
11 Canonical quantization of classical fields

In Chapters 6-9 relativistic quantum field theory was formulated adopting the view that
the underlying physical system (the basic “ontology”) are particles. Therefore the natural
starting point was the relativistic (in the sense of existence in the Hilbert space of the
Poincaré group generators P µ

0 and Jµν0 ) theory of free particles which could be built by
exploiting the formalism of second quantization of Chapter 5. Making strong assump-
tions about the relation between the spectra and the eigenvectors of the full and free
Hamiltonians, H = H0 + Vint and H0, it was possible to show that interaction operators
Vint constructed according to a certain set of rules can lead to relativistic (again, in the
sense of the possibility to construct the Poincaré group generators P µ and Jµν) theories of
interacting particles and a perturbative scheme of computing S-matrix elements (strongly
relying on these assuptions) was developed.

Here we present another approach to the formulation of the theory of interactions
of relativistic particles. It is based on the canonical quantization of relativistic fields.
Particles emerge in this formalism as states (“excitations”) of quantized fields. The ba-
sic entities - at least as far as bosonic degrees of freedom are concerned - are, however,
fluctuating fields. The advantage of the field theory approach is twofold: firstly, it pro-
vides a well defined prescription for constructing the full Poincaré group generators (the
structure of which in terms of the creation and annihilation operators in the approach of
Chapter 7 could only be guessed at) and, secondly, allows for an easy discussion of vari-
ous internal symmetries, especially gauge ones (providing through the Noether theorem a
concrete prescription for constructing the associated conserved charges) and their sponta-
neous breaking. Moreover, in the case of fields “the quanta” of which1 are bosons (integer
spin particles) the picture of fluctuating field values at different space-time points (com-
plementary to the description in terms of particles) seems more fundamental; it allows
for deeper understanding of global aspects of the theory (such as the role of topologically
nontrivial classical field configurations, symmetry breaking etc.) and proves extremely
useful in diverse modern applications of quantum field theory (e.g. in cosmology).

The picture of fluctuating fields seems however not naturally applicable to quantum
fields, the “quanta” of which are fermions (half-integer spin particles). While it is possible
to take as a starting point of quantum theories of fermions the Lagrangian formalism which
has formal aspects analogous to that of classical fields (Section 11.8), the basic entities in
this case are anticommuting generators of an abstract Grassmann (or Bieriezin) algebra
which have no classical counterpart and can hardly be considered physical. The difference
between bosonic and fermionic fields2 becomes particularly clear in the path integral

1We put the quotation marks because, as will become clear in Chapter 13, the correspondence between
the fields entering the Lagrangian and the particle states predicted by a given theory need not be direct,
nor one-to-one.

2The reason for this sharp difference between bosonic and fermionic fields seems to be that in the
classical, ~ → 0, limit bosonic quantum fields go over into true, measurable (at least in principle) classical
fields of forces (like the electromagnetic forces, and various potential forces), whereas fermionic fields get
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approach to field quantization (see Chapter 16). While quantizing in this way bosonic
fields one integrates functionally over (that is performs summation of contributions of) all
possible classically realizable (and measurable) field configurations, quantizing fermionic
fields one uses for this purposes an operation (formally defined for Grassmann algebra
generators) only formal aspects of which resemble the integration. Thus no “classical
fermionic fields” can be measurable and the only physical picture that in quantum field
theory can be associated with fermions seems to be that given in Chapters 5 and 6.
Quantization of classical fermion fields is only a mathematical trick allowing to easily
reproduce the results of the formalism presented there. In particular it cannot be viewed
(as is sometimes presented in older textbooks) as “quantization of the wave function
satisfying the Dirac equation”.

In this chapter quantum theories of fields are constructed by using the operator
method, that is by applying to their classical counterparts the so-called canonical quan-
tization procedure. It consists of choosing a set of field variables in terms of which the
Lagrangian is written, identifying the associated set of canonical momenta and construct-
ing the corresponding Hamilton’s formalism, imposing on operators which are going to
represent the canonical variables the canonical commutation rules (anticommutation rules
in the case of Bierezin algebra valued fields) and constructing a Hilbert space (and select-
ing in it a proper Fock space) in which these operators act. Therefore, in the first section
a brief review of the classical theory of relativistic fields and their symmetries is given.
As the next step we show, that quantum theory of noninteracting fields, Lagrangians
of which consist of terms at most bilinear in field variables, leads to the interpretation
of the corresponding Hamiltonian eigenstates in terms of (noninteracting) particles. In
principle, quantization of classical fields is very similar to the quantization of the system
of many coupled harmonic oscillators discussed in Section 5.6: the field value at a given
point x of the space can be treated as an oscillator coupled to other oscillators in neigh-
bouring points (in particular, the common features of both systems: of quantized coupled
anharmonic oscillators and of interacting quantized fields, is the nonconservation of the
numbers of phonons and particles, respectively). However, despite these deep similari-
ties, quantization of some classical fields (e.g. the electromagnetic one) require special
treatment because direct construction of the Hamilton’s formalism cannot be carried out.
The proper operator quantization of such fields requires developing the formalism of con-
strained system which will be presented in Section 11.6. The formalism allowing to treat
fermionic fields on formally equal footing with bosonic ones is outlined in Section 11.8.
After quantizing various types of classical field theories we apply to the theories of inter-
acting fields the so-called transition to the interaction picture which allows to compute
the S-matrix elements using the methods developed in Chapters 7 and 9.

replaced by matter particles the behaviour of which is first, at low energies, captured in terms of wave
functions satisfying the Schrödinger (or Pauli) equation (as in Chapter 3) and ultimately, in the ~ → 0
limit, become paricles of classical mechanics.
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11.1 Action and the Noether theorem

Dynamics of a system of classical fields3 φi is determined by the action I[φ] which is a
functional over all differentiable space-time field configurations. Actions considered in
connection with quantum field theories are given in terms of Lagrangians L obtained as
space integrals of local Lagrangian densities

I[φ] =

∫ t1

t0

dtL =

∫ t1

t0

dt

∫

V

d3xL(φ, ∂µφ) ≡
∫

Ω

d4xL(φ, ∂µφ) . (11.1)

The Lagrangian density L is a function of fields φi, i = 1, . . . , N and of their space-time
derivatives. In the following we consider Lagrangian densities depending on first order
derivatives only. The volume V may be finite or infinite; in the latter case one assumes
that all the fields φi vanish sufficiently fast at spatial infinity; in the finite volume V some
spatial boundary conditions must be specified. The action I[φ] must be a real and - if the
field theory is to be relativistic (which is possible only if the volume is infinite) - Poincaré
invariant quantity. In general the fields φi transform nontrivially (as some, in general
reducible, representation of the SO(1, 3) group or, in the case of fermionic fields to be
discussed in Section 11.8, of its universal covering SL(2, C)) under changes of the inertial
frame and can also transform nontrivially under some internal symmetries.

Equations of motion of a system of fields are obtained by requiring that the true field
configurations φi(x) are stationary points of the action functional (11.1), i.e. that I[φ]
does not change to first order in δφi(x) when the substitution φi(x) → φi(x) + δφi(x)
is made, provided the variations δφi(x) of the fields configuration around the stationary
configuration φi(x) are bound to vanish at t = t1 and t = t2 as well as in the limit |x| → ∞
(if the volume V in (11.1) is finite, δφi(x) are assumed to vanish at the boundaries).
Concisely this requirement is written as δI[φ] = 0. If the action (11.1) depends only on
fields and their first derivatives, its variation δI due to any variations δφi(x) of fields (not
necessarily subject to some specific boundary conditions) reads4

δI =

∫

Ω

d4x

[

∂L
∂φi

δφi +
∂L

∂(∂νφi)
δ(∂νφi)

]

(11.2)

(summation over the index i is understood). In the following we will consider such vari-
ations φi(x) → φi(x) + δφi(x) that δ(∂νφi) = ∂ν(δφi). The variation δI of the action can

3The formalism presented in this section carries over unmodified to fermionic fields discussed in Sec-
tion 11.8 provided all derivatives of the Lagrangian with respect to field variables are treated as right
derivatives and the variations stand to the right of these derivatives.

4Generalization to Lagrangian densities depending on higher derivatives of field is straightforward
but requires imposing appropriate boundary conditions also on derivatives of field variations. However
the Hamilton’s formalism presented here, which is crucial in formulating the transition to the quantum
theory (without appealing to functional integrals which will be introduced in Chapter 16), is adapted to
Lagrangian densities depending on first derivatives only. It can be extended to theories Lagrangians of
which depend on higher derivatives using the formalism of constraints presented in Section 11.6.
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be then rewritten in the form

δI =

∫

Ω

d4x

{[

∂L
∂φi

− ∂ν
∂L

∂(∂νφi)

]

δφi + ∂ν

[

∂L
∂(∂νφi)

δφi

]}

. (11.3)

Due to the boundary conditions imposed on the variations δφi considered in connecttion
with the determination of the true field configurations, the second, surface term in (11.3)
vanishes and the condition δI[φ] = 0 leads to the Euler-Lagrange equations of motions:

∂ν
∂L(φ, ∂φ)
∂(∂νφi)

− ∂L(φ, ∂φ)
∂φi

= 0 . (11.4)

For further discussion it is important to observe that two Lagrangian densities which differ
from one another by a total derivative of an arbitrary function of fields5

L′ = L+ ∂µX µ(φ) , (11.5)

give the same classical equations of motion (due to the assumed vanishing of the field
variations on the boundary of the domain Ω).

Canonical quantization of a system of fields requires6 going over to the Hamilton’s
formalism. To this end one defines the momenta Πi(t,x) canonically conjugated to the
field variables φi(t,x) by

Πi(t,x) =
δL

δφ̇i(t,x)
≡ ∂L
∂(∂0φi(t,x))

, (11.6)

and forms the Hamiltonian density

H(x) =
∑

i

Πi(x) φ̇i(x)−L(x) , (11.7)

and the Hamiltonian

H =

∫

d3xH(t,x) . (11.8)

We have assumed here that the momenta Πi and the field variables φi are not subject to
any constraints and that the relations (11.6) can be inverted to give

φ̇i(x) = φ̇i(Π(x), φ(x)) , (11.9)

5Xµ[φ] depending only on fields but not their derivatives (as is required to get L′ independent of
higher field derivatives) can be constructed only in the presence of fermionic (the four-vector index µ
can be then carried by a gamma or a sigma matrix) or four-vector fields; admiting Xµ depending also
on field derivatives is possible provided the allowed class of variations δφi(x) is restricted to those with
derivatives vanish at the boundaries of Ω.

6In the alternative approach based on path integrals (see Chapter 16) fields are quantized using directly
the action I[φ], but in fact a proper justification of thus approach also requires the Hamilton’s formalism.

439



where the dependence on φ means possibly also a dependence on ∂iφ(x). As we will see,
in physically interesting cases this assumption is not always true and we will have to
consider appropriate modifications of the canonical formalism. If no such problems arise,
the equations of motions in the Hamilton’s formalism read

φ̇i(t,x) = {φi(t,x), H}PB ,
Π̇i(t,x) = {Πi(t,x), H}PB , (11.10)

where the Poisson bracket (PB) of any two functionals F [φ,Π] and G[φ,Π] is defined as

{

F [φ,Π], G[φ,Π]

}

PB

≡
∑

i

∫

d3x

(

δF [φ,Π]

δφi(t,x)

δG[φ,Π]

δΠi(t,x)
− δG[φ,Π]

δφi(t,x)

δF [φ,Π]

δΠi(t,x)

)

, (11.11)

so that

{φi(t,x), Πj(t,y)}PB = δij δ
(3)(x− y) , (11.12)

{φi(t,x), φj(t,y)}PB = {Πi(t,x), Πj(t,y)}PB = 0 .

If the canonical variables φi and Πi are not subject to any constraints, the canonical equa-
tions of motion (11.10) are exactly equivalent to the original Euler-Lagrange equations
(11.4).

Formulation of the field dynamics in terms of the action I allows to easily identify
symmetries of the field equations of motion and, via the Noether theorem, of the corre-
sponding conserved quantities. We begin with the case of symmetries which do not affect
space-time coordinates (these can be ordinary global symmetries or, in the case of theories
involving fermionic fields, “rigid” supersymmetries). We consider first a general change
of the field variables which can always be written in the form

φi(x) → φ′
i(x) = φ′

i(φ(x)) . (11.13)

The dynamics in the new field variables φ′
i(x) is detemined by a new Lagrangian density

L′ which depends on the fields φ′
i, and which can be chosen so that7

L′(φ′, ∂µφ
′) = L(φ, ∂µφ) . (11.14)

7This is just as in classical mechanics in which one is allowed to use any set of dynamical variables,
qi(t) or q

′
i(t) = q′i(q(t), t), to characterize the state of motion of a given system. The equations of motion

in the new variables follow then from the new Lagrangian L′

d

dt

∂L′(q′, q̇′, t)

∂q̇′i
=
∂L′(q′, q̇′, t)

∂q′i
.

Because the Lagrangian has a well defined physical interpretation (e.g. L = T − V in nonrelativistic me-
chanics), the new Lagrangian L′(q′, q̇′, t) is obtained just by inverting the relations q′i = q′i(q(t), t) and in-
serting qi(t) = qi(q

′(t), t) into the original Lagrangian: L′(q′(q), q̇′(q), t) = L(q(q′(t), t), q̇(q′(t), q̇′(t), t), t)
where q̇(q′(t), q̇′(t), t) ≡ (∂qi/∂q

′
j) q̇

′
j + ∂qi/∂t.
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In this case

I ′ − I ≡
∫

d4xL′(φ′, ∂µφ
′)−

∫

d4xL(φ, ∂µφ) ≡ 0 , (11.15)

i.e. I ′ = I provided the field configurations φi(x) and φ′
i(x) are related by (11.13).

Consequently, if the configuration φi(x) of the original fields is a stationary point of I,
that is, if φi(x) satisfy the equations (11.4), then the configuration φ′

i(x) related to φi(x)
by (11.13) is a stationary point of I ′, which implies that the fields φ′

i(x) satisfiy the
equations

∂ν
∂L′(φ′, ∂φ′)

∂(∂νφ′
i)

− ∂L′(φ′, ∂φ′)

∂φ′
i

= 0 , (11.16)

which are in general of different form than the equations (11.4) because L′(· , ·) is in
general a different function of its arguments than L(· , ·).

The choice of L′ satisfying the condition (11.14) is not the only possibility: any L′

such that

L′(φ′, ∂µφ
′) = L(φ, ∂µφ) + ∂µX µ(φ) , (11.17)

is equally good. In this case, the relation (11.15), gets replaced by

I ′ = I +

∫

d4x∂µX µ(φ) = I +

∫

dσµXµ(φ) , (11.18)

but still, if a configuration φi(x) is the stationary point of I[·], then φ′
i(x) related to φi(x)

by (11.13) is the stationary point of I ′[·] because δ
∫

d4x ∂µX µ(φ) = 0 for variations δφi
vanishing at t1 and at t2 and in the limit |x| → ∞.

It is important to realize, that we are not yet speaking of a symmetry of the field
equations of motion, but rather of the well known fact that in the Lagrangian formalism
states of a given system can be specified by an arbitrarily chosen set of dynamical variables.
A change of variables8 φi → φ′

i(φ) is a symmetry of the equations of motion if L′(· , ·)
leading to (11.17) is such that for some choice of X ′

µ(·)

L′(· , ·)− ∂µX ′
µ(·) = L(· , ·) , (11.19)

or - using the freedom to redefine L′ by subtracting from it a total four-divergence - if
for L′(· , ·) leading to (11.17) one can just take L(· , ·), because then the equations of

8Mathematically speaking, the fields φi(x), i = 1, . . . , N define mappings from the space-time into
some N -dimensional “target” space T (N), called by physicists the internal space. Therefore φi(x) should
be viewed as coordinates of a point of a manifold T (N) onto which the space-time point (that is a point
of the so-called base manifold), characterized by the coordinates xµ is mapped. A change of variables
φi → φ′i can be due to changing the coordinate system on T (N), in which case we have to do with a
passive transformation, or due to considering a transformed system (active transformation) - cf. Section
4.1.
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motion (11.4) satisfied by the fields configuration φi(x) which is a stationary point of I[·]
have the same form as the equations of motion (11.16) satisfied by the configuration φ′

i(x)
which are stationary points of I ′[·]. In other words, φi(x) and φ

′
i(x) are both solutions of

the same Euler-Lagrange equations. Thus, the condition that the change φi → φ′
i(φ) is a

symmetry reads

L(φ′, ∂φ′) = L(φ, ∂φ) + ∂µX µ(φ) . (11.20)

Restricting now the discussion to transformations depending on some parameters θa,
a = 1, . . . , n, which can be continously deformed to the identity transformation (see
Section 4.2),9 we consider an infinitesimal symmetry (in the sense specified above) trans-
formation10

φi(x) → φ′
i(x) = φi(x) + δθaF

a
i (φ) ≡ φi(x) + δ0φi(x) , (11.21)

we write

L(φ′, ∂φ′) = L(φ+ δ0φ, ∂φ + δ0∂φ) = L(φ, ∂φ) + δL(φ, ∂φ) , (11.22)

with δL being of first order in δ0φi (i.e. in δθa). Using then (11.3) as well as the con-
dition (11.20) combined with (11.18) we can write the equality (correspondingly to the
infinitesimal character of the considered field transformations we write δX µ instead of
X µ)11

0 ≡
∫

Ω

d4x [L(φ′, ∂φ′)−L(φ, ∂φ)− ∂µδX µ(φ)] (11.23)

=

∫

Ω

d4x

{[

∂L
∂φi

− ∂µ
∂L

∂(∂µφi)

]

δ0φi + ∂µ

[

∂L
∂(∂µφi)

δ0φi − δX µ(φ)

]

+ . . .

}

.

The first bracket in the above formula vanishes for the fields φi satisfying the equations
of motion (11.4). Thus, for such a fields configuration φi(x) the quantity

jµ(x) =
∂L

∂(∂µφi)
δ0φi − δXµ(φ) , (11.24)

is conserved, i.e. satisfies the equation

∂µjµ(x) = 0 , (11.25)

9In theories with fields taking values in Grassmann-Bieriezin algebras - see Section 11.8 - one can
also consider transformations of the supersymmetric type the parameters θa of which are anticommuting
Grassmann variables; although in such a case the notion of continuous parameter changes is only formal,
the results obtained below still apply.

10The reasoning can be straightforwardly generalized to local transformations with δ0φi(x) =
δθa(x)F

a
i (φ).

11This reasoning can easily be generalized to Lagrangian densities depending on higher field derivatives.
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because if (11.21) is a symmetry transformation, (11.23) is identically equal to zero, and no
special requirements on the values at t = t1 and t = t2 of the field changes δ0φi(x) related
to a symmetry transformation are imposed12 (of course, δ0φi(x) must vanish at spatial
infinity or, in the finite volume, should not change the boundary conditions satisfied by the
fields). If the transformations depend on n independent parameters, there are, therefore,
n conserved Noether currents

jaµ =
∂L

∂(∂µφi)
F a
i (φ)− X a

µ (φ) , a = 1, . . . , n, (11.26)

(since δX µ must be of first order in the transformation parameters δθa, it must take the
form δXµ(φ) = δθaX a

µ (φ)). The Noether charges Qa given by

Qa =

∫

d3x ja0 (t,x) , a = 1, . . . , n, (11.27)

are then time independent (conserved) quantities provided the fields fall off sufficiently
rapidly at spatial infinity (or, in a finite volume, satisfy the appropriate boundary con-
ditions). This can be seen directly from (11.23): upon using the Stokes theorem this
equality reduces, for fields φi(x) satisfying the equations of motion, to

0 =

∫

∂Ω

dσµ jµ(x) . (11.28)

which, if Ω is the part of the space-time bounded by two hyperplanes t = t1 and t = t2,
means precisely that13

∫

d3x j0(t1,x) =

∫

d3x j0(t2,x) . (11.29)

In most cases the transformations (11.21) are linear14 in the fields φi

δθaF
a
i (φ) = −iδθaT aijφj , (11.30)

(summations over a and j are understood) with T a being a set of Hermitian matrices -
a matrix representation of the generators of a symmetry group G - forming a basis of a

12For this reason the second term on the right hand side of (11.18), if present, is nonvanishing - it
receives contributions from the t = t1 and t = t2 hypersufaces.

13Notice that the situation is quite different in the case of theories formulated in the Euclidean space
with coordinates x̄µ: because in this case fields and, therefore, also the symmetry changes δ0φi are bound
to vanish for |x̄| → ∞ in all directions, one cannot infer from (11.23) the existence of conserved currents
and, hence, there are no conserved charges (11.27).

14However, symmetries realized on fields nonlinearly also play an important role, mainly in effective
quantum field theories. E.g. the so-called chiral Lagrangians of effective theories of strong interactions
of low energy lightest mesons are invariant with respect to nonlinear transformations of fields.
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representation of the dimension n Lie algebra of G (see Chapter 4). The matrix generators
T a satisfy then the commutation rule

[

T a, T b
]

= iT cf ab
c , (11.31)

with some structure constants f ab
c and will be assumed to be normalized by the condition

tr(T aT b) = 1
2
δab. The transformations (11.13) are then infinitesimal forms of finite sym-

metry transformations of fields. The characteristic feature of such internal symmetries15

is that X a
µ ≡ 0 and it is then easy to see that in the canonical Hamilton’s formalism

the Noether charges Qa generate via Poisson brackets the infinitesimal symmetry trans-
formations (11.30) of field variables. Indeed, the time component of the current is then
simply

ja0 (t,x) = −iΠi(t,x)T
a
ij φj(t,x) , (11.32)

and using (11.12) one gets

δθa {Qa, φi(t,x)}PB = iδθaT
a
ij φj(t,x) , (11.33)

so that φ′
i(x) ≈ φi(x)− δθa {Qa, φi(x)}PB.

