = * (Vg g™ ¢ erim dE™)
= V50" 0" i 5 VTG e N
= 99" ¢ g™ €uim €prs dET A dE°

g7 € ey dET N dE°

[\3|»—nl\3|>—t[\3|}—n[\3 —

g
(67,67, — &' &,) d¢" A de*
(

de' N dg? — dgd A dET) = deP A dE

4. Divergence referred to the canonical volume form /gd¢' AdE* NdE* = f FLAF2Nf3
is what in General Relativity is called the covariant divergence:

VE VgdEt NdE NdEP = (0 VE +TF, V) g det A de? A dE.

We recall the definition of the Christoffel symbols (Krzysztofelki po naszemu) I'
in terms of the metric tensor:

. 1 .
= 2 9" (Orgi; + O g — Oig;) -
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Hence,

1 1
Fkkj =5 9" (Ogj + 0591 — Digrs) = B) 9" 0;m
1 1
=g tr (97'059) = 5 9iIn(g) = 9;1n(v/g)
1 0
AL

This should be compared to d(V):

d(xV) = 5 gk (Vg V*) det A de? A dg?
= (VgOLV* + VF O\ /g) dE" N dE> N dE?
- (@v’f +V* % a,“/§> Vg der A dER A de?

= (O VF+ T, V¥) \/gdet Nde* AdEP.

5. Yet one more useful formula is

% IndetM(£) = tr<—i M‘l) ,

for a matrix M depending on &°.

Demonstration: Let us compute a variation of the left hand side for a small variation
of the matrix M:

dIndetM = Indet(M + M) — Indet M

= In (det(M + 0M) det ™" M)

= In (det(M + 6 M) det(M 1))

= In (det[(M + 6M)- M‘l])

In (det[I + (6M)-M 1)

= tr[ln[[ + (0M)-M™Y = tr[(6M)- M.
For the partial derivative with respect to & we take dM = M(..., £ + h',...) —
M(..., €& ...), divide by h' and take the limit h* — 0. This proves the formula.
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