In order to discuss space-time transformations (like translations, rotations or Lorentz
boosts) the formalism has to be generalized. An infinitesimal such transformation xµ →
x′µ

x′µ = xµ + δxµ(x) = xµ + δθaf
aµ(x) , (11.34)

should be accompanied by a corresponding infinitesimal transformation φi(x) → φ′
i(x

′) of
the fields:16

φ′
i(x

′) = φi(x) + δφi(x) = φi(x) + δθaF
a
i (φ(x)) . (11.35)

For example, in the case of the infinitesimal transformation xµ → x′µ with

x′µ = xµ + δωµνx
ν − δǫµ , (11.36)

corresponding to a change of the reference frame, the fields φi(x) transform under some
regular (in general reducible) matrix representation (J µν)ij of the Lorentz group17

φ′
i(x

′) = φi(x)−
i

2
δωµν (J µν)ij φj(x) . (11.37)

15More generally, whenever Xµ(φ) cannot be removed by a suitable redefinition of L by a total four-
divergence, we have to do with transformations having a space-time character (for example, Xµ(φ) cannot
be removed in the case of supersymmetric transformations); if X a

µ ≡ 0 one speaks of genuinely internal
symmetries.

16This means that the change of the space-time (base manifold) coordinate system entails a related
coordinate change of the internal (target) space.

17The simplest nontrivial is the vector representation with
(

J λν
vec

)µ

κ
given by (D.3) acting on vector

fields φi ≡ V κ, but higher rank tensor or spinorial representations can also be considered.
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One can also consider other space-time transformations xµ → x′µ (and the associated
transformations of fiels) such as e.g. conformal transformations etc.

The system is in the new space-time coordinates x′µ represented by the new field
variables φ′

i(x
′) if there is such a new Lagrangian density L′ that when any two field

configurations φi(x) and φ
′
i(x

′) are related to each other by (11.34) and (11.35)

I ′ − I ≡
∫

Ω′
d4x′ L′(φ′(x′), ∂′µφ

′(x′))−
∫

Ω

d4xL(φ(x), ∂µφ(x)) = 0 , (11.38)

where ∂′µ denotes the derivative with respect to x′µ and Ω′ is the image of the integration
domain Ω under the change of variables (11.34). (11.38) is a sufficient condition for the new
fields φ′

i(x
′) obtained via (11.35) from the solutions φi(x) of the equations of motion (11.4)

following from L to be solutions of the equations of motion following from L′. However as
previously, the same conclusion concerning φ′

i(x
′) obtains if L′(φ′(x′), ∂′µφ

′(x′)) is chosen
so that

d4x′L′(φ′(x′), ∂′µφ
′(x′)) = d4x [L(φ(x), ∂µφ(x)) + ∂µX µ(φ(x))] , (11.39)

with some four-vector function X µ(φ).

Again, one speaks of a space-time symmetry, if (by an appropriate choice of the factor
X ′
µ(φ

′)) for the new Lagrangian density L′(·, ·) leading to (11.39) one can take the original
L(·, ·):

L′(φ′(x′), ∂′µφ
′(x′)) = L(φ′(x′), ∂′µφ

′(x′)) , (11.40)

because then the equations of motion satisfied by φ′
i(x

′) (in the space-time coordinates
x′µ) have the same form as the equations of motion (in xµ) satisfied by φi(x). Thus, if
(11.34) combined with (11.35) are symmetry transformations of the theory, the condition
(11.39) implies the following identity

d4x′L(φ′(x′), ∂′µφ
′(x′)) = d4x [L(φ(x), ∂µφ(x)) + ∂µX µ(φ(x))] , (11.41)

in which one understands that x′µ in the left hand side is expressed in terms of xµ using
(11.34), so that in (11.38) Ω′ → Ω (for a general change (11.34) of the coordinates d4x′ 6=
d4x, i.e. det(∂x′/∂x) 6= 1).

The transformations (11.36) accompanied by (11.37) should be symmetries in the
above sense of the action I of a relativistic field theory. In this case det(∂x′/∂x) = 1 and
the condition (11.41) takes the form similar to (11.20), except for different space-time
coordinates on both sides.

Conserved quantities corresponding to space-time symmetry transformations can be
found using the condition (11.39) (or (11.41)). To derive them it is technically convenient
to split the total change δφi(x) of the fields as follows18

δφi(x) ≡ φ′
i(x

′)− φi(x)

= φ′
i(x

′)− φ′
i(x) + φ′

i(x)− φi(x) ≡ δxµ∂µφi(x) + δ0φi(x) ,

18It is also possible to arrive at the final result (11.51) without this splitting.
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(to the first order in the transformation parameters δθa the fields φ′
i have been in the

term with δxµ replaced by φi) and to work with the functional changes of fields δ0φi(x) =
φ′
i(x)− φi(x) which have the property

δ0(∂µφi(x)) = ∂µ(δ0φi(x)) . (11.42)

Thus, to the first order in the infinitesimal parameters δθa, we write the transformed fields
and their derivatives as19

φ′
i(x

′) = φi(x) + δ0φi(x) + δxλ∂λφi(x) +O(δθ2) ,

∂′µφ
′
i(x

′) = ∂µφi(x) + ∂µ(δ0φi(x)) + δxλ∂λ∂µφi(x) +O(δθ2) , (11.43)

∂′ν∂
′
µφ

′
i(x

′) = ∂ν∂µφi(x) + ∂ν∂µ(δ0φi(x)) + δxλ∂λ∂ν∂µφi(x) +O(δθ2) ,

etc. This allows to represent L(φ′(x′), ∂′µφ
′(x′)) in the identity (11.41) in the form20

L(φ′(x′), ∂′µφ
′(x′)) = L(φ(x), ∂µφ(x)) + δL , (11.44)

in which

δL =
∂L
∂φi

δ0φi +
∂L

∂(∂µφi)
∂µδ0φi + δxµ∂µL+O(δθ2) , (11.45)

where in turn

δxµ∂µL ≡ δxµ
[

∂L
∂φi

∂µφi(x) +
∂L

∂(∂λφi)
∂µ∂λφi(x)

]

. (11.46)

The Lagrangian density change (11.45) can also be rewritten as

δL = δxµ∂µL+

[

∂L
∂φi

− ∂µ
∂L

∂(∂µφi)

]

δ0φi + ∂µ

(

∂L
∂(∂µφi)

δ0φi

)

. (11.47)

Using then the Jacobian21

det

(

∂x′µ
∂xν

)

= det

(

δνµ +
∂δxµ(x)

∂xν

)

≈ 1 + tr

(

∂δxµ
∂xν

)

= 1 + ∂µδx
µ , (11.48)

to explicitly express d4x′ through d4x, one writes the left hand side of (11.41) to the first
order in δθa in the form

d4x′ L(φ′(x′), ∂′µφ
′(x′)) = d4x′ [L(φ(x), ∂µφ(x)) + δL]

= d4xL(φ(x), ∂µφ(x)) + d4x [δL+ L ∂µδxµ] . (11.49)

19From (11.34) it follows that ∂x′λ/∂xκ = δλκ + ∂(δxλ)/∂xκ, and ∂xλ/∂x′µ = δλµ − ∂(δxλ)/∂xµ. Thus,

∂′µ = ∂µ − (∂µ(δx
λ))∂λ and the terms with derivatives of δxλ cancel out in (11.43).

20We again assume, that L depends only on fields and their first derivatives. Conserved Noether charges
corresponding to more complicated Lagrangian densities can be derived using similar methods.

21We use the relation det(1 +A) = exp{tr ln(1 +A)} ≈ 1 + tr(A).
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Thus, for field configurations φi(x) satisfying the equations of motion (11.4) the re-
lation (11.39) leads to the identity (again δX µ denotes the term of first order in δθ in
X µ):

∫

Ω

d4x

[

L ∂µδxµ + δxµ∂µL+ ∂µ

(

∂L
∂(∂µφi)

δ0φi

)

− ∂µδX µ(φ)

]

+O(δθ2)

=

∫

Ω

d4x∂µ

[

δxµL+
∂L

∂(∂µφi)
δ0φi − δX µ(φ)

]

+O(δθ2) = 0 . (11.50)

Taking into account the arbitrariness of Ω and reexpressing δ0φi back in terms of δφi ≡
φ′
i(x

′)− φi(x) = δ0φi + δxµ∂µφi we see that the quantity

Jµ =

[

∂L
∂(∂µφi)

∂ρφi − gµρL
]

δxρ − ∂L
∂(∂µφi)

δφi + δX µ(φ) . (11.51)

evaluated on field configuration φi(x) satusfying the equation (11.4) is conserved, that is,
∂µJ

µ(x) = 0. It plays, therefore, the role of the Noether symmetry current of space-time
transformations.

We now consider the Noether currents (11.51) associated with the Poincaré trans-
formations of the form (11.36). Translations correspond to δωµν = 0, δǫµ 6= 0 and
φ′
i(x

′) = φi(x), so that in this case δφi = 0. The corresponding Noether current which
(assuming that δX µ = 0, which is usually the case) reads

T µνcan =
∂L

∂(∂µφi)
∂νφi − gµνL , (11.52)

is called the canonical energy-momentum tensor. It is by construction conserved:

∂µT
µν
can(x) = 0 . (11.53)

The four constants of motion (i.e. time independent quantities)

P µ =

∫

d3xT 0µ
can(t,x) , (11.54)

play the role of the total energy P 0 of the system of fields and of its total momentum
vector P i. It can be shown that if T νµcan is conserved (and only then!), P µ given by (11.54)
transforms as a true four-vector when the reference frame is changed.

In the case of Lagrangian densities which are of the general form

L(φi, ∂µφi) =
1

2
∂µφi∂

µφi − V (φ) , (11.55)

with a function V (φ) called the field potential, going over to the Hamilton’s formalism,
one finds

T 00
can =

1

2
ΠiΠi +

1

2
∇φi ·∇φi + V (φ) ≡ H , (11.56)

T 0k
can = Πi∂

kφi .
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In this case it is easy to check that the transformations of the field φi(x) corresponding
to spacetime translations are generated by the Poisson brackets:

{P µ, φi(x)}PB = − ∂µφi(x) , (11.57)

so that φ′
i(x) = φi(x)− {P µ, φi(x)}PB δǫµ.

The canonical energy-momentum tensor (11.52) is not always symmetric in its indices
µν. However, instead of T µνcan one can always use a modified tensor

T µν(x) = T µνcan(x) +Hµν(x) , (11.58)

In which Hµν(x) is a tensor which is conserved, ∂µH
µν(x) = 0, and such that

∫

d3xH0ν(x) = 0 . (11.59)

The associated conserved charges P µ obtained from the modified tensor T µν are then (if
the fields vanish sufficiently fast at spatial infinity) the same as the ones obtained from
T µνcan. These conditions are met if

Hµν(x) = ∂ρH
ρµν(x) , (11.60)

where Hρµν(x) is antisymmetric in its ρµ indices. Using this freedom one can always
replace T µνcan by a symmetric tensor T µνsymm = T νµsymm. In the case of fields which transform
nontrivially under the Lorentz group (as in (11.37)) of particular interest is the Belinfante
symmetric tensor obtained by taking

Hρµν =
1

2

[

∂L
∂(∂ρφi)

(−iJ µν)ij φj −
∂L

∂(∂µφi)
(−iJ ρν)ij φj −

∂L
∂(∂νφi)

(−iJ ρµ)ij φj

]

. (11.61)

It is the Belinfante symmetric energy-momentum tensor which appears as the right hand
side of the Einstein’s equations of General Relativity.22

Conserved currents associated with the Lorentz transformations (δǫµ = 0, δωµν 6= 0 in
(11.36)) are derived in a similar way. Using δxµ = δωµνx

ν and δφi = − i
2
δωµν (J µν)ij φj(x)

following from (11.37) we get (as previously asuming that δX µ = 0)

Mµνκ
can (x) = xν T µκcan − xκ T µνcan +

∂L
∂(∂µφi)

(−iJ νκ)ij φj . (11.62)

22That is, it coincides with the energy-momentum tensor defined as the variational derivative with
respect to the metric tensor gµν(x) of the action I[φ] written in the generally covariant form (g ≡
−det(gµν))

T µν
symm(x) =

δI[φ]

δgµν(x)
=

δ

δgµν(x)

∫

d4x
√
gL .
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The conserved (i.e. time independent) charges

Jνκ =

∫

d3xM0νκ
can (t,x) , (11.63)

are antisymmetric Jνκ = Jκν . Again, it can be shown that if Mµνκ
can is conserved, Jνκ

transforms as a true four-dimensional second rank tensor. The spatial components J ij of
(11.63) play the role of the total angular momentum of the considered system of fields. It
is straightforward to check that if the Lagrangian density has the form (11.55), the tensor
Jνκ generates, through the Poisson brackets, Lorentz transformations of the fields φi(x):

{Jµν , φi(x)}PB = −
[

(xµ∂ν − xν∂µ)δij + (−iJ µν)ij

]

φj(x) , (11.64)

so that φ′
i(x) = φi(x) − 1

2
δωµν {Jµν , φi(x)}PB. It can also be shown, that the tensor

(11.62) differs by a total four-divergence from the tensor23

Mµνκ = xν T µκsymm − xκ T µνsymm , (11.65)

in which T µνsymm is the Belinfante symmetric energy-momentum tensor obtained from
(11.61), which gives therefore the same conserved Noether charges Jµν (for field con-
figurations satisfying the equations of motion (11.4) and vanishing sufficiently fast at
spatial infinity).

11.2 Canonical quantization of a real scalar field

In this section we discuss in details quantization of the simplest example of a relativistic
field - the real scalar field ϕ(x). No special difficulties, beyond those inherent in treating
systems of infinitely many degrees of freedom, arise in this case. More complicated cases
of vector (in particular of the electromagnetic field) and spinor fields will be discussed
sections 11.7 and 11.8, respectively. We consider first quantization of the noninteracting
field ϕ(x) and then outline modifications introduced by interactions. At the end of this
section these results are generalized to systems of many interacting fields.

The simplest dynamics of a real field transforming as a scalar when the inertial ref-
erence frame is changed is given (in units in which c = ~ = 1) by the Poincaré invariant
Lagrangian density

L0 =
1

2
∂µϕ∂

µϕ− 1

2
M2ϕ2 . (11.66)

By a rescaling of the field variable ϕ (i.e. by a simple canonical transformation) the first
term quadratic in the first derivatives, called the kinetic term, can always be brought into
the canonical form as above. In the absence in the Lagrangian density of powers of ϕ

23The tensor (11.65) is conserved due to the symmetry and conservation of T µκ
symm.
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higher than the second (a feature which makes this theory solvable both classically and
quantum mechanically) the negative sign of the second term is indispensable to ensure,
as will be seen, the boundedness from below of the spectrum of the resulting quantum
Hamiltonian and the relativistic relation E2(k) = k2 +M2 between three-momentum k

and energy E of the Hamiltonian eigenstates identified with one-particle states. To stress
the similarity to the system of coupled oscillators discussed in Section 5.6 we write the
corresponding Lagrangian in the more general, a priori spatially nonlocal, form

L0 =
1

2

∫

d3x ϕ̇2(t,x)− 1

2

∫

d3x

∫

d3yϕ(t,x)K(x,y)ϕ(t,y) , (11.67)

with a real and symmetric, K(x,y) = K(y,x), kernel. Formally, the value of ϕ at every
point x can be treated as an independent canonical variable Qx(t) = ϕ(t,x). Accordingly,
the Euler-Lagrange equation of motion of the system defined by (11.67) can be written
in the form

d

dt

δL0

δϕ̇(t,x)
− δL0

δϕ(t,x)
= 0 , (11.68)

(the derivatives with respect to ϕ and ϕ̇ are functional derivatives). Applied to (11.67)
this gives the equation

d2

dt2
ϕ(t,x) +

∫

d3yK(x,y)ϕ(t,y) = 0 . (11.69)

The kernel K(x,y) of the local Lagrangian density (11.66) takes (restoring the constants
c and ~ for decoration) the form

K(x− y) = −c2∇2
(x)δ

(3)(x− y) +
M2c4

~2
δ(3)(x− y) , (11.70)

so that24

L0 =
1

2

∫

d3x

[

ϕ̇2(t,x)− c2(∇ϕ(t,x))2 − M2c4

~2
ϕ2(t,x)

]

. (11.71)

The Euler-Lagrange equation (11.68) is in this case equivalent to the field equation (11.4)
and reads

(

∂2

∂t2
− c2∇2 +

M2c4

~2

)

ϕ(t,x) = 0 . (11.72)

24In units [M ], [T ] and [L] (mass, time and length) the action I =
∫

dtL has dimension of ~, that
is, [M ][L]2[T ]−1. It follows from (11.71) that the field ϕ has dimension [M ]1/2[L]−1/2. Furthermore,
since Π = ϕ̇, it has dimension [M ]1/2[L]−1/2[T ]−1 and the Hamiltonian (11.75) has the right dimension
[M ][L]2[T ]−2 of energy. See also Appendix I.
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To quantize the system one has first to set up the canonical (Hamilton’s) formalism.
To this end one defines the canonical momenta Px(t) ≡ Π(t,x) conjugated to the canonical
variables Qx(t) ≡ ϕ(t,x):

Π(t,x) =
δL0

δϕ̇(t,x)
= ϕ̇(t,x) , (11.73)

and constructs the Hamiltonian

H0 =

∫

d3xΠ(t,x)ϕ̇(t,x)− L0 , (11.74)

in which ϕ̇(t,x) has to be expressed in terms of Π(t,x) and ϕ(t,x):

H0 =
1

2

∫

d3xΠ2(t,x) +
1

2

∫

d3x

∫

d3yϕ(t,x)K(x− y)ϕ(t,y) . (11.75)

It is easy to check, that the classical Hamilton’s equations

d

dt
ϕ(t,x) = {ϕ(t,x), H}PB =

δH

δΠ(t,x)
,

d

dt
Π(t,x) = {Π(t,x), H}PB = − δH

δϕ(t,x)
, (11.76)

are fully equivalent to the Euler-Lagrange equation (11.4), i.e. to (11.72).

Quantization in the Schrödinger picture of a classical system means promoting (a set
of) its real canonical variables Qi and Pj taken at one particular instant, usually t = 0, to

time independent Hermitian operators Q̂i and P̂j satisfying the canonical commutation
rules25

[Q̂i, P̂j] = i~
{

Qi, Pj
}

PB
= i~ δi j , (11.77)

and [Q̂i, Q̂j] = [P̂i, P̂j] = 0 and representing the resulting algebra of operators in some
Hilbert space of states. Following this prescription, in the considered case one imposes
on the operators ϕ̂ and Π̂ the conditions

[ϕ̂(x), Π̂(y)] = i~ δ(3)(x− y) ,

[ϕ̂(x), ϕ̂(y)] = [Π̂(x), Π̂(y)] = 0 . (11.78)

25A stronger requirement, that for any pair of classical observables F (Q,P ) and G(Q,P ) such that
{F (Q,P ), G(Q,P )}PB = A(Q,P ) the corresponding operators in the quantum theory satisfy the relation

[

F (Q̂, P̂ ), G(Q̂, P̂ )
]

= i~A(Q̂, P̂ ) ,

cannot in general be imposed because of problems with ordering of operators; it can hold only for
observables F (Q,P ) and G(Q,P ) which are at most linear in the canonical variables Q and P .
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Upon quantization the Hamiltonian (11.75) also becomes a Hermitian (owing to the Her-
miticity of ϕ̂ and Π̂) operator:

H0 =
1

2

∫

d3x
[

Π̂2(x) + (∇ϕ̂(x))2 +M2ϕ̂2(x)
]

. (11.79)

In principle, in full analogy with the ordinary quantum mechanics of a system having
n degrees of freedom formulated in the position space, i.e. in L2(R

n) as the Hilbert
space, in which the system’s states are represented by wave functions ψ(Q1, Q2, . . . , t)
(the probability amplitude of finding the system in the classical state characterized by
the values Qi of its canonical variables) on which Q̂i’s act by multiplication by Qi and
P̂j ’s act as −i~∂/∂Qj , one can represent the algebra (11.78) of the operators ϕ̂(x) and

Π̂(x) in the space of all functionals Ψ[ϕ] defined on (classical) field configurations ϕ(x)
vanishing at |x| → ∞. In this nonseparable Hilbert space ϕ̂(x) and Π̂(x) act through

ϕ̂(x)Ψ[ϕ, t] = ϕ(x)Ψ[ϕ, t] , Π̂(x)Ψ[ϕ, t] = −i~ δΨ[ϕ, t]

δϕ(x)
, (11.80)

and the “wave functionals” Ψ[ϕ, t] ≡ 〈ϕ(x)|Ψ(t)〉 can heuristically be treated as repre-
senting the probability amplitude that the field takes on at time t the configuration ϕ(x).
While this approach can offer a useful insight into the global structure of the theory’s
Hilbert space (which proves indispensable when e.g. topological aspects of gauge theories
are to be investigated), it does not immediately lead to the interpretation of field states
in terms of particles (in the nonseparable Hilbert space the fundamental commutation
relations (11.78) are not realized irreducibly). Such an interpretation emerges naturally
(at least in the case of free field theories) if one finds a representation of the ϕ̂(x) and
Π̂(x) operators in terms of some other operators the commutation relations of which (their
algebra) can be represented in some Fock space (cf. Chapter 5) - a separable subspace of
the “big” Hilbert space H (the one specified above) of all possible state-vectors. In the
case of field theories defined on the flat Minkowski space-time, Hamiltonians of which are
time independent, this Fock space should be chosen in H in such a way as to include one
of the lowest energy eigenvectors (some field theories, like e.g. supersymmetric ones or
gauge theories can have in the nonseparable Hilbert space multiple such vectors) of the
Hamiltonian operator of the theory. In free field theories it is relatively easy to chose the
Fock space so that the Hamilonian lowest energy eigenvector |Ω0〉 is just the vector |0Fock〉
out of which other Fock state-vectors are built by the action of the creation operators. In
theories of interacting fields the lowest energy eigenvector of the full Hamiltonian H , the
true vacuum |Ω〉, is at best a complicated formal superposition of vectors belonging to
the the chosen Fock space to which the vector |Ω0〉 belongs (and usually is identical with
the vector |0Fock〉), but usually, from the orthodox mathematical point of view, it does
not belong to this Fock space. (Renormalization consisting essentially of working with
some cutoffs making effectively the number of degrees of freedom finite can be viewed also
as a way of going around this difficulty). In most cases26 representing the algebra of the

26The exception is e.g. the Hamiltonian of the electromagnetic field quantized using the Gupta-Bleuler
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field operators in the suitable Fock space has also the welcome effect of giving the free
part H0 of the complete Hamiltonian the form similar to the one of uncoupled harmonic
oscillators (thereby making its spectrum explicit).

To illustrate the programme oulined above and to show how the Fock space vectors are
related to the states of the quantized field we consider first quantization of the classical
real scalar field ϕ(x) satisfying periodic boundary conditions in the box of finite volume27

V = L3. To implement these conditions every field configuration is written in the form28

ϕ(x) =
1√
V

∑

k

ϕk e
ik·x , (11.81)

with the wave vectors k forming a countably infinite (i.e. discrete) set: k = (2π/L)n,
where n = (nx, ny, nz), ni ∈ Z. Since the field ϕ(x) is real, ϕ−k = ϕ∗

k. Expressed in
terms of the coefficients ϕk, which play now the role of new variables, the lagrangian L0

corresponding to the Lagrangian density (11.66), which sets the dynamics of the field
ϕ(x), takes the form29

L0 =

∫

V

d3xL0 =
1

2

∑

k

(

ϕ̇kϕ̇
∗
k − ω2

kϕkϕ
∗
k

)

=
1

2

(

ϕ̇2
0 − ω2

0ϕ
2
0

)

+
∑

k>0

(

ϕ̇kϕ̇
∗
k − ω2

kϕkϕ
∗
k

)

. (11.82)

Here ω2
k ≡ k2+M2. In the second line the sum over discrete wave vectors k has been split

into the term with k = 0 and the sum over only half of nonzero vectors k (this is somewhat
heuristically denoted by k > 0) accounting for the fact that ϕ̇kϕ̇

∗
k ≡ ϕ̇kϕ̇−k = ϕ̇−kϕ̇k, etc.

To completely reduce the considered field to a system characterized by an infinite set of
ordinary real canonical variables one writes

ϕ0 ≡ q0 , ϕk ≡ 1√
2
(qk + iq̄k) for k > 0 , (11.83)

so that the Lagrangian takes the form

L0 =
1

2
(q̇20 − ω2

0q
2
0) +

1

2

∑

k>0

(

q̇2k − ω2
kq

2
k + ˙̄q

2
k − ω2

kq̄
2
k

)

. (11.84)

method (Section 11.11) with the gauge parameter ξ 6= 1 or the nonabelian Yang-Mills fields (Section
20.3) quantized in an analogous gauge.

27Do not confuse this L with the Lagrangian.
28The reasoning presented here is essentially identical with the one used in Section 3.8 in quantizing

the free electromagnetic field (in the gauge ϕ = 0, ∇·A = 0.
29The necessary orthogonality and completeness relations read

∫

V

d3x eix·(k−k′) = V δk,k′ ,
∑

k

eik·(x−y) = V δ(3)(x− y) .
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Going over to the Hamiltonian is then straightforward:

H0 =
1

2
(p20 + ω2

0q
2
0) +

1

2

∑

k>0

(

p2k + ω2
kq

2
k + p̄2k + ω2

kq̄
2
k

)

, (11.85)

and the quantization just means promoting the new canonical variables q0, p0, qk, pk and
q̄k, p̄k (with k > 0) to Hermitian operators satisfying the standard commutation rules

[q0, p0] = i~, [qk, pk′] = [q̄k, p̄k′] = i~δkk′ . (11.86)

etc. One can then construct the field operators ϕ̂(x) and Π̂(x):

ϕ̂(x) ≡ 1√
V

(

q0 +
∑

k>0

qk + iq̄k√
2

eik·x +
∑

k>0

qk − iq̄k√
2

e−ik·x

)

,

Π̂(x) ≡ 1√
V

(

p0 +
∑

k>0

pk + ip̄k√
2

eik·x +
∑

k>0

pk − ip̄k√
2

e−ik·x

)

, (11.87)

Writing them in the form (thereby defining the operators ϕ̂k and Π̂k)

ϕ̂(x) =
1√
V

∑

k

ϕ̂k e
ik·x , Π̂(x) =

1√
V

∑

k

Π̂k e
ik·x , (11.88)

(with the sums extending now to all k) one finds, using the rules (11.86), that

[ϕ̂k, Π̂k′ ] = i~ δ−k,k′ , [ϕ̂k, ϕ̂k′] = [Π̂k, Π̂k′ ] = 0 . (11.89)

This ensures that the canonical commutation relations (11.78) are satisfied30 by the op-
erators ϕ̂(x) and Π̂(x).

The “big” Hilbert space H, the vectors of which represent all possible states of the
field as the quantum system, consists of all functions Φ(q0, qk1

, q̄k1
, . . .) of the countably

infinite set of variables q0, qk and q̄k. The natural scalar product in H is given by

(Φ2|Φ1) =

∫

dq0
∏

k>0

dqkdq̄kΦ
∗
2(q0, qk1

, q̄k1
, . . .)Φ1(q0, qk1

, q̄k1
, . . .) . (11.90)

(Due to the infinite number of variables, finiteness of such scalar products and normal-
izability of the “wave functions” Φ is, of course, a delicate question). Since each set of
values of q0, qk and q̄k uniquely specifies a configuration of the classical field ϕ(x), the
“wave function” Φ(q0, qk1

, q̄k1
, . . .) of the system (the field) can be given the standard

probablistic interpretation: the quantity

|Φ(q0, qk1
, q̄k1

, . . .)|2dq0
∏

k>0

dqkdq̄k ,

30One can also take the viewpoint that this is the proper justification of these relations.
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can be treated (provided the product
∏

k>0 dqkdq̄k of the differentials is finite), as the
probablity that in the field quantum state represented by Φ the classical configuration of
the field will be found between ϕ(x) and ϕ(x) + δϕ(x), where δϕ(x) is related to dqk and
dq̄k.

The peculiar feature of the “big” Hilbert space H introduced above is its nonsepara-
bility. As a result, a choice of a set of functions which would constitute the basis of the
whole Hilbert space H if the number of variables were finite, specifies only a particular
subspace of H; two different choices of such sets can specify subspaces which are mutually
orthogonal in the scalar product (11.90). As such a set of functions one can take the
products

Ψn0 nk1
n̄k1

...(q0, qk1
, q̄k1

, . . .) = ψn0
(q0)ψnk1

(qk1
)ψn̄k1

(q̄k1
) . . . , (11.91)

of functions ψn(q), n = 0, 1, 2, . . . of one variable forming a complete discrete set of
normalizable functions of L2(R). Such complete sets of functions can be different for
different variables q0, qk1

, q̄k1
, . . . For instance, as ψn(q) one can take the sets of harmonic

oscillator wave functions corresponding to frequencies Ω which can arbitrarily change from
one variable to another (i.e. Ω0, Ωk and Ω̄k can be arbitrary functions of k); it should
be clear that a priori this dependence needs not be correlated in any particular way with
ωk =

√
k2 +M2. State vectors (11.91) can be denoted |n0, nk1

, n̄k1
, . . .〉. Singling out the

“Fock-vacuum” vector31 |0, 0, . . .〉 ≡ |0Fock〉, introducing the operators A0, A
†
0, Ak, A

†
k

and Āk, Ā
†
k (k > 0) acting on the vectors |n0, nk1

, n̄k1
, . . .〉 as do the bosonic creation and

annihilation operators in the occupation number representation (see Section 5.2) that is,
so that

A0|0Fock〉 = Ak|0Fock〉 = Āk|0Fock〉 = 0 ,

A†
ki
|n0, . . . , nki

, n̄ki
, . . .〉 =

√

nki
+ 1 |n0, . . . , nki

+ 1, n̄ki
, . . .〉 ,

etc., and chosing as the basis the vectors |n0, nk1
, n̄k1

, . . .〉 with32 n0+nk1
+ n̄k1

+ . . . <∞
(and taking the Cauchy completion of the set of such vectors) one constructs the separable
Fock space. Since the operators q0, p0, qk, pk, q̄k, p̄k, can be expressed through A0, A

†
0,

Ak, A
†
k and Āk, Ā

†
k, their algebra (11.86) and therefore also the algebra (11.78) in this way

gets represented (irreducibly) in a separable Fock space. If the oscillator wave functions
are used in the products (11.91), the operators q0, p0, qk, pk, q̄k, p̄k, are related to the
operators A0, A

†
0, Ak, A

†
k, Āk, Ā

†
k and the frequencies Ω0, Ωk, Ω̄k in the standard way.

To explain why different choices of the sets of functions (11.91) can select orthogonal
subspaces in the “big” Hilbert space H, suppose Ψn0nk1

n̄k1
... and Φn0nk1

n̄k1
... are two such

31An “ontological” difference behind the formal similarity to the |void〉 vector introduced in Section
5.1 and the vector |0Fock〉 is perhaps worth noting: while in the second quantization formulation of many
particle quantum mechanics the vector |void〉 represents an artificial state of no particles (the literal
“void”), here |0Fock〉 is a real state of a fluctuating quantum field.

32Recall that the set of all vectors |n0, nk1
, n̄k1

, . . .〉 without any restiction on the sum of n’s is still
uncountably infinite.
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sets constructed using the oscillator wave functions with different assignments of the
frequencies Ω0, Ωk, Ω̄k to the complete sets of functions of variables q0, qk and q̄k (which

may also be centered at different values q
(0)
k , q̄

(0)
k ). Since the individual integrals in the

scalar product (11.90) are then certainly such that
∣

∣

∣

∣

∫ ∞

−∞

dqk φ
∗
mk

(qk)ψnk
(qk)

∣

∣

∣

∣

< 1 ,

for any nk and mk (also if nk = mk), it is easy to figure out that typically

(Φm0mk1
m̄k1

...|Ψn0nk1
n̄k1

...) = 0 ,

for any choice of the quantum numbers m0mk1
m̄k1

. . . and n0nk1
n̄k1

. . . This means that
vectors of H constructed as normalizable superpositions of the basis vectors Ψn0nk1

n̄k1
...

spanning the first Fock space cannot be obtained as superpositions of the vectors Φm0mk1
m̄k1

...

spanning another Fock space and vice versa. Since the algebra of the operators q0, p0, qk,
pk, q̄k, p̄k can be represented (through the respective annihilation and creation operators)
on any of the sets of functions, Ψn0nk1

n̄k1
..., or Φn0nk1

n̄k1
..., it follows that the big Hilbert

space H furnishes a reducible representation of the algebra (11.86). Thus, in principle
selecting (by chosing the right Fock space) a subspace of H in which the algebra of the
operators q0, p0, qk, pk, q̄k, p̄k is realized irreducibly is an important part of constructing
the quantum theory of any field. Note also that the existence of many possible Fock spaces
in which the algebra of the operators can be represented is not related to the particular
form of the function ωk in H0, that is to the Hamiltonian of the free field. It is also clear
that if the Hamiltonian is not quadratic in field variables (an interaction term is added
to H0 and the field is no longer free) the construction of the Fock spaces presented here
does not change because the form of the Hamiltonian has nowhere been used.

If the field is quantized in the flat Minkowski space-time, in which the time-independent
Hamiltonian operator plays a distinguished role, physically motivated is the choice of the
separable H subspace containing the lowest energy eigenvector of the theory Hamiltonian.
In a curved space-time, in which the notion of the Hamiltonian is more delicate, or if the
Hamiltonian is explicitly time-dependent (the field is coupled to some varying in time
external agents), the choice of the subspace of H is more problematic and one tries to
develop methods allowing, at least in the case of free fields defined on curved space-times,
to extract out of the theory a physical information without making a concrete choice of
the Fock space. In the physical (as opposed to mathematical) practice, however, one is
forced to accept that in all field theories one has to impose some sort of an UV cutoff on
lengts of the considered wave vectors k and, therefore, at least in the finite volume V , as
long as there is an UV cutoff, any choice of the Fock space is equally good - any “wave
function” Φ(q0, qk1

, q̄k1
, . . .) depending on a finite (due to the cutoff) number of variables

can be expressed as a superposition of the vectors of a basis of an arbitrarily chosen Fock
space.

In the case of the free Hamiltonian (11.85) which is simply a sum of an infinite number
of independent harmonic oscillator Hamiltonians, the choice of the proper separable sub-

456



space of H is rather trivial: it is the one spanned by the vectors Ψn0nk1
n̄k1

... constructed
out of the harmonic oscillator functions centered at qk = 0 and corresponding to frequen-
cies Ωk = Ω̄k = ωk. The eigenvector |Ω0〉 of H0 corresponding to the lowest energy is then
the Fock space “vacuum” vector |0, 0, 0, . . .〉 ≡ |0Fock〉. To see this it suffices to introduce
the operators (k > 0)

ak =
Ak + iĀk√

2
, a†k =

A†
k − iĀ†

k√
2

,

a−k =
Ak − iĀk√

2
, a†−k =

A†
k + iĀ†

k√
2

, (11.92)

and a0 = A0, a
†
0 = A†

0, satisfying the standard rules

[ak, a
†
k′ ] = δk,k′ , [ak, ak′ ] = [a†k, a

†
k′] = 0 , (11.93)

and form the basis of the same Fock space out of the state-vectors (k0 ≡ 0)

|nk0
, nk1

, . . .〉 ≡ 1
√

nk0
!nk1

! . . .
|k0, . . . ,k0,k1, . . . ,k1, . . .〉

=

(

a†k0

)nk0

√

nk0
!

(

a†k1

)nk1

√

nk1
!
. . . |0Fock〉 , (11.94)

in which now the vectors ki are not restricted to ki ≥ 0. These vectors can be interpreted
(see below) as representing nk0

bosons having momentum k0, nk1
bosons having momen-

tum k1, etc. Using the standard relations qk = (Ak + A†
k)/

√
2ωk etc. and (11.83) one

then finds that for all k

ϕ̂k =
1√
2ωk

(

ak + a†−k

)

, Π̂k =
1

i

√

ωk

2

(

ak − a†−k

)

, (11.95)

so that

ϕ̂(x) =
∑

k

√

~

2V ωk

(

ak e
ik·x + a†k e

−ik·x
)

,

Π̂(x) =
1

i

∑

k

√

~ωk

2V

(

ak e
ik·x − a†k e

−ik·x
)

. (11.96)

The Hamiltonian (11.85) takes the form

Ĥ0 =
1

2

∑

k

(

Π̂kΠ̂−k + ω2
k ϕ̂kϕ̂−k

)

=
∑

k

~ωk

(

a†kak +
1

2

)

, (11.97)
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and the basis vectors (11.94) are (here by construction) its (normalizable) eigenvectors.
In particular it is clear that33 |Ω0〉 = |0Fock〉.

The interpretation of the Ĥ0 eigenvectors in terms of noninteracting particles (bosons)
suggested above34 is supported by the statistical properties of the quantized (free) field:
To show this let us consider the quantum field (still enclosed in the box of volume V = L3)
in contact with a heat bath of temperature T and compute, using the Gibbs Canonical
Ensemble, the statistical sum Zstat = e−βF , where35 β = 1/kBT and F (T, V ) is the
Helmholtz free energy. This reduces to

Zstat = Tr e−βH0 =

∞
∑

nk0
=0

∞
∑

nk1
=0

. . . 〈nk0
, nk1

, . . . |e−βĤ0|nk0
, nk1

, . . .〉

=
∏

k

[

e−~ωk/2kBT

∞
∑

nk=0

(

e−~ωk/kBT
)nk

]

. (11.98)

The geometric series can easily be summed and one finds

F (T, V ) = −kBT lnZstat =
1

2

∑

k

~ωk + kBT
∑

k

ln
(

1− e−~ωk/kBT
)

, (11.99)

or, going over, with the help of the prescription (5.48), to the continuous normalization,

F (T, V ) = V

∫

d3k

(2π)3

[

1

2
~ωk + kBT ln

(

1− e−~ωk/kBT
)

]

, (11.100)

with ωk =
√

c2k2 + c4M2/~2. Apart from the first term which represents the contribution
of the zero point oscillations (which could have been subtracted from the beginning by
redefining Ĥ0) the temperature dependent part of F is precisely the free energy of a system
of nointeracting relativistic bosons which do not carry any conserved quantum number
and the total number of which - similarly to the total number of photons - is therefore
determined solely by the condition of thermal equilibrium. Thus, one of the arguments
that allow us to interpret states of quantized fields as particles is essentially identical to
the statistical argument used by Einstein in 1905 to argue that electromagnetic radiation
behaves as a collection of noninteracting particles (photons).

Calculation of the partition function Zstat of an interacting quantum field is most easily
formulated in the path integral approach. Still, presenting that approach in Chapter 16 we

33One can go further and show that the “wave function” of the ground state has the form

〈q0, qk1
, q̄k1

, . . . |Ω0〉 ≡ ΨΩ0
[ϕ] =

∏

k

(ωk

π~

)1/4

exp

(

− 1

2~

∑

k

ωkϕkϕ
∗
k

)

.

34Notice that having quantized the field in a finite box one cannot appeal to the Poincaré transformation
properties of these state-vectors.

35kB = 8.617343× 10−5 eV/K is the Boltzmann constant.
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will need the result (11.100) to fix an additive constant in F (T, V ) which in the functional
approach is difficult to compute.

It is clear that the choice of the proper Fock space, fairly obvious in the case of a free
field, ceases to be such when the Hamiltonian of the field involves an interaction term. In
connection with this it is perhaps instructive to consider a slightly less trivial example of
the field ϕ(x) satisfying as previously periodic boundary conditions in the box of volume
V = L3 and the dynamics of which is set by the Lagrangian density

L =
1

2
∂µϕ∂

µϕ− 1

2
M2ϕ2 − gf(x)ϕ(t,x) ≡ L0 + Lint , (11.101)

in which g is the coupling constant and f(x) is a given real function also satisfying the
periodic boundary conditions. It can therefore be written as

f(x) =
1√
V

∑

k

fk e
ik·x , with f ∗

k = f−k

Introducing as previously the variables ϕk = (qk + iq̄k)/
√
2 for k > 0 etc. one can

represent the algebra of the operators q0, p0, qk, pk, q̄k and p̄k or, alternatively, of the
operators ak and a†k defined in (11.92) in the Fock space spanned by the vectors (11.94).

The Hamiltonian takes in this case the form Ĥ = Ĥ0 + V̂int with Ĥ0 given by (11.97) and

Vint = g

{

1√
2ω0

(a0 + a†0)f0 +
∑

k>0

1√
2ωk

[

(ak + a†−k)f−k + (a−k + a†k)fk

]

}

.

It is clear that now the basis vectors (11.94) are not eigenvectors of H and that |0Fock〉 is
not the lowest energy eigenvector of H . To find the eigenvectors of H one can notice that
if one introduced the new operators36

ãk ≡ ak + ck , ã†k ≡ a†k + c∗k , (11.102)

(satisfying the same commutation relations as do the operators ak and a†k, because the
factors ck’s are c-numbers) with

ck =
gfk
√

2ω3
k

, c∗k =
gf−k
√

2ω3
k

,

the Hamiltonian would take the form (~ = 1 again)

H =
∑

k

ωk

(

ã†kãk +
1

2

)

−
∑

k

g2fkf−k

2ω2
k

.

36The steps performed below are essentially the ones done in Section 1.3 in solving the problem of the
harmonic osillator subject to the action of an external force.
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It follows that the vectors |ñk0
, ñk1

, . . .〉 built out of the vector |0̃, 0̃, . . .〉 ≡ |0̃Fock〉 annihi-
lated by all ãk are also the eigenvectors of Ĥ and therefore |0̃Fock〉 = |Ω〉. These vectors
are given by

|ñk0
, ñk1

, . . .〉 = U(c)|nk0
, nk1

, . . .〉 ,

where the formally unitary operator U(c) is given by

U(c) = exp

(

−
∑

k

cka
†
k +

∑

k

c∗kak

)

. (11.103)

Indeed, because37

U−1(c) akU(c) = ak − ck , U−1(c) a†kU(c) = a†k − c∗k , (11.104)

Ĥ|ñk0
, ñk1

, . . .〉 = U(c)U−1(c) Ĥ U(c)|nk0
, nk1

, . . .〉

= U(c)
∑

k

[

ωk

(

a†kak +
1

2

)

− g2|fk|2
2ω3

k

]

|nk0
, nk1

, . . .〉

=

{

∑

k

[

ωk

(

nk +
1

2

)

− g2|fk|2
2ω3

k

]

}

|ñk0
, ñk1

, . . .〉 .

Since U(c) can be written also in the form38

U(c) = exp

(

−1

2

∑

k

g2|fk|2
2ω3

k

)

exp

(

−
∑

k

cka
†
k

)

exp

(

∑

k

c∗kak

)

,

it is clear that all scalar products

〈mk0
, mk1

, . . . |ñk0
, ñk1

, . . .〉 = 〈mk0
, mk1

, . . . |U(c)|nk0
, nk1

, . . .〉 ,

are proportional to exp
(

−1
2

∑

k

g2|fk|
2

2ω3
k

)

and vanish either if the sum over k diverges or in

the infinite volume limit V → ∞ in which the sum over k is replaced according to the rule
(5.48) by the integral. In particular this is the case when f(x) ≡ 1, so that fk =

√
V δ0,k.

In such cases the true ground state-vector |Ω〉 of the system and all other Ĥ eigenvectors
inhabit, if V = ∞, a subspace of H orthogonal to the Fock space (11.94) in which the
algebra of the operators has originally been realized. It is also easy to see that while
〈0Fock|ϕ̂(x)|0Fock〉 = 0,

〈Ω|ϕ̂(x)|Ω〉 ≡ 〈0̃Fock|ϕ̂(x)|0̃Fock〉 = 〈0Fock|U−1(c) ϕ̂(x)U(c)|0Fock〉

=
1√
V

∑

k

1√
2ωk

(

ck e
ik·x + c∗k e

−ik·x
)

≡ h(x) , (11.105)

37Notice also that U(c) akU
−1(c) = ãk, U(c) a†kU

−1(c) = ã†k. Therefore, on the vectors |ñk0
, ñk1

, . . .〉
the operators ãk and ã†k act the same way as do the operators ak and a†k on the states |nk0

, nk1
, . . .〉.

38Recall, that eA+B = eAeBe−
1

2
[A,B] if, as here, [A, [A, B]] = [B, [A, B]] = 0.
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- the expectation value of the field operator ϕ̂(x) in the H ground state is nonvanishing.

Of course to build the Fock space in which the algebra of the operators q0, p0, qk,
pk, q̄k, p̄k, is realized one could use the wave functions of displaced harmonic oscillators
(i.e. of harmonic oscillator the origins of which are at q

(0)
k 6= 0) with the displacements

appropriately correlated with the factors fk. The basis vectors of such a Fock space
would then precisely be the vectors |ñk0

, ñk1
, . . .〉 and the corresponding creation and

annihilation operators would be ãk and ã†k defined in (11.102), while the relation (11.95)
would in this case read

ϕ̂k =
1√
2ωk

(ck + c∗−k) +
1√
2ωk

(

ãk + ã†−k

)

,

Π̂k =
1

i

√

ωk

2

(

ãk − ã†−k

)

, (11.106)

leading to 〈0̃Fock|ϕ̂(x)|0̃Fock〉 = h(x), where |0̃Fock〉 is the Fock vacuum vector of the “dis-
placed” Fock space which is now the lowest energy eigenvector |Ω〉 of Ĥ . One can say
that the algebra of the field operators ϕ̂(x) and Π̂(x) is in this case realized in another,
in general unitarily inequvalent, Fock space.

Yet another way of quantizing the theory defined by the classical Lagrangian density
(11.101) consists of introducing first (before quantization) another canonical field variable
χ(t,x) related to ϕ(t,x) by ϕ(t,x) = χ(t,x) + h(x), with the function h(x) satisfying (in
addition to periodic boundary conditions in the volume V ) the differential equation

(∂i∂i −M2)h(x) = gf(x) .

Obviously,

h(x) =
1√
V

∑

k

(−gfk
ω2
k

)

eik·x .

is precisely the same function as in (11.105). The Lagrangian density (11.101) expressed
in terms of χ(t,x) is (after integrating by parts) equivalent to

L =
1

2
∂µχ∂

µχ− 1

2
M2χ2 − 1

2
ghf .

Upon quantization the resulting algebra of the operators χ̂(x) and Π̂χ(x) would be then
from the beginning realized in the Fock space spanned by the vectors |ñk0

, ñk1
, . . .〉 (which

are directly related to probabilities of finding a given classical configuration of the field
χ(x)), because the creation and annihilation operators entering χ̂(x) and Π̂χ(x) would

be precisely the operators ãk and ã†k defined above. Thus quantization of systems char-
acterized by infinite numbers of degrees of freedom using different sets of their canonical
variables (at the classical level related to each other by decent canonical transformations)
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may lead to realizations of the respective operator algebras in orthogonal Fock spaces
(orthogonal subspaces of the same “big” Hilbert space).

Of course, in the case of quantum theories of truly interacting fields (for example
if in (11.101) Lint ∝ ϕ4) finding the right Fock space is practically impossible and one
contents oneself by realizing the algebra of field operators in the Fock space built on the
lowest energy eigenvector of some appropriately chosen free hamiltonian Ĥ0 after making
an educated guess at which classical canonical variables are the most appropriate for
quantization in the given case.

Quantizing in the infinite space the real scalar field ϕ(x), one could try to follow closely
the approach adopted in the finite volume: taking a complete set of real functions fl(x)
vanishing for |x| → ∞ and orthonormal,39 i.e. such that

∫

d3x fl′(x) fl(x) = δl′l ,
∑

l

fl(x) fl(x
′) = δ(3)(x− x′) ,

one could write every field configuration ϕ(x) in the form

ϕ(x) =
∑

l

qlfl(x) , (11.107)

introducing thereby a countably infinite set of canonical variables ql. If the field is free
its Lagrangian (11.66) would then take the form

L0 =

∫

d3xL0 =
1

2

∑

l

q̇2l −
1

2

∑

l′l

Vl′l ql′ql , (11.108)

with

Vl′l =M2δl′l +

∫

d3x ∂ifl′(x) ∂ifl(x) . (11.109)

The free Hamiltonian would then read

H0 =
1

2

∑

l

p2l +
1

2

∑

l′l

Vl′l ql′ql . (11.110)

If the field is not free and its Lagrangian and Hamiltonian is not quadratic in the canonical
field variables, nothing changes except that the Hamiltonian would have in such a case
additional terms expressed through the variables ql. Quantization would now just mean

39One assumes here that all configurations of the fluctuating quantum fields vanish at spatial infinity;
in some cases this may be too strong a requirement, especially when the gauge fields are considered
because classically they are not by themselves observable.
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promoting the canonical variables ql and pl to Hermitian operators q̂l and p̂l and imposing
the standard commutation relations [q̂l, p̂l′] = i~ δll′ . The Hermitian field operators

ϕ̂(x) =
∑

l

q̂lfl(x) ,

Π̂(x) =
∑

l

p̂lfl(x) ,

woud then satisfy the canonical commutation relations40 (11.78). Introducing for each
variable ql a set of basis functions ψnl

(ql) of L2(R) one could then form the Fock space,
a separable subspace of the “big” Hilbert space of all states of the system, spanned by
the vectors |n1, n2, . . .〉 with the Fock “vacuum” state |0Fock〉 ≡ |0, 0, 0, . . .〉 in which the
algebra of the operators ϕ̂(x) and Π̂(x) would be realized. (Of course, different choices of
the basis functions fl(x) select different and in general mutually orthogonal Fock spaces in
the big Hilbert space of all states of the quantum field). However, the vectors |n1, n2, . . .〉,
although having direct interpretation in terms of probabilities of finding various classical
field configurations would not be eigenvectors of Ĥ0. Therefore in this case it is better
to follow a slightly different approach which is equivalent to taking instead of the set
of normalizable functions fl(x), a set of nonnormalizable plane waves; as a result one is
essentially constructing a basis of H∗, the dual of H which admits nonnormalizable state-
vectors. To this end one first defines the new operators (from now on we omit “hats”)
ϕ̃(k) and Π̃(k) by

ϕ̃(k) =

∫

d3xϕ(x) e−ik·x , Π̃(k) =

∫

d3xΠ(x) e−ik·x . (11.111)

which (because of Hermiticity of ϕ(x) and Π(x)) satisfy the relations

ϕ̃†(k) = ϕ̃(−k) , Π̃†(k) = Π̃(−k) . (11.112)

From the commutation relations (11.78) it then follows that

[ϕ̃(k), Π̃(k′)] = i~ (2π)3δ(3)(k+ k′) ,

[ϕ̃(k), ϕ̃(k′)] =
[

Π̃(k), Π̃(k′)
]

= 0 . (11.113)

Expressing the Hamiltonian (11.75) with K(x − y) given by (11.70) in terms of ϕ̃(k),
Π̃(k) and ω2(k) given by

ω2(k) =

∫

d3xK(x) e−ik·x = c2k2 +
M2c4

~2
, (11.114)

one obtains

H0 =
1

2

∫

d3k

(2π)3

[

Π̃(k)Π̃(−k) + ω2(k) ϕ̃(k)ϕ̃(−k)
]

. (11.115)

40Again, this can be viewed as a justification of these relations.
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By analogy with the harmonic oscillator case we define now the operators

a(k) =

√

ω(k)

2~

(

ϕ̃(k) +
i

ω(k)
Π̃(k)

)

,

a†(k) =

√

ω(k)

2~

(

ϕ̃(−k)− i

ω(k)
Π̃(−k)

)

, (11.116)

the commutation rules of which:

[

a(k), a†(k′)
]

= (2π)3δ(3)(k− k′) ,

[a(k), a(k′)] =
[

a†(k), a†(k′)
]

= 0 . (11.117)

follow directly from (11.113). In terms of a(k) and a†(k) the operators (11.111) are given
by

ϕ̃(k) =

√

~

2ω(k)

[

a(k) + a†(−k)
]

, Π̃(k) =
1

i

√

~ω(k)

2

[

a(k)− a†(−k)
]

.

Inserting these expressions in (11.115) we get the Hamiltonian in the form

H0 =
1

2

∫

d3k

(2π)3
~ω(k)

[

a†(k)a(k) + a(k)a†(k)
]

=

∫

d3k

(2π)3
E(k)

[

a†(k)a(k) +
1

2
(2π)3δ(3)(0)

]

, (11.118)

with E(k) = ~ω(k). The delta function (2π)3δ(3)(0) in the second term should be inter-
preted as the (infinite) volume factor. The term

1

2

∫

d3k

(2π)3
E(k) (2π)3δ(3)(0) → V × 1

2

∫

d3k

(2π)3
E(k) , (11.119)

can be therefore identified with the contribution to the field energy contained in the
volume V of the zero point oscillations of infinitely many field modes (numbered by the
wave vectors k). This infinite constant contribution can be discarded so long as the effect
of the quantized field on gravity is not considered and so long as one does not compare
energies of vacuum states of quantized fields subject to different boundary conditions (see
Section 11.3).

Expressed in terms of the operators a†(k) and a(k), the Schrödinger picture (time
independent) field operators ϕ(x) and Π(x) take the form

ϕ(x) =

∫

d3k

(2π)3

√

~

2ω(k)

(

a(k) eik·x + a†(k) e−ik·x
)

, (11.120)
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Π(x) =
1

i

∫

d3k

(2π)3

√

~ω(k)

2

(

a(k) eik·x − a†(k) e−ik·x
)

, (11.121)

It is then easy to check, that with (11.117) the basic commutation rules (11.78) are
satisfied.

One can now construct a separable Fock space in which the algebra (11.117) of the
operators can be naturally represented. To this end one can take an arbitrary complete
countable set of normalizable functions fl(k), l = 1, 2, . . . ,∞ such that

∫

d3k

(2π)3
f ∗
l′(k)fl(k) = δl′l ,

∑

l

fl(k)f
∗
l (k

′) = (2π)3δ(3)(k− k′) ,

(for instance, fl(k) can be the momentum space three-dimensional harmonic oscillator
functions) and define the new operators41

al =

∫

d3k

(2π)3
f ∗
l (k) a(k) , a†l =

∫

d3k

(2π)3
fl(k) a

†(k) , (11.122)

satisfying the familiar rules

[al′, a
†
l ] = δl′l , [al′ , al] = [a†l′, a

†
l ] = 0 .

The inverse relations read

a(k) =
∑

l

al fl(k) , a†(k) =
∑

l

a†l f
∗
l (k) . (11.123)

It is then possible to use the same argument as for the ordinary harmonic oscillator (see
the first footnote in section 1.3) that in the space in which al and a

†
l act there must exist

a vector |0, . . . , 0, . . .〉 ≡ |0Fock〉 annihilated by all al’s and to construct the states

|n1, n2, . . . , nl, . . .〉 =
(a†1)

n1

√
n1!

(a†2)
n2

√
n2!

. . .
(a†l )

nl

√
nl!

. . . |0Fock〉 , (11.124)

with n1 + n2 + . . . < ∞, which span the Fock space.42 In terms of these creation and
annihilation operators the Hamiltonian (11.118) takes the form

H0 =
∑

l′l

[
∫

d3k

(2π)3
ω(k)

2
f ∗
l′(k)fl(k)

]

(

a†l′al + ala
†
l′

)

=
∑

l′l

[
∫

d3k

(2π)3
ω(k) f ∗

l′(k)fl(k)

](

a†l′al +
1

2
δl′l

)

. (11.125)

41The operators a†(k) and a(k), and therefore also ϕ(x) and Π(x), are operator-valued distributions
which acting on normalizable vectors of the proper Fock space throw them out of it.

42As discussed in Chapter 5, the Hilbert space spanned by all vectors |n1, n2, . . . , nl, . . .〉 with no
restriction on the sum of the numbers nl is not separable and the abstract algebra (11.117) can be
represented in infinitely many unitarily inequivalent ways.
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It is then clear that the Fock space “vacuum” vector |0Fock〉 ≡ |0, 0, 0, . . .〉 is the normaliz-
able eigenvector |Ω0〉 of H0 with the infinite eigenvalue given by (11.119). The remaining
eigenvectors can be easily constructed but are not normalizable: it is straightforward to
check (using the formulae (11.123) and the completeness relation) that the vectors

|k〉 = a†(k)|Ω0〉 ,
|k1,k2〉 = a†(k1) a

†(k2)|Ω0〉 ,
|k1,k2,k3〉 = a†(k1) a

†(k2) a
†(k3)|Ω0〉 , (11.126)

. . .

where all momenta k, k1, k2, etc. are arbitrary are eigenvectors of H0. (These state-
vectors are also not properly normalized - in the generalized sense - when two or more
momenta coincide; this has to be taken care of in the completeness relation as it was done
in (5.18)). Although non-normalizable (if we assume that the state |Ω0〉 has the norm
equal to 1) the vectors (11.126) are true (generalized) eigenvectors of the Hamiltonian
H0 (11.118). Their particle interpretation follows now from their Poincaré transformation
properties which we discuss at the end of this subsection. The normalizable basis state-
vectors (11.124) of the Fock space represent quantum excitations of the field ϕ, which can
also be given a particle interpretation: the state |n1, n2, . . .〉 is interpreted as the state in
which n1 particles are in the first one-particle state characterized by the momentum space
wave function f1(k), n2 particles are in the second one-particle state characterized byf2(k),
etc. The particles can occupy infinitely many one-particle states (in the case of N coupled
oscillators there were only N types of phonons corresponding to N possible 1-phonon
states). Although the state-vectors (11.124) are not eigenvectors of the Hamiltonian
(11.118), they can, with the appropriately chosen functions fl(k) - essentially modeling the
delta functions δ(3)(k−kl) - be made arbitrarily close to the true generalized eigenvectors
(11.126) of H0.

If the Lagrangian defining the theory is, unlike (11.66), not quadratic in the field ϕ,
but instead takes the more general form (we set c = 1 but for decoration keep ~ in some
formulae below)

L =
1

2
∂µϕ∂

µϕ− V (ϕ) =
1

2
∂µϕ∂

µϕ− 1

2
M2ϕ2 −Hint(ϕ) , (11.127)

in which Hint(ϕ), and therefore also the whole field potential V (ϕ), is usually a polynomial
of fields,43 e.g. Hint(ϕ) = (λ/4!)ϕ4, the quantization in the Schrödinger picture proceeds
in the same way as described above: the commutation rules (11.78) of the operators ϕ
and Π remain unchanged. The Hamiltonian takes then the form

H = H0 + Vint = H0 +

∫

d3xHint(ϕ) , (11.128)

H0 =

∫

d3x

[

1

2
Π2 +

1

2
(∇ϕ)2 +

1

2
M2ϕ2

]

.

43We will see that in the presence of Hint(ϕ) the sign of the term of (11.127) quadratic in ϕ can also
be positive (negative M2).
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The form (11.128) of H remains valid also if Hint(ϕ), or even V (ϕ), explicitly depends on
time (e.g. if the quantized field ϕ interacts with some external agents). As in the case of
the free field, one can now expand the Schrödinger picture operators ϕ(x) and Π(x) as
in (11.120) and (11.121) into the operators a(k) and a†(k) with the same commutation
rules as previously but the Hamiltonian (11.128) will now contain terms (a(k))4, (a†(k))4,
etc. and the generalized state-vectors (11.126) will not be its eigenvectors.44 Still, if the
coefficient M2 does not depend on time, they are eigenvectors of the free part H0 of the
Hamiltonian (11.128) and will play an important role in the formulation of the S-matrix
approach to the scattering theory. This will be discussed in Section 11.9.

In older formulations one used to define the quantum theory by taking for the Hamilto-
nian operator not the expression (11.128), but its counterpart Ĥ = :H(11.128) : ordered
normally with respect to the vector |Ω0〉 = |0Fock〉. Operators ordered in this way have all
(except for the unit operator) zero expectation value in the Fock state |0Fock〉 annihilated
(by definition) by all the annihilation operators. This prescription for Ĥ removes some of
the infinities encountered in practical calculations, in particular it removes the additive
infinite part (11.119) in the expectation value of the free field Hamiltonian (11.118) in the
state |Ω0〉. Normal ordering, ubiquitous on older approaches to quantum field theory, has
been now largely abandoned. First of all, it does not remove all divergences which must
be renormalized anyway (see Chapter 14) and there is no point to invoke two different
prescription for removing divergences having a common ultraviolet origin. Furthermore,
normal ordering of operators defined in terms of the creation and annihilation operators
diagonalizing H0 (i.e. normal ordering with respect to the Fock state |0Fock〉) does not
imply that 〈Ω| :OS : |Ω〉 = 0, where |Ω〉 is the lowest energy eigenvector of the Hamil-
tonian - the example (11.105) clearly shows that matrix elements of operators ordered
with respect to the Fock space “vacuum” can have nonzero expectation values in the true
vacuum.45 Finally, and probably most importantly, in the modern functional approach
(see Chapter 16) quantum field theory is viewed as a formalism allowing to take into
account real quantum fluctuations of fields; from this point of view46 every quantum field
theory is defined with Fourier momenta bounded by an ultraviolet cutoff Λ which (as we
expect) should have a real physical meaning. All contributions to amplitudes, expecta-
tion values, etc. one computes using the quantum field theory formalism are then equally
physical and should not be subtracted using an arbitrarily defined prescription. The di-
vergences (arising in the limit Λ → ∞) disappear however if the computed quantities
are expressed in terms of some other measurable quantities; subtracting divergences is
then merely done for computational convenience and has no fundamental meaning; hence
defining the Hamiltonian as a normal ordered operator becomes then a completely useless

44Of course, if Hint depends explicitly on time, the Hamiltonian H does not, strictly speaking, possess
time-independent eigenstates.

45In nontrivial models of quantum field theory this may result as a consequence of interactions which
cannot be treated by perturbative methods based on the expansion exploiting the Gell-Mann - Low
construction of Section 1.2.

46This point of view is possible also in gauge theories although it entails in this case serious technical
complications.
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and obsolete prescription.47

The classical real scalar field ϕ has been quantized here in the Schrödinger picture
in which the operators ϕ(x) and Π(x) satisfying the rules (11.78) do not depend on
time. The canonical commutation rules (11.78), the Hamiltonian expressed in terms
of the operators ϕ(x) and Π(x) constitute, together with the choice of the appropriate
Fock space, the complete formulation of the theory. It can be then used to investigate
various problems using the standard methods of quantum mechanics. Since in the case of
relativistic theories one is interested primarily in scattering processes and in preserving
manifest covariance it is, however, convenient to go over to the Heisenberg picture, in
which the operators depend on time whereas the the state-vectors do not. In general
(see Section 1.1), this is achieved by choosing the moment t0 at which the two pictures
coincide and defining Heisenberg picture operators OH(t,x) corresponding to Schrödinger
picture operators OS(t,x) = O(t, ϕ(x),Π(x)) by the formula

OH(t,x) = U †(t, t0)OS(t,x)U(t, t0) = O(t, ϕH(t,x),ΠH(t,x)) , (11.129)

in which

U(t, t0) = T exp

(

− i

~

∫ t

t0

dt′H(t′)

)

, (11.130)

is the Schrödinger picture evolution operator. By construction the operators OH(t,x)
satisfy then the Heisenberg equation (see Section 1.1)

d

dt
QH(t,x) =

1

i~
[OH(t,x), HH(t)] +

(

∂O

∂t

)

H

≡ 1

i~
U †(t, t0) [OS(t,x), H(t0)]U(t, t0) +

(

∂O

∂t

)

H

, (11.131)

in which HH(t) ≡ U †(t, t0)H(t)U(t, t0). (Most of the Schrödinger picture operators OS

do not depend on time and the second term in (11.131) is absent; one notable exception
is the boost generators given by the space integrals (11.63) of M00i given by (11.62)).

It is easy to check that the Heisenberg picture operators ϕH(t,x) and ΠH(t,x), corre-
sponding to the canonical variables and obtained from the prescription (11.129), satisfy
the canonical equal time commutation rules

[ϕH(t,x), ΠH(t,y)] = iδ(3)(x− y) , (11.132)

[ϕH(t,x), ϕH(t,y)] = [ΠH(t,x), ΠH(t,y)] = 0 ,

for arbitrary times t. These rules together with the Hamiltonian H (following from the
action I[φ]) are in fact the basic relations defining the quantum version of the classical field

47Normal ordering remains relevant (as a technical tool) for the Wick theorem - see Section (5.9) - used
to set the perturbative expansion.
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theory model. Furthermore, if H is of the form (11.128) (even if V (ϕ) in the Lagrangian
density (11.127) depends explicitly on time, i.e. even if the system interacts with external
agents) the Heisenberg equations (11.131) satisfied by ϕH(t,x) and ΠH(t,x),

d

dt
ϕH(t,x) =

1

i~
[ϕH(t,x), HH(t)] ,

d

dt
ΠH(t,x) =

1

i~
[ΠH(t,x), HH(t)] , (11.133)

yield ϕ̇H = ΠH and Π̇H = c2∇2ϕH −M2ϕH − H′
int(ϕH). As a result, the Heisenberg

operator ϕH(t,x) satisfies the “classical” field equation of motion

(

∂2

∂t2
−∇

2 +M2

)

ϕH(t,x) = −H′
int(ϕH(t,x)) , (11.134)

while the operator ΠH(t,x) satisfies the equation

(

∂2

∂t2
−∇

2 +M2 +H′′
int(ϕH(t,x))

)

ΠH(t,x) = 0 . (11.135)

Together with the equal time commutation rules (11.132) these two equations can also
constitute the complete specification of the theory.

Of course, in the case of closed systems, which the system of fields usually are, H is
independent of time. The evolution operator U(t, t0) (11.130) reduces then to the ordinary
exponent, HH(t) = H , so that in the considered theory (11.127) it takes the form

H =

∫

d3x

[

1

2
Π2
H(t,x) +

1

2
(∇ϕH)

2(t,x) + V (ϕH(t,x))

]

, (11.136)

formally the same as in the classical theory, and choosing t0 = 0 as it is customary, one
has

ϕH(t,x) = eiHt/~ ϕ(x) e−iHt/~ ,

ΠH(t,x) = eiHt/~ Π(x) e−iHt/~ . (11.137)

In the case of the free scalar field the Hamiltonian H0 (11.75) of which can be rep-
resented in the form (11.118), the equations (11.133) can be easily solved. ϕH(t,x) and
ΠH(t,x) are then given by the expressions (11.120) and (11.121) but with a(k) and a†(k)
replaced by aH(t,k) and a

†
H(t,k) satisfying the equations

d

dt
aH(t,k) =

1

i~
[aH(t,k), H0] ,

d

dt
a†H(t,k) =

1

i~
[a†H(t,k), H0] , (11.138)
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with the initial conditions aH(0,k) = a(k), a†H(0,k) = a†(k). One then finds [aH(t,k), H0] =
~ω(k)aH(t,k) and [a†H(t,k), H0] = −~ω(k)a†H(t,k). The equations (11.138) can be then
easily integrated48 to give

aH(t,k) = e−iω(k)t a(k) , a†H(t,k) = eiω(k)t a†(k) , (11.139)

so that

ϕH(t,x) =

∫

d3k

(2π)3

√

~

2ω(k)

[

a(k) e−iω(k)t+ik·x + a†(k) eiω(k)t−ik·x
]

, (11.140)

ΠH(t,x) =
1

i

∫

d3k

(2π)3

√

~ω(k)

2

[

a(k) e−iω(k)t+ik·x − a†(k) eiω(k)t−ik·x
]

, (11.141)

that is, the exponents in the Heisenberg operators depend on the Lorentz invariant prod-
ucts xµkµ, where x

µ = (ct,x) and kµ = (ω(k)/c,k). Both field operators, ϕH and ΠH ,
satisfy in this case the free Klein-Gordon equation.

It should be said, that in certain cases (the most notable being the one of the free
electromagnetic field quantized using the approach of Gupta and Bleuler (discussed in
Section 11.11) with the gauge fixing parameter ξ 6= 1) eventhough the free Hamiltonian
is quadratic in field variables and conjugated momenta, their expansions analogous to
(11.120), (11.121) are not easy to find and do not render the free Hamiltonian diagonal;
the time dependent operators (11.137) are then not simply given by replacing e±ik·x in
(11.120) and (11.121) by e∓ikx as in (11.140) and (11.141). Still, the explicit form of the
time dependent field operators and their associated canonical momenta operators can be
found by directly solving (though not so easily) the canonical equations (11.133).

At this point, in order to simplify the notation, we set also ~ = 1 and drop the
subscript H on Heisenberg picture operators. In addition, it is convenient to change
the normalization of the the creation and annihilation operators a(k) → a(k)/

√

2E(k),

a†(k) → a†(k)/
√

2E(k), where E(k) = ~ωk, so that their commutator becomes
[

a(k), a†(k′)
]

= (2π)32E(k)δ(3)(k− k′) ≡ δΓ(k− k′), (11.142)

and the (Heisenberg picture) free field operators (11.140), (11.141) take the simple form

ϕ(x) =

∫

dΓk

[

a(k) e−ik·x + a†(k) eik·x
]

, (11.143)

Π(x) =
1

i

∫

dΓkEk

[

a(k) e−ik·x − a†(k) eik·x
]

, (11.144)

48Notice, that if the Lagrangian contains terms with ϕ in powers higher than the second one, the
Heisenberg equations resulting from (11.138) are more complicated and their solution, the operators

aH(t,k) and a†H(t,k), cannot be found in a closed form. Hence, the Heisenberg picture operators ϕH(x)
and ΠH(x) corresponding to the interacting field cannot be written in the forms (11.140) and (11.141);
only at t = 0 ϕH(0,x) ≡ ϕ(x) and ΠH(0,x) ≡ Π(x) (recall, we have chosen to equate the Schrödinger
and Heisenberg pictures at t0 = 0) can be written as in (11.120) and (11.121).
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where the measure dΓk ≡ d3k/(2π)32E(k) is separately Lorentz invariant.

In theories of interacting fields (when in the full Hamiltonian there are terms with
powers of fields higher than the second one) the time dependent operators termed the
interaction picture operators obtained by solving the equations (11.133) but with time
independent H0 replacing the full HH(t) and hence given in closed form by (11.137) again
with H0 instead of H , play an important role in formulating the perturbation expansion
of S-matrix elements. This will be discussed in Section 11.9.

We can now discuss the Poincaré transformations. Using the rules given in Section 11.1
one finds the canonical energy-momentum tensor corresponding to the Lagrangian density
(11.127)

T µνcan = ∂µϕ∂νϕ− gµν
[

1

2
∂λϕ∂λϕ− 1

2
M2ϕ2 −Hint(ϕ)

]

. (11.145)

It is in this case automatically symmetric.49 In the quantum theory ∂0ϕ must of course
be expressed in terms of the canonical variables ϕ and Π. One gets in this way (we drop
the subscript H)

T 00
can(t,x) =

1

2

[

Π2(t,x) +∇ϕ(t,x) ·∇ϕ(t,x) +M2ϕ2(t,x)
]

+Hint(ϕ(t,x)) ,

T 0i
can(t,x) = Π(t,x) ∂iϕ(t,x) . (11.146)

P 0 given by the integral of T 00
can over d3x is just the Hamiltonian (11.128) written in terms

of the Heisenberg field operators whereas the momentum operator is given by

P i =

∫

d3xT 0i
can(t,x) =

∫

d3xΠ(t,x)∂iϕ(t,x) . (11.147)

From T µνcan the generators of the Lorentz transformations are obtained according to the
formulae (11.62) and (11.63):

Jµν =

∫

d3x
(

xµ T 0ν
can − xν T 0µ

can

)

. (11.148)

The Poincaré symmetry generators P i, H , J i and Ki are by construction independent of
time. This can be checked by using the Heisenberg equation (11.131). As such they can
be computed for any time t. A particularly convenient is the choice of t = 0, because
then the Heisenberg picture operators ϕH and ΠH can be expanded into the creation and
annihilation operators and can be shown, using the canonical commutation rules (11.78)
(or 11.142)) to satisfy the commutation rules of the Poincaré algebra (6.19) or (6.21).

49Still, as it turns out, even in this simple case T µν
can must be modified by adding to it a tensor Hµν =

∂ρH
ρµν as in (11.58), in order to ensure finiteness of matrix elements of the energy-momentum tensor

(treated as an operator) in the theory of the interacting field.
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Moreover, exploiting their time-independence, P µ and Jµν can be easily seen to generate
transformations of the field operator ϕ(x) related to changes of the reference frame:

eiaµP
µ

ϕ(x) e−iaµP
µ

= ϕ(x+ a) ,

e
i
2
ωµνJµν

ϕ(x) e−
i
2
ωµνJµν

= ϕ(Λ−1(ω) ·x) , (11.149)

or, in the infinitesimal form,

i [P µ, ϕ(x)] = ∂µϕ(x) ,

i [Jµν , ϕ(x)] = (xµ∂ν − xν∂µ)ϕ(x) . (11.150)

It is important to stress that the operators P i, H , J i and Ki (the components of Jµν)
satisfy the commutation rules (6.21) of the Poincaré algebra and generate the field trans-
formations as in (11.149) solely by virtue of the canonical commutation relations (11.132),
independently of the form of Hint(ϕ) in (11.127), i.e. also in the quantum theory of the
interacting field ϕ.

If V (ϕ) = 1
2
M2ϕ2, i.e. in the quantum theory of the free field (with Hint = 0), H takes

in terms of the creation and annihilation operators the form (11.118) and the generators
P i and J ij and Ki = J0i are given by

P i =

∫

dΓk k
i a†(k)a(k) ,

J ij = i

∫

dΓk a
†(k)

(

ki
∂

∂kj
− kj

∂

∂ki

)

a(k) , (11.151)

Ki = i

∫

dΓk a
†(k)Ek

∂

∂ki
a(k) .

In this case, the vectors (11.126) are the generalized eigenvectors of H and P with the
eigenvalues (Ek, ~k), (Ek1

+ Ek2
, ~k1 + ~k2), etc., where Ek is given by the relativistic

formula Ek =
√
~2k2c2 +M2c4 = ~ω(k). One can also check that the one particle state-

vectors |k〉 transform properly under the Lorentz transformations,

U(Λ)|k〉 = U(Λ) a†(k)U−1(Λ)U(Λ)|Ω0〉 = a†(kΛ)|Ω0〉 , (11.152)

i.e. that they transform in the way appropriate for states of a spin 0 particle (see Sec-
tion 6.2) provided the vacuum state-vector |Ω0〉 is Lorentz invariant U(Λ)|Ω0〉 = |Ω0〉. In
the interacting field case, if ϕH(0,x) and ΠH(0,x) are expanded into creation and an-
nihilation operators, the operators P i and J ij obtained from (11.147) and (11.148) take
usually50 the same form as in (11.151), whereas the boost generators Ki are, as argued
in Section 7.5, modified by the interaction.

Quantization of a single real scalar field discussed above can immediately be general-
ized to the case of many real scalar fields ϕi(x) where i = 1, . . . , N , the classical dynamics

50Exception are theories quantized around a nontrivial classical background ϕcl(x) in which the field
operator takes the form ϕ̂H(t,x) = ϕcl(x) 1̂ + χ̂H(t,x).
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of which is governed by the Lagrangian density (11.55). Furthermore, a system of N clas-
sical complex fields can always be represented as a system of 2N real fields and quantized
using the same prescriptions.

A Lagrangian density depending on several fields ϕi may be invariant (or invariant up
to a total divergence - see the formula (11.20)) under the action of a group of continuous
transformations which in the infinitesimal form can be written as ϕi → ϕ′

i = ϕi+δθaF
a
i (ϕ).

In this case, upon replacing classical fields ϕi and their derivatives by the corresponding
field operators (as ∂0ϕi one has of course to use the expressions ϕ̇i = ϕ̇i(Π, ϕ) given by
the canonical formalism), the classical expressions for Noether currents jaµ become current
operators and the quantities

Q̂a =

∫

d3x ja0 (t,x) , (11.153)

become the symmetry generators acting in the Hilbert space.51 By using the canonical
commutation rules (11.132) one can show that independently of the precise form of L
(provided it is symmetric) the time-like components of the Noether currents satisfy the
commutation relations

[

ja0 (t,y), j
b
0(t,x)

]

= jc0(t,x) if
ab

c δ(3)(x− y) , (11.154)

which ensure that the Noether charges (11.153) satisfy the symmetry algebra relations

[Q̂a, Q̂b] = Q̂c if ab
c . (11.155)

Moreover, by virtue of the canonical commutation rules (11.78) the Noether charges Q̂a

generate symmetry transformations of the field operators

iδθa [Q̂
a, ϕi(x)] = δθaF

a
i (ϕ(x)) . (11.156)

In contrast, space-like components of the Noether currents usually can satisfy the com-
mutation rules analogous to (11.154) only in the theory of noninteracting fermionic fields
(to be discussed in Section 11.8). In the general case, it is only possible to infer (using
the Lorentz covariance) that

[

ja0 (t,y), j
b
i (t,x)

]

= jci (t,x) if
ab

c δ(3)(x− y) + Sabik (t,x) ∂
k
(x)δ

(3)(x− y) ,

where Sikab(t,x) are the so-called Schwinger terms. Even in theories (like electrodynamics
of spin 1/2 particles) in which the canonical (anti)commutation relations formally imply

51Of course, the operators Q̂a in (11.153) are well defined if their matrix elements between physical
states: 〈Φ|Q̂a|Ψ〉 =

∫

d3x 〈Φ|j0a(t,x)|Ψ〉 are well defined; it may happen that the right hand side is not
integrable due to the presence in the H spectrum of massless particles which mediate long range forces.
This is so whenever a classical continuous symmetry of the Lagrangian is spontaneously broken by the
vacuum state (see Chapter 22).
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the absence of Schwinger terms,52 it is possible to prove, using arguments based on general
principles of quantum mechanics, that they cannot vanish. The contradiction with the
reasoning based on the canonical (anti)commutation relations stems from the fact that
Noether currents are composite operators (products of elementary field operators taken at
the same space-time point) which are in general singular objects - their matrix elements
require some regularization; Schwinger terms can therefore depend on the adopted regu-
larization prescription, and a regularization can, a priori, also induce nontrivial Schwinger
terms in the commutators (11.154) of the time components of the currents. If a given sym-
metry can be recovered after regularization in the renormalized theory, Schwinger terms
in the commutators like (11.154) are absent (although are generally nonvanishing in the
commutators involving spatial components of the Noether currents). In fact, anomalies
discussed in Chapter 23 can be understood as manifestation of nontrivial Schwinger terms
induced by the necessity of regularization in the commutators like (11.154) of the time
components of the currents.

Finally, if the Hamiltonian commutes with the Noether charges Q̂a and the symmetry
is not spontaneously broken by the vacuum state, i.e. if Q̂a|Ω〉 = 0 for all a (see Chap-
ter 22), the Hamiltonian eigenvectors (the in and out state-vectors) form multiplets of
the symmetry algebra. Usually also the H0 part quadratic in field operators of the full
Hamiltonian H commutes with Q̂a’s separately, and the H0 eigenvectors, i.e. particles
created and annihilated by the Hermitian free-field (interaction picture) operators ϕi(x)
out of |Ω0〉 also form multiplets of the symmetry algebra. As all members of the sym-
metry multiplets have the same mass (the P µPµ operator eigenvalues), one then forms
linear combinations of the particle states (both in, out and the free-particle ones) which
diagonalize the Noether charges Q̂a forming the Cartan subalgebra (see Chapter 4) of
the full symmetry algebra. It is then convenient to form also the appropriate (complex
in general) linear combinations of the free-field operators ϕi(x) creating and destroying
free one-particle eigenstates of the the Cartan subalgebra generators.53 In the case of the
symmetry multiplets transforming as complex representations, such that each particle
(except for essentially neutral ones) finds its antiparticle within the same multiplet, this
corresponds precisely to forming (non-Hermitian) field operators creating a particle and
annihilating its antiparticle as described in Section 8.2.

Existence of conserved charges has also important consequences for statistical proper-
ties of the system of quantum fields. If the Hamiltonian commutes with Noether charges
Q̂a, the quantum numbers corresponding to the Cartan subalgebra generators can have
simultaneously definite values (because all these generators commute with one another)
which are constants of motion. This would have to be taken into account in the Gibbs

52In theories in which symmetries are realized on scalar fields, the presence of nontrivial (regularization
independent) Schwinger terms is usually revealed already by using the canonical commutation relations.

53The corresponding Heisenberg picture operators obtained from the free-field ones as in (11.137) (or,
more generally, as in (11.129)) have then “diagonal” matrix elements between the one-particle states of
the full Hamiltonian H and the vacuum: 〈Ω|φiH |p, σ, j〉 ∝ δij with the same proportionality constant for
all φiH and all states |p, σ, j〉 belonging to the same symmetry multiplet.
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Canonical Ensemble statistical sum Zstat(T, V ), making it essentially intractable analyti-
cally (similarly as in the case of a system consisting of a fixed number N of particles) even
for noninteracting fields. One then passes to the Grand Canonical Ensemble introducing
the chemical potentials µa for each Cartan subalgebra generator. Choosing in the Hilbert
space the basis in which the Cartan subalgebra generators are diagonal facilitates then
computation of the statistical sum Ξ(T, V, µa).

For example, the Lagrangian

L =
1

2

2
∑

l=1

(

∂µϕl∂
µϕl −M2ϕ2

l

)

, (11.157)

of two noninteracting scalar fields ϕ1 and ϕ2 has the O(2) ≃ U(1) symmetry the conserved
Noether current of which is jµ = ϕ2∂µϕ1 − ϕ1∂µϕ2. After quantization it is the operators

a†(k) and ac†(k) formed as appropriate linear combinations of a†l (k), l = 1, 2 which, acting
on the vacuum |Ω0〉, generate the state-vectors |nk, . . . , n

c
k, . . .〉 of the Hilbert space basis

in which the Hamiltonian

H =
∑

k

~ωk

(

a†kak + ac†k a
c
k + 1

)

, (11.158)

where ωk =
√

c2k2 + c4M2/~2, and the Noether charge

Q̂ =
∑

k

(a†kak − ac†k a
c
k) , (11.159)

are simultaneously diagonal. Obtaining the potential Ω(T, V, µ) = −kBT ln Ξ by comput-
ing the statistical sum

Ξ = e−βΩ = Tr e−β(H−µQ̂) , (11.160)

is then straightforward:

Ω(T, V, µ) = V

∫

d3k

(2π)3
[

~ωk + kBT ln
(

1− e−(~ωk−µ)/kBT
)

+ kBT ln
(

1− e−(~ωk+µ)/kBT
)]

. (11.161)

We have passed already to the continuum (thermodynamical) limit as in (11.100). The
value of the chemical potential µ determines the mean (in the sense of the ensemble) total
charge Q of the field in the box V . Convergence of the summations leading to (11.161)
imposes the constraint |µ| < M =minkωk, whereM is the mass of the particles. Of course,
for µ = 0 the system is neutral (Q = 0 on average), and |µ| grows as the (mean) charge
|Q| of the system grows. Eventually, if |Q| becomes so large that |µ| →M , the occupancy
of the zero momentum (k = 0) state becomes macroscopic (it has to be extracted before
the transition to the continuous normalization) and the usual Bose-Einstein condensation
occurs.
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The states created by the operators a†v(k) related to the mode functions v(η,k) and by
the operators a†u(k) related to the mode functions u(η,k) can be then interpreted as
normal particles in the far past and in the far future, respectively. Using the Bogolyubov
coefficients one can compute then probabilities of creating some number of particles by a
variable gravitational field.

11.4 Lagrangian of the electromagnetic field

Canonical quantization of fields transforming under changes of the reference frame as
nontrivial representations of the Lorentz group requires special treatment because the
assumption that all generalized velocities (time derivatives of canonical variables) can be
expressed as in (11.9) through the conjugated momenta is usually not fulfilled. This is, in
particular, the case of the electromagnetic and Proca fields the elementary excitations of
which, should, after quantization, be respectively massless and massive spin 1 particles.
One method of dealing with this difficulty consists of eliminating some of the canonical
variables (thereby reducing the number of independent ones and therefore also the number
of the conjugated momenta). This can be achieved either directly, before quantization
(as it is possible in the case of the Proca field - see Section 11.5) or in the course of
quantization, through the use of the Dirac’s quantization formalism adapted to system
with constraints. This very important formalism, most useful when direct elimination of
redundant variables is either difficult or not possible, will be presented in Section 11.6.

We first discuss possible forms of the action I (11.1) setting classical dynamics of vector
fields. We begin with the familiar case of the electromagnetic field. The Maxwell equations
(in the Gauss’ system of units, in which the fields E and B have the same dimension -
the relation of electromagnetic quantities in the Gauss system to their counterparts in the
“official” SI (Système des Idiots) of units is recalled in Appendix I) read

∇×E+
1

c

∂B

∂t
= 0 , ∇·B = 0 , (11.241)

∇×B− 1

c

∂E

∂t
=

4π

c
j , ∇·E = 4πρ . (11.242)

The first two are automatically satisfied if the scalar and vector potentials, forming to-
gether a four-vector Aµ = (ϕ,A), are introduced, in terms of which

B = ∇×A , E = −∇ϕ− 1

c

∂A

∂t
. (11.243)

The remaining two equations, (11.242), follow from the Lagrangian density65

LEM = − 1

16π
fµνf

µν − 1

c
eJµA

µ . (11.244)

65In the context of the quantum theory it is more natural to factorize e > 0 - the fundamental coupling
constant - out of the four-current Jν .
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The electromagnetic antisymmetric field strength tensor fµν is defined as

fµν = ∂µAν − ∂νAµ . (11.245)

As it is easy to find,

∂LEM

∂(∂µAν)
= − 1

8π

[

∂

∂(∂µAν)
fλρ

]

fλρ = − 1

4π
fµν . (11.246)

The Euler-Lagrange equations (11.4) which in the case of a four-vector field have the
general form

∂µ
∂LEM

∂(∂µAν)
=
∂LEM

∂Aν
, (11.247)

therefore read

∂µf
µν =

4π

c
eJν . (11.248)

Since the four-divergence of the left hand side of (11.248) vanishes by antisymmetry of
the field strength tensor fµν (11.245), the current Jν , to which the electromagnetic field
couples, must be conserved ∂µJ

µ = 0 (otherwise the equations (11.248) are inconsistent).
It is instructive to examine the content of (11.248). Setting in (11.248) ν = 0, since
f 00 ≡ 0 by antisymmetry, on the left hand side one gets66

∂i(∂
iA0 − ∂0Ai) = ∂i(−∂iA0 − ∂0A

i) = ∇·
(

−∇ϕ− 1

c

∂A

∂t

)

. (11.249)

The second Maxwell equation (11.242) is then recovered if

e J0 = cρ . (11.250)

For ν = k (11.248) yields the equation

∂0(∂0A
k + ∂kA

0) + ∂if
ik =

4π

c
eJk . (11.251)

Furthermore, it is easy to check that

f ij ≡ −∂iAj + ∂jA
i = −ǫijkBk ,

so that (11.251) is equivalent to the equation

1

c

∂

∂t

(

∂kϕ+
1

c

∂

∂t
Ak
)

− ǫikl∂iB
l =

4π

c
eJk , (11.252)

66Since we want to keep contact with the ordinary three-dimensional notation, we convert all expressions
to a form in which A0 and Ai have always upper indices whereas the derivatives ∂0 and ∂i have always
lower indices, so that ∂i = ∂/∂xi is the ordinary gradient in the contravariant coordinates xi.

492



which, if the second relation (11.243) is taken into account, is just the first equation
(11.242), provided one identifies eJ with j. Thus eJµ = (cρ, j).

It is sometimes useful to have explicit forms of the tensors fµν and f
µν in terms of the

Cartesian components of the ordinary three-vectors E and B:

fµν =









0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0









, fµν =









0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0









.

Having the explicit formulae it is easy to see that (11.244) can equivalently be written as

LEM =
1

8π

(

E2 −B2
)

− 1

c
eJµAµ . (11.253)

There exist yet another term bilinear in the field Aµ, which, being a scalar with respect
to proper ortochroneous Lorentz transformations,67 could be added to the Lagrangian
density (11.244): it is the term

∆L ∝ f̃µνfµν , (11.254)

in which (recall that we use ǫ0123 = +1)

f̃µν ≡ 1

2
ǫµνλρfλρ =









0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0









. (11.255)

∆L is, however, a total four-divergence: f̃µνfµν = ∂µ(2 ǫ
µνλρAν∂λAρ) and, as such, it does

not modify the Euler-Lagrange (i.e. Maxwell) equations. It neither has any impact on
the dynamics of the quantized electromagnetic fields, because no topologically nontriv-
ial configurations of the electromagnetic field exist classically (this statement cannot be
given a justification here). Nonabelian gauge fields (see Chapter 20) can, however, form
topologically nontrivial configurations and the nonabelian analog of ∆L is not innocuous
in the quantum theory of such fields.68

The Maxwell equations (11.241), (11.242) are written in the Gauss system of units,
in which the Coulomb potential looks simple (it does not have the 1/4π factor nor the
ε0 factor) and the fine structure constant (defined by the Thomson limit of the Compton
scattering cross section) is αEM = e2/~c = 1/137.035999679(94) ≈ 1/137. This system of

67As a result of the parity and time reversal transformations ∆L changes sign; it is therefore neither
P - nor T - (and, hence, neither CP -) invariant.

68The reasons for complete absence or an unnaturally smal value of the (effective) coefficient of a term
analogous to (11.254) in the Lagrangian of quantum chromodynamics is a still unsolved problem, called
the strong CP problem - that is the problem why CP symmetry is not violated in strong interactions.
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units is not very convenient in the quantum theory of the electromagnetic field because of
the factor

√
4π which would appear in many places (e.g. in the free field operators - see

Section 3.8 and e.g. the textbook Quantum Electrodynamics by W.B. Bierestecki, J.M. Lif-
shitz, L.P. Pitaevski). It is much more practical to go over to the Heaviside-Lorentz system
of units in which electromagnetic quantities have the same physical dimensions as in the
Gauss’ system but are rescaled by the appropriate factors of

√
4π:

Aµ →
√
4πAµ, eJµ → eJµ/

√
4π , (11.256)

i.e. AGauss
µ =

√
4πAHeaviside−Lorentz

µ and eGauss = eHeaviside−Lorentz/
√
4π. The rescaling of

Aµ amounts to the rescalings E →
√
4π E and B →

√
4π B, while as a result of the

charge rescaling, the fine structure constant αEM expressed through the charge in the
Heaviside-Lorentz units reads

αEM =
e2

4π~c
. (11.257)

The current Jµ, from which the elementary charge has been factorized out, remains, of
course, unaffected by the rescalings (11.256). In the rescaled variables the Lagrangian
density (11.244) takes, therefore, the form

LEM = − 1

4
fµνf

µν − 1

c
eJµA

µ . (11.258)

In the Lagrangian density (11.258) the current Jµ couples to Aµ linearly. The task of
quantizing the electromagnetic field coupled to a given external classical current would
be therefore similar to the second example discussed in Section 11.3, were it not for the
complications which will be discussed below.

If the electromagnetic field interacts with “matter” (particles or other fields) and both,
the electromagnetic field and the matter, are treated as a single dynamical quantum sys-
tem, the current j and the charge density ρ, that is Jµ, are given in terms of the dynamical
variables representing matter. In such a case the current Jµ can, if the electromagnetic
field is coupled e.g. to a system of (complex) scalar fields, even depend on the variable
Aµ (but not on its derivatives if the canonical quantization is to be carried along the lines
described below); Aµ is then coupled to “matter” nonlinearly. In all these cases quanti-
zation of the system as a whole in the Schrödinger picture, as in (11.2), should proceed
essentially as if the electromagnetic field was free - the interactions do not modify the mo-
menta conjugated to the canonical variables of the electromagnetic field itself (although
can modify canonical momenta of the “matter”). The canonical quantization of systems
involving the electromagnetic field encounters, however, immediately an obstacle. If all
four components Aµ are taken for independent dynamical variables, one finds that the
momentum canonically conjugated to A0 vanishes identically:

Πν ≡
∂LEM

∂Ȧν
=

∂LEM

∂(c ∂0Aν)
= − 1

c
f0ν , (11.259)
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which implies that Π0 ∝ f00 ≡ 0. Systems coupled to the electromagnetic field are
therefore necessarily systems subject to constraints.

In fact, the peculiarity of the electromagnetic field is twofold: one peculiarity is Π0 = 0.
The other one is gauge invariance - the symmetry of the Lagrangian density (11.258) under
(local) transformations69

Aµ(x) → A′
µ(x) = Aµ(x) +

1

e
∂µθ(x) , (11.260)

in which θ is an arbitrary differentiable function of the space-time coordinates xµ. In-
variance of the fµνfµν term of (11.258) is obvious as under the transformations (11.260)
the tensor fµν does not change. Assuming that Jµ itself does not change when the trans-
formation (11.260) is made (i.e. that it is gauge invariant), the eJµA

µ term of (11.258)
transforms into eJµAµ + Jµ∂µθ; the term Jµ∂µθ = θ∂µJ

µ − ∂µ(θJ
µ) does not contribute

to the action I =
∫

d4x LEM if the current is conserved, which is anyway the necessary
condition for consistency of the field equations (11.248).

Invariance of the current Jµ with respect to the transformations (11.260) is obvious and
its conservation, ∂µJ

µ = 0, is easy to check, if it depends, as in the case of nonrelativistic
charged particles coupled to the electromagnetic field, discussed in Section 11.7, only on
dynamical variables of the “matter” (particles or fields, as opposed to the ”radiation” i.e.
the electromagnetic field). In more complicated cases, for example in the one of scalar
fields representing “matter” coupled to the electromagnetic field, the basic assumption is
the gauge invariance of the complete action

I[Aµ, ”matter”] ≡ −1

4

∫

d4x fµνf
µν + Irest[Aµ, ”matter”] , (11.261)

by which one understands its invariance with respect to the transformation (11.260) of the
electromagnetic field potentials supplemented with appropriate, dependent on θ(x), that
is local, transformations of other canonical variables (of the ”matter”). For θ independent
of x, these transformations must form a U(1) group of global symmetries (which were
discussed in Section 11.1) of the action Irest. For x-dependent θ this group becomes the
local U(1) symmetry group of the complete action I[Aµ, ”matter”]. Gauge invariance of
the complete classical action (11.261) may be viewed as a fundamental principle, which
must always be respected. This principle, generalized to nonabelian symmetry groups
(see Chapter 20), constitutes in fact the cornerstone of the whole modern development
of quantum field theory.70 Within this generalized formulation of (classical) theories in

69The same two problems: vanishing of time components of the canonical momenta and gauge invari-
ance with respect to transformations slightly more complicated than (11.260) are also characteristic of
systems coupled to nonabelian gauge (Yang - Mills) fields discussed in Chapter 20.

70It will be seen, however, (Section 20.3) that to properly formulate quantum theories of gauge fields
corresponding to nonabelian symmetry groups it is advantageous to take a more general approach and to
start with an extended action I = Igauge inv + Inon−gauge inv, which as a whole is not gauge invariant but
possesses a continuous global symmetry of the supersymmetric type, called the BRST symmetry (Section
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which the electromagnetic field couples to matter or other fields, gauge invariance ensures
that the generalized electromagnetic current Jµ, which enters the right hand side of the
Euler-Lagrange equation of the electromagnetic field

∂µf
µν =

e

c
Jν ,

which is, therefore, defined as71

−eJµ(x) ≡
δ

δAµ(x)
Irest[Aµ, ”matter”] , (11.262)

even if it depends on Aµ, it is gauge invariant and conserved. To see this let us consider
Irest of the general form

Irest[Aµ, φi] =

∫

d4xLrest(Aµ, φi, ∂φi) , (11.263)

depending on Aµ and a set of fields φi, which under the changes (11.260) of the gauge
transform according to the rule

φi(x) → φ′
i(x) =

(

e−iθ(x)T
)

ij
φj(x) ≈ φi(x)− iθ(x)Tijφj(x) , (11.264)

in which T is the matrix of the U(1) group generator represented on the real fields φi.
The assumed gauge invariance of Irest means that Irest[A

′
µ, φ

′
i]− Irest[Aµ, φi] = 0. Applied

to an infinitesimal gauge transformations (11.260) and (11.264) this gives the identity
∫

d4x
1

e

δIrest
δAµ(x)

∂µθ(x)

−i
∫

d4x

{

∂Lrest

∂φi(x)
θ(x)Tijφj(x) +

∂Lrest

∂(∂µφi(x))
∂µ [θ(x)Tijφj]

}

= 0 .

The last line is zero, as can be seen by integrating by parts and using the Euler-Lagrange
equations of motion72 (11.4) of the fields φi. In view of the arbitrariness of θ(x) one gets
(integrating by parts also in the first term) therefore the condition of the conservation73

of the current (11.262). Gauge invariance of the current (11.262) is of course guaranteed
by the gauge invariance of the action (11.263). But it is precisely the gauge invariance
of the complete action I[Aµ, ”matter”] of the electromagnetic field coupled to “matter
fields”, that is responsible for additional difficulties which one will have to overcome in
quantizing the electromagnetic field in Section 11.7.

20.2). Quantization with the help of the Dirac method of Section 11.6 is then fairly easy and the BRST
invariance of the quantum theory ensures that all the implications of gauge invariance are recovered in
the properly defined physical subspace of the extended Hilbert space. Moreover, in some special cases,
e.g. of gauge theories coupled to chiral femions, or when an explicit momentum cutoff is implemented
in the Lagrangian, even the BRST invariance of the classical action must be abadoned if the resulting
quantum gauge theory is to be consistent.

71In most cases this current coincides with the Noether current of the global U(1) symmetry.
72The reasoning remains valid also if the action Irest depends on higher derivatives of the fields φi,

provided one uses the appropriate generalization of the Euler-Lagrange equations of motion.
73In the case of nonabelian gauge fields infinitesimal transformations of which analogous to (11.260)

involve the covariant derivative instead of the ordinary one, this reasoning leads to the covariant conser-
vation of the current to which the gauge fields couple.
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11.5 The Proca field and its quantization

Before dealing with the difficulties of the electromagnetic field, it is instructive to quantize
first a simpler system with constraints, the so-called Proca field74 V µ (a vector field with
a nonzero mass) the classical dynamics of which is governed by the Lagrangian density

LProca = − 1

4
VµνV

µν +
1

2
M2VµV

µ − g VµJ
µ , (11.265)

in which Vµν ≡ ∂µVν − ∂νVµ and g is the coupling constant (we have set ~ = c = 1). In
the following we assume that the current Jµ is independent of Vµ. Conservation of the
current Jµ is not assumed here (it is not necessary for consistency of the field equations).

The transformation (11.260) is not a symmetry of the the Lagrangian (11.265) due
to the mass term 1

2
M2VµV

µ by which it differs from (11.258). Still (11.265) leads to the
similar (at first sight) obstacle in the canonical quantization as (11.258): Π0 ≡ 0.

Before disscussing this problem we comment on the form of the Lagrangian density
(11.265). Since it is not invariant under the gauge transformations (11.260), there is a
priori no reason for which its derivative part should take the restricted form (11.265). In
principle, one could write down the most general Lagrangian density, at most quadratic
in Vµ and with at most two derivatives in the form

LProca = − 1

2
∂µVν∂

µV ν − 1

2
κ∂µVν∂

νV µ +
1

2
M2VµV

µ − g VµJ
µ , (11.266)

with an arbitrary real κ (any other Lagrangian density satisfying our requirements differ
from this one by a total derivative; an arbitrary real negative constant, which could
multiply the first term, can always be made equal to −1/2 by appropriately rescalings
of Vµ, κ, M

2 and g Jµ). However, taking the four-divergence of both sides of the Euler-
Lagrange equation

∂µ∂
µV ν + κ∂ν(∂µV

µ) +M2V ν = g Jν , (11.267)

resulting from (11.266), we discover that the four-divergence ∂νV
ν ≡ φ satisfies the inde-

pendent equation

(1 + κ)∂µ∂
µφ+M2φ = g J̃ , (11.268)

in which J̃ ≡ ∂µJ
µ. Therefore, the Lagrangian density (11.266) gives rise, among other

things, also to the independent propagation of a scalar field75 which couples to the scalar
current J̃ . To remove the propagation of this scalar field φ (that is, to remove the

74We denote this field Vµ, instead of Aµ, to distinguish it from the electromagnetic field.
75That an unconstrained vector field Vµ contains in it in addition a massive spin zero particle was also

revealed in Section 8.4 in the course of constructing the free-field operator transforming under changes
of the reference frame as a vector representation of the Lorentz group.
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homogeneous part of the classical solution for φ, which would remain even if the current
Jµ was conserved, leading to J̃ ≡ 0), we set κ = −1; taking then the four-divergence of
both sides of the Euler-Lagrange equation (11.267) we find the relation

M2∂µV
µ = g ∂µJ

µ , (11.269)

which shows that now φ can be expressed algebraically in terms of the external current
(which depends on dynamical variables of other parts of the system). In particular, now
φ ≡ 0 if ∂µJ

µ = 0. With κ = −1 the Lagrangian density (11.266) is just the Proca
Lagrangian density (11.265).

We now quantize the Proca field. From its Lagrangian density (11.265) one obtains
the canonical momenta Πν conjugate to the variables V µ:

Πi =
∂LProca

∂V̇ i
= −V0i = V̇ i + ∂iV

0 , Π0 = 0 . (11.270)

As has been said, Π0 ≡ 0 is an obstacle in the canonical quantization. The problem lies
in the fact that the naive Hamilton’s formalism constructed ignoring the difficulty would
not lead to equations equivalent to the original Euler-Lagrange equations

∂µV
µν = −M2V ν + g Jν , (11.271)

following from the Proca Lagrangian density (11.265), that is to the equations

∂iV
i0 = −M2V 0 + g J0 , (11.272)

∂0(∂0V
k + ∂kV

0) + ∂i(−∂iV k + ∂kV
i) = −M2V k + g Jk , (11.273)

obtained by setting in (11.271) ν = 0 and ν = k, respectively. Trying to construct the
Hamiltonian corresponding to the Proca Lagrangian and following the standard recipe
one would write:

H = Π0V̇
0 +ΠiV̇

i − LProca

= Π0V̇
0 +ΠiV̇

i − 1

2
(V̇ i + ∂iV

0)(V̇ i + ∂iV
0) +

1

2
∂iV

j(∂iV
j − ∂jV

i)

+
1

2
M2V iV i − 1

2
M2V 0V 0 − g V iJ i + g V 0J0 . (11.274)

Eliminating V̇ i by using (11.270), i.e. substituting V̇ i = Πi − ∂iV
0, one would then get

H =
1

2
ΠiΠi +Π0V̇

0(V λ,Πλ)− Πi∂iV
0 +

1

2
(∇×V)2

+
1

2
M2V iV i − 1

2
M2V 0V 0 − g V iJ i + g V 0J0 . (11.275)

Of course, since Π0 ≡ 0, there is no way to express the generalized velocity V̇ 0 through the
canonical variables V λ and Πλ. Let us therefore see, what one gets, setting naively Π0 = 0
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in the Hamiltonian (11.275). The canonical equations following from the Hamiltonian
H =

∫

d3xH obtained in this way would read

V̇ i =
{

V i, H
}

PB
=
∂H
∂Πi

, Π̇i = {Πi, H}PB = − ∂H
∂V i

, (11.276)

V̇ 0 =
{

V 0, H
}

PB
=

∂H
∂Π0

≡ 0 , Π̇0 = {Π0, H}PB = − ∂H
∂V 0

6= 0 ,

and would evidently be incompatible with the Euler-Lagrange equation (11.271): the
latter imply firstly that Π0 = 0 for any time t, whereas here, even if one sets Π0 = 0
for t = 0, a nonzero Π0 would be generated for t 6= 0 due to a nonzero derivative Π̇0.
Secondly, from (11.272) expressed in terms of Πi it follows that the time evolution of V 0

is fully determined in terms of J0 and ∂iΠi:

V 0 =
1

M2

(

∂iΠi + g J0
)

. (11.277)

In contrast, the third canonical equation (11.276) would imply that V 0 is constant. Thus,
the dynamics of V µ following from the Hamiltonian (11.275) would not be the same as
the one generated by the Euler-Lagrange equations (11.272) and (11.273).

The equivalence is restored if in the Hamiltonian (11.275), in addition to setting Π0 =
0, one substitutes for V 0 the expression (11.277), that is, if one “algebraically” eliminates
one of the canonical variables (in other words, if one expresses its value at any t by a
combination of other canonical variables taken at the same instant t). One then obtains
(after integrating by parts) the “physical” Hamiltonian:

Hph =
1

2
ΠiΠi +

1

2M2
(∂iΠi)

2 +
1

2
(∇×V)2

+
1

2
M2V iV i − g V iJ i +

g2

2M2
J0J0 +

g

M2
J0∂iΠi . (11.278)

As the canonical equations one now gets

V̇ i =
∂Hph

∂Πi
= Πi −

1

M2
∂i (∂jΠj)−

g

M2
∂iJ

0 , (11.279)

Π̇i = −∂H
ph

∂V i
= −ǫijkǫklm∂j∂lV m −M2V i + g J i . (11.280)

Their equivalence with the Euler-Lagrange (11.271) equations can be established as fol-
lows: If we define an auxiliary variable V 0 as in (11.277); the equation (11.272) is
then automatically satisfied. Next, the equation (11.279) can be written in the form
Πi = V̇ i + ∂iV

0. Differentiating this relation with respect to time and inserting Π̇i ob-
tained in this way into (11.280) transforms the latter equation into (11.273). Thus, by
eliminating “algebraically”one of the variables, we have constructed the Hamilton’s for-
malism which is equivalent to the field equations following from the original Lagrangian
(11.265).
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Quantization is now straightforward: one promotes V i(x, t) and Πi(x, t) taken at t = 0
to operators in the Schrödinger picture and imposes the standard canonical commutation
relations

[V̂ i(x), Π̂j(y)] = i
{

V i(x), Πj(y)
}

PB
= iδijδ(x− y) ,

[ V̂ i(x), V̂ j(y)] = [Π̂i(x), Π̂j(y)] = 0 . (11.281)

on the operators representing the independent canonical variables. In this way canonically
quantized get only independent physical degrees of freedom of the system of fields. If
the current Jµ depends on field variables φa and Πa other than V i and Πi themselves,
the states |Ψ〉 of the system can be represented as wave functionals Ψ[V i(x), φa(x), t] =
〈 [V i], [φa]|Ψ(t)〉 on which the operators V̂ i(x) and Π̂i(x) act as

V̂ i(x) = V i(x) , Π̂i(x) = −i δ

δV i(x)
. (11.282)

Of course, the Hilbert space of all functionals Ψ[V i(x), φa(x)] is nonseparable and one
seeks an appropriate separable Fock space in which the algebra of operators can be rep-
resented irreducibly. As usually one choses the Fock space in which the free Hamiltonian
has its lowest energy eigenvector.

In order to realize the algebra (11.281) of field operators in this separable Fock space
it is necessary to find a representation of the operators76 V i(x) and Πi(x) in terms of the
creation and annihilation operators (having the standard commutation rules) To simplify
this task we can apply the method outlined in Section 11.3 allowing to easily quantize
the free field (i.e. for Jµ = 0) in the Heisenberg picture; the free-field Heisenberg picture
operators V i

H(t,x), Π
H
i (t,x) taken at t = 0 will then provide the sought representations of

the Schrödinger picture operators of the interacting (i.e. coupled to Jµ 6= 0) Proca field.

To this end first write down the the most general solution to the classical field equations
(11.267) and (11.269) following from the free (with Jµ = 0) Proca Lagrangian which read

(∂ν∂
ν +M2)V µ(t,x) = 0 , ∂µV

µ(t,x) = 0 . (11.283)

The most general classical solution of the first equation can be written in the form (11.164)
but with the coefficients a(k) and a∗(k) replaced by some four-vector coefficients aµ(k)
and a∗µ(k). In order to satisfy the second of these equations we write them in the form

aµ(k) =
∑

λ=0,±1

a(k, λ) ǫµ(k, λ) , (11.284)

with three four-vectors ǫµ(k, λ) satisfying the condition

kµǫ
µ(k, λ) = 0 . (11.285)

76We suppress hats on operators from now on.
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Since k2 = M2 6= 0, the are three linearly independent such four-vectors. Two of them,
corresponding to λ = ±1, can be chosen to have only space-like components (in the plane
perpendicular to k) and will be normalized so that

ǫµ(k, λ) ǫ∗µ(k, λ) = −1 . (11.286)

(i.e. ǫ(k, λ) · ǫ∗(k, λ) = 1). As the third one, corresponding to λ = 0, we take the
four-vector

ǫµ(k, λ = 0) =

( |k|
M

,
k

|k|
E(k)

M

)

, (11.287)

which also satisfies the conditions (11.285) and (11.286). The vectors ǫµ(k, λ) satisfy then
the sum rule

∑

λ=0,±1

ǫµ(k, λ) ǫ
∗
ν(k, λ) = −gµν +

kµkν
M2

. (11.288)

Thus, when Jµ = 0, the most general solution of the Proca field equations of motion has
the form

V µ(t,x) =

∫

dΓk

∑

λ=0,±1

[

a(k, λ) ǫµ(k, λ) e−iEt+ik·x + h.c.
]

, (11.289)

where, as usually, dΓk = d3k/(2π)32E and E =
√
k2 +M2. Since there are only three

independent vectors ǫµ(k, λ), out of the four components of V µ only three, for which
one can take V i’s, are independent. To explicitly write down their canonical momenta
Πi(t,x) which are the corresponding solutions to the classical canonical equations, one
recalls that in the classical Proca theory Πi(t,x) = V̇ i(t,x) + ∂iV

0(t,x). In agreement
with this relation one postulates that

Πi(t,x) =
1

i

∫

dΓkE(k)
∑

λ=0,±1

[

a(k, λ) ǫ̃i(k, λ) e−iEt+ik·x − h.c.
]

, (11.290)

where

ǫ̃i(k, λ) ≡ ǫi(k, λ)− ki

E
ǫ0(k, λ) . (11.291)

Obviously, ǫ̃i(k, λ) = ǫi(k, λ) for λ = ±1, while for λ = 0 one finds ǫ̃i(k, λ = 0) =
(ki/|k|)(M/E). It is then easy to verify that V 0(t,x) as given by (11.289) is correctly
reproduced by (11.277) with Jµ = 0.

One can then check, that the time dependent Heisenberg picture operators V i
H(t,x)

and ΠH
i (t,x) of the free Proca theory are obtained by simply promoting the coefficients

a(k, λ) and aλ(k, λ) to operators satisfying the
[

a(k, λ), a†(k′, λ′)
]

= (2π)32E(k)δλλ′δ
(3)(k− k′) ,

[a(k, λ), a(k′, λ′)] =
[

a†(k, λ), a†(k′, λ′)
]

= 0 , (11.292)
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because the canonical equal-time commutation rules (11.281) and all necessary operator
equations are then satisfied.

It follows that for the Schrödinger picture operators V i(x) and Πi(x), which at t = 0
will be equal to the Heisenberg picture operators of the interacting Proca field one can
take (11.289) and (11.290) with t set to zero and the coefficients a and a∗ replaced by
the operators a(k, λ) and a†(k, λ). (Of course, at t 6= 0 the Heisenberg picture operators
V i
H(t,x) and ΠH(t,x) of the Proca field coupled to a nonvanishing current Jµ operator

will, unlike the Heisenberg picture operators of the free Proca field constructed above,
not have the simple forms (11.289) and (11.290) with a and a∗ replaced by the creation
and annihilation operators!)

In terms of the creation and annihilation operators introduced in this way, the free
part H0 of the Hamiltonian (11.278) takes the form

H0 =

∫

dΓkE(k)
∑

λ=0,±1

a†(k, λ) a(k, λ) , (11.293)

plus an infinite constant which we discard. Thus, the free part H0 of the Hamiltonian
H (that is, its part independent of the current Jµ) becomes diagonal. It is also easy
to see that the operators obtained by substituting into the classical solutions (11.289)
and (11.290) (for t 6= 0) the operators a(k, λ) and a†(k, λ), will in the theory of the
interacting Proca field be the interaction picture operators V i

I (x) and ΠI
i (x) (see Section

11.9), because they are related to the Schrödinger picture ones by the standard rules

V i
I (t,x) = eiH0t V i(x) e−iH0t , ΠI

i (t,x) = eiH0tΠi(x) e
−iH0t .

Finally, one can compute the commutators of V 0(x) which, if the Proca field V µ

is coupled to some “matter”, is given by (11.277). Assuming that J0 depends on the
canonical variables of systems coupled to the Proca field but not on the canonical variables
V i or Πi of the vector field itself, one finds

[

V i(x), V 0(y)
]

=
1

M2

[

V i(x), ∂yj Πj(y)
]

= − i

M2
∂xi δ

(3)(x− y) ,
[

Πi(x), V
0(y)

]

= 0 . (11.294)

Thus, the operator representing the time component of V µ does not commute with the
operators representing the remaining components, contrary to what could naively be
expected.

11.6 Systems subject to constraints

In Section 11.5 the Proca vector field, which is an example of a system subject to con-
straints which in the Dirac terminology are second class constraints, has been quantized
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by expressing “algebraically”one of its components (V 0) in terms of the remaining inde-
pendent canonical variables (Πi and the variables out of which J0 is built). The form
of the canonical commutation relations imposed on the independent canonical variables
(that is, the right quantization prescription) was then obvious and they determined also
the commutation relations satisfied by the operator V 0. Explicit solutions for dependent
variables (like V 0) in terms of the remaining variables, chosen as independent, even if
possible in principle, may not always be easy, especially in systems composed of several
mutually interacting subsystems (in field theories expressing “algebraically” may mean
solving differential equations in the space variable x - the term “algebraic” refers only to
the fact that no time derivatives are involved). Moreover, simple “algebraic” elimination
of dependent variables is not directly applicable to the electromagnetic field which is also
an example of a system subject to constraints. Therefore in this section we present a sys-
tematic and general method proposed by Dirac, which allows to “hamiltonize” systems
subject to constraints and to quantize them canonically. In the case of systems subject
to constraints, called second class, similar to the ones encountered in the Proca theory
of the vector field, the Dirac method allows to find, without solving explicitly for depen-
dent variables, the right commutation relations which must be imposed directly on the
original set of canonical variables along with a set of identities which must be satisfied by
operators representing these variables, in order to properly quantize the system.77 The
same method proves useful also in quantizing systems subject, like the electromagnetic
field, to constraints of the first class. Such constraints reflect invariance of the (classical)
physical state of the system with respect to changes of “gauge” - i.e. with respect to
appropriate transformations of the canonical variables (which are therefore not uniquely
specified by the physical state of the system). Such systems can be quantized either by
fixing the gauge, that is by introducing additional constraints which convert them into
systems subject to second class constraints only, or by treating the first class constraints
as conditions which select in the Hilbert space (or in the selected Fock space) a subset
of vectors (rays) which represent physical states of the system. The Dirac method al-
lows, among other things, for an easy canonical quantization of theories of non-Abelian
Yang-Mills fields which in the BRST formulation become systems subject to second class
constraints (see Section 20.3).

Canonical quantization consists of the identification of the canonical variables qi, i =
1, . . . , n and the conjugated momenta pi, their subsequent promotion to the Schrödinger
picture operators q̂i and p̂i satisfying the commutation rule

[

q̂i, p̂j
]

= i~
{

qi, pj
}

PB
= i~ δi j , (11.295)

and, finally, realization of the resulting algebra of operators in some Hilbert (or Fock)
space. The method in this simple form is applicable if the canonical variables and their

77The method itself, however, does not give any clues, how to satisfy these commutation relations and
identities, that is how to obtain a representation of the resulting algebra of operators in the Hilbert or a
Fock space - in the latter case by expanding field operators taken at t = 0 into creation and annihilation
operators.
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momenta are all independent. Classical systems may, however, be subject to constraints as
a result of which not all their canonical variables are independent. The primary constraints
ΦM (q, p) = 0, M = 1, . . . , n − r, follow from the structure of the Lagrangian and reflect
the impossibility to solve the equations78

pj =
∂

∂q̇j
L(q, q̇) , (11.296)

for n−r velocities q̇j, j = r+1, . . . , n. In such a case the original Euler-Lagrange equations
of motion are equivalent (see Appendix J) to the set of canonical equations which follow
from the total Hamiltonian HT (Dirac’s terminology) of the form

HT(q, p) =

(

r
∑

i=1

∂L

∂q̇i
q̇i − L(q, q̇)

)

q̇i=q̇i(q,p,u)

+
n−r
∑

M=1

ΦM uM

= H(q, p) +
n−r
∑

M=1

ΦM(q, p)uM , (11.297)

combined with the set of (primary) constraints ΦM(q, p) = 0. The quantitities uM with
M = 1, . . . , n − r, are the n − r generalized velocities q̇r+M with respect to which the
equations (11.296) cannot be solved and πM ≡ pr+M are the canonical momenta associated
with the variables qr+M . The subscript q̇i = q̇i(q, p, u) on the bracket in the first term
of (11.297) means that r of the generalized velocities q̇i (those with respect to which
the relations (11.296) can be solved) are expressed in terms of the canonical variables
q, the conjugate momenta pi, i = 1, . . . , r and the remaining velocities uM = q̇r+M . In
Appendix J it is shown that the Hamiltonian H(q, p) in the second line of (11.297), is
independent of the n − r velocities uM . The sum in the second term runs over the set
of n − r primary constraint functions ΦM (q, p) - the equality ΦM = 0 is not used at
this stage.79 By construction (see Appendix J) the primary constraints ΦM(q, p) = 0,
M = 1, . . . , n − r following directly from the the Lagrangian have the structure πM −
fM(q, p1, . . . , pr) = 0. The mentioned equivalence is to be understood in the sense that the
constraints ΦM(q, p) = 0 differentiated with respect to time, combined with the evolution
equations q̇i = {qi, HT}PB and ṗi = {pi, HT}PB, in which the Poisson brackets with the
total Hamiltonian HT (11.297) are computed as if all canonical variables qi and pi were
independent (i.e. as if there were no constraints at all), yield second order differential
equations for qi’s which are equivalent to the original Euler-Lagrange equations. This

78As aready said, in the case of gauge systems primary constraints can be also imposed on the system’s
variables from the outside.

79The factors uM (t) in HT can also be interpreted as Lagrange multipliers allowing to take into account
the constraints ΦM (q, p) = 0 in the standard variational formulation

δ

∫ t2

t1

dt [piq̇
i −H(q, p)] = 0 , δqi(t1) = δqi(t2) = 0 ,

of the Hamilton’s equations of motion.
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classical dynamics can be cast into a fully Hamiltonian form by giving the factors uM an
appropriate dependence on pi and q

i. The prescription for achieving this, formulated by
Dirac, is as follows.

As in the Lagrangian formalism the primary constraints ΦM(q, p) = 0 are identities
relating the canonical variables at any instant t, one should ensure that they are also
preserved by the dynamics generated by the Hamiltonian (11.297) - in this case it will
suffice to impose them on the initial data only. This means that Φ̇N (q, p), that is the
Poisson brackets {ΦN , HT}PB, must be made vanishing. Investigating these Poisson
brackets one can encounter different situations. Barring the case of obvious contradictions,
like 1 = 0 (which would mean that the Lagrangian itself leads to inconsistent Euler-
Lagrange equations), the first possibility is that the Poisson bracket {ΦN , HT}PB vanishes
when the already identified constraints are imposed after computing it. This is written as

{ΦN , HT}PB ≃ 0 ,

where the symbol ≃ 0 means “vanishes weakly” (Dirac’s terminology again). Also in this
case the Poisson bracket should be computed as if the variables were unconstrained and
independent; the constraints ΦM = 0 are imposed only afterwards. Thus, in general, the
symbol ≃ 0 is equivalent to the equality to a combination αM(q, p)ΦM(q, p) of the con-
straints. The second possibility is that the investigated Poisson bracket of the constraint
ΦN with the Hamiltonian (11.297) does not vanish, even weakly, and the result does
not depend on the (yet) unknown coefficients uN . This means that the new constraint
ΦK(q, p) ≡ {ΦN , HT}PB = 0 has to be added to the list of constraints. Constraints iden-
tified in this way are called secondary. The obvious next step is to investigate the Poisson
bracket of the newly identified constraint ΦK with the Hamiltonian (11.297) which can
lead to a yet new constraint and so on. Proceeding in this way, one eventually identifies
all the constraints ΦM = 0, M = 1, . . . , k, where n− r ≤ k < 2n, the investigated system
is subjected to. Finally, there are Poisson brackets of ΦN with the Hamiltonian HT which
do not vanish weakly but depend on the coefficients uM . Requiring that all such Poisson
brackets, of the primary as well as of all secondary constraint (weakly) vanish one gets
the system of linear equations

{ΦN , H}PB +
n−r
∑

M=1

{ΦN , ΦM}PB uM ≃ 0 , N = 1, . . . , k , (11.298)

in which the sum runs over the n− r primary constraints. The solution of this system of
linear inhomogeneous equations takes the general form80

uM = cM(q, p) +

p
∑

a=1

vM(a)(q, p) s
a , (11.299)

80Since the number n− r of unknowns uM is smaller than the number k of the equations, the existence
of a solution is a nontrivial fact; it follows from the assumption that the original Euler-Lagrange equations
are not inconsistent.
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in which cM(q, p) form a particular solution of the inhomogeneous system (11.298), while
vM(a)(q, p), a = 1, . . . , p, are all linearly independent solutions of the homogeneous system

n−r
∑

M=1

{ΦN , ΦM}PB vM(a)(q, p) ≃ 0 . (11.300)

Plugging the solution (11.299) into the total Hamiltonian (11.297) completes the hamil-
tonization of the classical system: once the constraints ΦM (q, p) = 0, M = 1, . . . , k, are
imposed on the initial data, they are automatically preserved by the time evolution.

An important feature of the total Hamiltonian (11.297) is its possible dependence,
after inserting in it the solution (11.299), on the coefficients sa, which may be arbitrary
functions of time. They are present whenever there exist nontrivial linear combinations

Φa(q, p) ≡ ΦM(q, p) vM(a)(q, p) , (11.301)

of the primary constraints which, as follows form (11.300), have (weakly) vanishing Poisson
brackets with all other constraints (the primary and secondary ones). Generally, one calls
a quantity (a function of q and p) a first class quantity if its Poisson brackets with all the
constraints ΦM(q, p) weakly vanish. Correspondingly, linear combinations Φa(q, p) such
that

{ΦN , Φa}PB ≃ 0 for all N (11.302)

are called first class constraints. The remaining ones, which have at least one nonzero
Poisson bracket with the other constraints, are called second class. It can be noted at this
point that the total Hamiltonian

HT = H +
∑

M∈primary

ΦM(q, p) cM(q, p) +
∑

a∈primary

Φa(q, p) s
a(t)

≡ H ′(q, p) +
∑

a∈primary

Φa(q, p) s
a(t) , (11.303)

obtained using the Dirac procedure outlined above is the sum of two terms, which are
separately first class. It is also straightforward to prove, using the Jacobi identity, that
the Poisson bracket of two first class quantities is also a first class quantity.

Due to the presence of the arbitrary functions sa(t), which is always the case if there
are primary first class constraints, the time evolution of the canonical variables qi(t) and
pi(t) generated by the Hamiltonian (11.297) is not unique - the initial data qi(t0) and
pi(t0) set at some t = t0 do not specify uniquely the values of qi(t) and pi(t) at other
times t. This can only make sense if the physical state of the system does not uniquely
determine the variables qi and pi. In other words, characterization of the system in terms
of canonical variables exhibits some kind of “gauge invariance” by which term one means
the situation in which the (classical) physical state of a system does not change when
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the variables used to characterize it are transformed in some specific way. In such a case
infinitely many different values of the same canonical variables correspond to the same
(classical) physical state; owing to this the time evolution generated by the Hamiltonian
(11.303) (and by the Euler-Lagrange equations, to which it is equivalent) can lead, despite
the presence of the arbitrary functions sa(t), to a unique evolution of physical states.

Let us identify possible gauge transformations of the variables qi and pi. One obvious
class of such transformations is of the form

δqi = δθa{qi, Φa}PB ,
δpi = δθa{pi, Φa}PB , (11.304)

where Φa are the system’s first class primary constraints and δθa are arbitrary param-
eters. Indeed, starting at t = t0 from a given point in the phase space and using two
infinitesimally different Hamiltonians (11.303), one with sa(t) and the other one with
sa(t)+ δsa(t), one reaches, after an infinitesimal time ∆t two different phase space points
the coordinates of which are related by (11.304) with δθa = ∆t δsa(t0). Thus, variables
connected by the transformations (11.304) generated through the Poisson brackets by the
primary first class constraints must define the same physical state. Furthermore, taking
the difference of the results of two successive transformations (11.304) performed in two
different orders one concludes that Poisson brackets of two primary first class constraints
must also generate admissible gauge transformations. Finally, considering changes of the
variables generated by applying in two different orders: a transformation (11.304) and
an infinitesimal time evolution generated by HT, one concludes that the Poisson brackets
of H ′ (a first class quantity) defined in (11.303) with the primary first class constraints
are also generators of admissible gauge transformations. Since, as has been noted above,
Poisson brackets of first class quantities are also first class quantities, that is,

{Φa, Φa′}PB = α b
aa′Φb ,

{H ′, Φa′}PB = β b
a′ Φb ,

where the indices b run over all first class constraints (not necessarily the primary ones),
it follows that some gauge transformations can be also generated by first class constraints
which are not primary. The only difference at this point between gauge transformations
generated by the first class secondary and primary constraints is that only the latter class
of gauge transformations contributes to the arbitrariness of the time evolution generated
by HT (and by the corresponding Euler-Lagrange equations). Although it is possible
to construct examples (nonrelativistic) in which not all secondary first class constraints
generate transformations not affecting (in the classical theory) the physical state of the
system, one assumes that in all physically sensible cases all first class constraints (includ-
ing all secondary ones) are generators of gauge transformations which can be iteratively
reached from the identity transformation.81 It also seems that adopting this assumption is

81This very important fact is crucial in discussing topological properties of quantized nonabelian Yang
Mills theories.
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necessary for consistent quantization. Accordingly, one defines the extended Hamiltonian

HE (Dirac’s terminology again) by including in the second term of (11.303) all the first
class constraints. The classical dynamics generated by HE has more arbitrariness than
does the one generated by HT and that is inherent in the time evolution determined by
the underlying Euler-Lagrange equations. Such an extension of the evolution, possible
in the Hamilton’s formulation is, however, fully admissible since it still leads to a unique
evolution of the physical state of the system.82

The final remark is that the secondary second class constraints also could have been
included in the sum in (11.297) - in the resulting set of equations (11.298) there would be
then more factors uN to determine (their number would in this case match the number
of equations), but it can be shown that the solutions for additional uN ’s would vanish
weakly, i.e. would be proportional to a linear combination of constraints (and therefore the
corresponding extra terms in (11.297) would not change the canonical equations for qi and
pi, just because {f(q, p), ΦMΦN}PB = ΦM{f(q, p), ΦN}PB + {f(q, p), ΦM}PBΦN ≃ 0).
Thus, all constraints, primary and secondary of both classes can be from the beginning
included in (11.297) and treated on the same footing.

Hamiltonization is the necessary first step towards the canonical (operator) quantiza-
tion. We will consider first systems subject to first class constraints only. There are two
major methods of quantizing such systems. One consists of promoting all the canonical
variables qi and pi to independent operators satisfying the standard commutation rules
(11.295) and representing their algebra in a Hilbert (or in a Fock) space of states |Ψ〉.
The classical constraints Φa = 0 are in this method not imposed as operator relations
but instead become conditions selecting in the full Hilbert (or Fock) space vectors (rays)
|Ψphys〉, forming a subspace, which represent physical states. Physical are then only the
states satisfying the conditions

Φa(q̂, p̂)|Ψphys〉 = 0 , all a . (11.305)

As the first class constraints generate gauge transformations, this means that physical are
those states which are invariant with respect to such transformations.83 This is possible
provided the operators Φa(q̂, p̂) can be ordered in such a way as to ensure the operator
relations [Φ̂a, Φ̂b] = i~ c d

ab (q̂, p̂) Φ̂d (necessary for consistency of the conditions (11.305))
and [Ĥ ′, Φ̂a] = i~ b d

a (q̂, p̂) Φ̂d, where H
′ is defined in (11.303) (necessary to ensure that

the time evolution does not map physical states into unphysical ones or the other way
around).

82The fact that the Hamiltonian formulation allows for a more general time evolution of gauge system’s
variables should not surprise: the Hamilton’s formulation allows also for a wider class of transformations
of the canonical variables than does the Lagrangian one.

83More precisely, the conditions (11.305) ensure invariance of physical states with respect to those
gauge transformations (called “small”) which can be reached iteratively from the identity transforma-
tion. The requirement that the states |Ψphys〉 are invariant also with respect to so-called “large” gauge
transformations, if imposed, is an extra assumption not following from the consistency of the quantization
prescription.
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A variant of this approach, called the Dirac-Fock quantization is employed when, as
it is the case in quantum field theories, the first class constraints Φa expressed in terms of
the canonical variables promoted to Schrödinger picture operators the algebra of which
is realized in some Fock space naturally split into Φ

(+)
a + Φ

(−)
a , where Φ

(+)
a (Φ

(−)
a ) involve

only the annihilation (creation) operators defined with respect to the vector |0Fock〉 of the
chosen Fock space and imposing the conditions (11.305) would either lead to inconsistency
due to commutators of Φa with some other operators or would just leave in the Fock space
no physical state-vectors at all (or both). In this case one identifies physical states by the
weaker conditions,

Φ(+)
a |Ψphys〉 = 0 , all a , (11.306)

(so that still 〈Ψ′
phys|Φa|Ψphys〉 = 0). A characteristic feature of this approach is the pres-

ence in the Fock space of state-vectors of negative or zero norm. If the system is properly
quantized in this way, all state-vectors of negative norm are manifestly unphysical (in
the sense of the condition (11.306)), whereas the zero norm ones, while being classified as
physical, have zero scalar products among themselves and with all physical, positive norm
states. Arbitrary linear combinations of “physical” zero norm vectors can be then added
to a positive norm physical state-vector without changing its norm or scalar products
(transition rates). A physical state of the system is then in the Fock space represented
not by a ray but by a larger equivalence class of state-vectors differnig one from another
by a zero norm vector; the zero norm vectors represent in this approach a residual gauge
invariance not removed by the conditions (11.306). This approach is one of possible meth-
ods of the electromagnetic field quantization (free or interacting with other fields) and
leads to the same structure of the theory as the Gupta-Bleuler quantization in the covari-
ant Lorentz gauge ∂µA

µ = 0 outlined in Section 11.11. It is also used for quantization of
the relativistic string (see the old review by C. Rebbi).

The second method of quantizing systems subject to first class constraints, which will
be used in section 11.7 to quantize the electromagnetic field in the Coulomb gauge, is
to fix the gauge completely. This is done by imposing additional constraint(s), called
gauge fixing conditions, Φ(q, p) = 0 from the outside,84 so that the entire system of
constraints (determined as described at the beginning of this section, treating the gauge
fixing conditions as all other primary constraints and including them together with all
second class constraints multiplied by the corresponding uM factors in the HamiltonianHT

(11.297)) becomes second class and the time evolution of the canonical variables becomes
uniquely determined by the equations of motion and the initial data. The resulting
classical systems subject to second class constraints can be quantized with the help of the
Dirac prescription described below. The method works outside the perturbative expansion
provided the gauge can be fixed globally, that is in such a way that the canonical variables
satisfying the chosen gauge condition are uniquely determined. This is not always the case.

84This is possible because, as explained above, the physical state of the system does not fix the values
of the canonical variables uniquely; the added constraints can be then made consistent with the dynamics
generated by HT from which the arbitrary functions sa are now absent.
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For example, it is known that in the case of non-Abelian Yang-Mills theories (Chapter
20), there are multiple solutions to the Coulomb gauge condition (this is known under
the name of Gribov ambiguity). In this case the validity of the method is restricted to
the perturbative expansion only. In field theory a consequence of imposing extra gauge
conditions may be the spatial nonlocality of the resulting Hamiltonian.

To quantize a theory in which first class constraints are absent from the beginning or
have been eliminated by imposing additional constraints from the outside, one forms the
matrix CNM :

CNM ≡ {ΦN , ΦM}PB . (11.307)

Since the matrix CNM is antisymmetric (the basic property of the Poisson brackets defined
for commuting variables, to which we restrict ourselves in this section) and det(CNM ) 6= 0
(vanishing, even weak, of this determinant would mean that one can form at least one
more linear combination of the constraints which has zero Poisson brackets with all others
and is, hence, a first class constraint which we have assumed to be already eliminated),
it must be of even dimension. The Dirac prescription for quantizing systems subject to
second class constraints then reads

[q̂, p̂] = i~ {q, p}D|q→q̂, p→p̂ , (11.308)

ΦN (q̂, p̂) ≡ 0 , for all N ,

that is, the commutators (or anticommutators in the case of fermionic fields - see section
11.8) are determined by the Dirac brackets (instead of Poisson brackets) and all the
constraints are realized as strong operator identities Φ̂M ≡ ΦM(q̂, p̂) = 0. The Dirac
bracket {A(p, q), B(p, q)}D of two functions of the canonical variables is defined as follows:

{A, B}D ≡ {A, B}PB −
∑

N,M

{A, ΦN}PB
(

C−1
)NM {ΦM , B}PB , (11.309)

(again the Poisson brackets have to be computed as if there were no constraints). The
Dirac bracket shares with the Poisson bracket all the algebraic properties: it is bilinear
in canonical variables, antisymmetric and satisfies the Jacobi identity. It is also a matter
of a simple algebra to check that the definition (11.309) is invariant with respect to linear
changes

ΦM (q, p) = ON
M(q, p) Φ̃N(q, p) ,

of the basis of constraints, provided the matrix ON
M(q, p) is nonsingular (invertible) on the

surface of constraints, that is provided its determinant does not vanish weakly. Finally,
the Dirac bracket has the (easy to verify) property

{A, ΦN}D = 0 , for all N , (11.310)
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which ensures compatibility of the commutation relation (11.308) with the constraints
ΦN = 0 realized as strong operator identities. This also means that the Hamiltonian
operator is obtained from the H part of the total classical Hamiltonian HT (11.297): the
sum of the primary constraints (which in the classical theory must be kept in order to
ensure the compatibility of constraints with the dynamics) is in the quantum theory just
a zero operator. Obviously, the entire algebra (11.308) must be realized by operators
acting in a Hilbert or a Fock space and finding this realization may turn out to be the
most important difficulty in carrying out the quantization à la Dirac, especially when not
all right hand sides of the first set of relations in the prescription (11.308) are c-numbers.

The Dirac prescription can be justified as follows. First of all, if the first class con-
straints are absent, the second term, depending on arbitrary functions sa in the solution
(11.299) of the consistency conditions (11.298) is absent and the factors uM entering
the Hamiltonian HT (11.297) in which all second class constraints have been included
multiplied by the corresponding uM factors are given by85

uM(q, p) = cM(q, p) = −(C−1)MN{ΦN , H}PB .

The classical canonical equations of motion q̇i = {qi, HT}PB and ṗi = {pi, HT}PB take
then just the form

q̇i = {qi, HT}PB = {qi, H}PB +

2k
∑

M=1

{qi, ΦM}PB cM(q, p) ≡ {qi, H}D ,

and similarly for ṗi. Since in the quantum theory the equations of motion satisfied by the
Heisenberg picture operators are given by their commutators with the Hamiltonian, the
above form of the classical equations of motion strongly supports the Dirac quantization
rule. More formally, exploiting the fact that the number of the second class constraints
ΦM , M = 1, 2, . . . , 2k is always even, it can be shown that there always exists a classical
canonical transformation (qi, pi) → (Qi(q, p), Pi(q, p)), i = 1, 2, . . . , n, such that in the
new canonical variables the constraints ΦM take the simple form

Qi = 0 , Pi = 0 for i = 1, . . . , k. (11.311)

One can therefore quantize the system in the remaining new variables Qi, and Pi with
i = k + 1, . . . , n forgetting about the first k + k = 2k variables which are zero. The
commutators of the quantum operators q̂i, and p̂j when derived from the commutators

[Q̂i, P̂j] = i~ δij with i, j > k turns out to be given by the Dirac bracket (times i~). The
advantage of the Dirac method for finding the right commutation relations which must
be satisfied by the canonical variables is that one does not have to find the canonical
transformation (qi, pi) → (Qi(q, p), Pi(q, p)) explicitly nor does one have to solve the
constraints for some variables in terms of others.

85It is assumed now that all second class constraints, primary and secondary, have been included in
HT in agreement with the remark made earlier.
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Quantization of a system subject to both, first and second class constraints can be done
either by fixing the gauge and turning them into systems with second class constraints
only or by handling the second class constraints with the help of the Dirac prescription
(11.308), while imposing the first class ones as subsidiary conditions selecting those vectors
of the Hilbert space which represent quantum states of the physical system. As has been
remarked above, practical implementation of the Dirac prescription for treating second
class constraints may in more complicated cases be very difficult because realization of
the operator algebra defined by (11.308), especially if some of the right hand sides of
the commutation relations (determined by the Dirac bracket) turn out to be operators,
and not c-numbers as in the case of the Proca theory or the electromagnetic field. It
is then helpful to know that in principle any system subject to second class constraints
can be turned into a (gauge invariant) system subject to first class constraints only by
appropriately enlarging the number of its canonical variables; this opens the possibility
of realizing all constraints as subsidiary conditions selecting physical states in the whole
Hilbert of Fock space and not as complicated operator identities.

We end this section by applying the Dirac prescription for quantizing systems sub-
ject to second class constraints to the Proca theory of the vector field. The primary
constraint86

Φ1 ≡ Π0(t,x) = 0 , (11.312)

follow in this case from the structure of the Lagrangian (11.265). The total Hamiltonian
takes in this case the form

HT =
1

2
ΠiΠi − Πi∂iV

0 +
1

2
(∇×V)2 +

1

2
M2V iV i

−1

2
M2V 0V 0 +Π0u

1 − g V iJ i + g V 0J0 , (11.313)

with an initially unknown function u1. Since Φ̇1 = {Φ1, HT}PB does not vanish (even
weakly), the secondary constraint

Φ2 ≡M2V 0(t,x)− ∂iΠi(t,x)− g J0(t,x) = 0 , (11.314)

must be imposed as the consistency condition. There no more constraints in this case
- vanishing of Φ̇2 = {Φ2, HT}PB can be ensured by adjusting the function u1. This
completes the Hamiltonization of the classical dynamics of the Proca field.

In the quantum theory Φ1 = 0 and Φ2 = 0 become strong operator identities; therefore,
in the Hilbert space Π0 must be represented by the zero operator and through (11.314) the
operator V 0 becomes completely determined by Πi and J

0. The canonical commutation
relations of the V i, Πi, V

0 and Π0 operators are given by the Dirac prescription (11.308)

86In field theory the index i of qi in the formulae (11.296)-(11.311) includes also the space variable x.
Hence, each ΦM stands for an infinite set of constraints ΦMx ≡ ΦM (x).
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which ensures their compatibility with the operator relations Φ1 = 0 and Φ2 = 0. The
antisymmetric matrix CNM (11.307) has in this case the form

C1x,2y = {Φ1x, Φ2y}PB = {Φ1(x), Φ2(y)}PB = −M2δ(3)(x− y) , (11.315)

and its inverse reads

C−1 =

(

0 1
M2 δ

(3)(x− y)
− 1
M2 δ

(3)(x− y) 0

)

. (11.316)

The Dirac bracket of any two functions A(x) and B(y) of the canonical variables V µ and
Πµ therefore reads

{A(x), B(y)}D = {A(x), B(y)}PB
− 1

M2

∫

d3z {A(x), Π0(z)}PB
{

M2V 0(z)− ∂iΠi(z)− gJ0(z), B(y)
}

PB

+
1

M2

∫

d3z
{

A(x), M2V 0(z)− ∂iΠi(z)− gJ0(z)
}

PB
{Π0(z), B(y)}PB .

Computing using this formula the commutator

[

V i(x), V 0(y)
]

= i~
{

V i(x), V 0(y)
}

D
, (11.317)

one finds the same result as was obtained in Section 11.5 by treating the V 0 operator as
constructed out of Πi and J

0 in agreement with the constraint Φ2 = 0. It is also easy to
check that the Dirac prescription gives all the remaining commutators in their standard
forms. The rest of the quantization procedure is then unmodified: the expansions (11.289)
with µ = i and (11.290) give the Schrödinger picture operators V i(x) and Πi(x) satisfying
the commutation relations following from the Dirac quantization procedure, Π0(x) is just
the zero operator and V 0(x) is a sum of (11.289) with µ = 0 (and t set to zero) and a of
term depending on the matter variables.

11.7 Quantization of the electromagnetic field

We now depart a little bit from the main logic of this chapter (devoted mainly to quanti-
zation of systems of relativistic fields) and consider quantization of the system consisting
of the classical electromagnetic field coupled to N classical nonrelativistic charged parti-
cles. The reason for this departure is that in this way we will obtain a working theory,
called nonrelativistic quantum electrodynamics (NRQED), which is applicable to a wide
range of physical phenomena related to interaction of light with nonrelativistic matter, so
long as spin effects can be neglected. In this way we complete here the quantum theory
of radiation presented in Section 3.8. The resulting theory constitutes also the starting
point of modern calculations of properties of bound states in the fully relativistic quantum
electrodynamics.
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The Lagrangian which determines classical dynamics of such a system is given by the
sum of three terms: L = LEM + Lmatt + Lint:

LEM = −1

4

∫

d3x fµνf
µν , (11.318)

Lmatt =
1

2

N
∑

i=1

miv
2
i −

N
∑

i=1

V (ri)−
1

2

N
∑

i 6=j

V (ri − rj) , (11.319)

Lint = −e
N
∑

i=1

[

qiφ(ri)−
qi
c
A(ri) ·vi

]

≡ −e
c

∫

d3xJµ(x)A
µ(x) , (11.320)

where the current in the last formula has the form (qi are particle charges in units of
e > 0)

J0(t,x) =
N
∑

i=1

qic δ
(3)(x− ri(t)) ,

J(t,x) =

N
∑

i=1

qivi δ
(3)(x− ri(t)) . (11.321)

It can be checked that the current Jµ defined by (11.321) is conserved: ∂µJ
µ = 0. For

greater generality we have allowed in Lmatt also for 1-particle interactions V (ri) with
external potentials (which can be also of electromagnetic origin - e.g. the electrostatic
interactions binding electrons in atoms, which we may treat separately from the dynami-
cal electromagnetic field) and two-particle interactions V (ri − rj) of non-electromagnetic
origin.

To build the quantum theory of this system we first try to take for its canonical
variables and conjugated momenta ri(t), Pi(t), A

µ(t,x) and Πµ(t,x). In the matter part
everything goes in the standard way:

Pi(t) =
∂L

∂vi(t)
= mivi(t) +

qi
c
eA(t, ri(t)) . (11.322)

Expressing vi(t) in the matter part of the Hamiltonian through Pi(t) we get

H = HEM
0 +

N
∑

i=1

1

2mi

(

Pi −
qi
c
eA(ri)

)2

+ e
N
∑

i=1

qiφ(ri) +
N
∑

i=1

V (ri) +
1

2

N
∑

i 6=j

V (ri − rj) , (11.323)
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where HEM
0 is the current-independent (here “current-independent” before expressing φ in

terms of J0!) part of the (total) electromagnetic field Hamiltonian (11.348) which we de-
rive below. Quantization of the matter part is standard: we promote ri(t) and Pi(t) taken
at t = 0 to Schrödinger picture operators satisfying the commutation rules [r̂i, P̂j] = i~δij .

We can then work either in the position representation in which P̂i = −i~∂/∂ri, or we can
go over to the second quantization formalism (presented in Chapter 5), which is especially
convenient if the matter particles of the system are numerous and indistinguishable.

The electromagnetic part of the system is more troublesome. Written in terms of the
potentials the Lagrangian density L (11.258) of the electromagnetic field coupled to the
current Jµ reads (c is kept for decoration, φ ≡ A0):

LEM =
1

2

(

1

c

∂

∂t
A+∇φ

)2

− 1

2
(∇×A)2 − 1

c
eJ0φ+

1

c
eJ·A . (11.324)

Of course,
∫

d3xLEM = LEM +Lint in the notation of (11.318-11.320). As already checked
in Section 11.4, the Euler-Lagrange equations following from this Lagrangian density are
(ρ ≡ eJ0)

∇×B− 1

c

∂E

∂t
=

1

c
eJ , ∇·E = ρ . (11.325)

As the canonical momenta Πi we get

Πi =
1

c2
∂Ai

∂t
+

1

c
∂iφ = −1

c
Ei , (11.326)

and Π0 = 0, similarly as in the case of the Proca vector field. We have therefore the
primary constraint Φ0 ≡ Π0 and we have to check whether it is compatible with the
Hamilton’s canonical equations. To this end we form the total Hamiltonian density HT ≡
HEM

T +Hmatt (the interaction of the field with matter is now included in HEM
T ) according

to the Dirac method expressing Ȧi through Πi by using the relation (11.326) and adding
the primary constraint with an unknown coefficient u0. This gives:87

HEM
T = Πi Ȧ

i + u0Φ0 − LEM

=
c2

2
ΠiΠi − cΠi∂iφ+

1

2
(∇×A)2 +Π0u

0 +
1

c
eJ0φ− 1

c
eJ·A

=
1

2

(

E2 +B2
)

+ E·∇φ+Π0u
0 + ρφ− 1

c
eJ·A , (11.327)

87Note, that J depends now on r̂i and P̂i.
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Using this Hamiltonian density we find88

Φ̇0 ≡
{

Π0,

∫

d3xHT

}

PB

= −∂H
EM
T

∂φ
= −Π0

∂u0

∂A0
− c ∂iΠi −

1

c
eJ0

≃ −c ∂iΠi −
1

c
eJ0 , (11.328)

(the constraint Π0 = 0 has been imposed after computing the Poisson bracket). As
this is not zero (even weakly), the secondary constraint Φ2 ≡ c2∂iΠi + eJ0 has to be
imposed. This is obviously the Gauss law, which is the second of the Euler-Lagrange
equations (11.325), but is lost in the Hamilton’s formalism because of vanishing of Π0.
The constraint Φ2 is already compatible with the dynamics: {Φ2, HT}PB = c ∂µ(eJ

µ)
vanishes provided the current is conserved89 - as remarked, the current (11.321) doe
satisfy this requirement.

The system is therefore subject to two constraints, Φ0 and Φ2, but they turn out to
be the first class:

{Φ0, Φ2}PB = 0 ,

and the Dirac prescription for quantization cannot be applied because the (classical)
state of the electromagnetic field, fully characterized by E and B, does not determine
uniquely the potentials Aµ. The mathematical reason for this is the gauge invariance
of the Lagrangian (11.324). The Euler-Lagrange equations do not determine Aµ(t,x)
uniquely at t 6= 0 from initial conditions Aµ(x) and Ȧµ(x) specified at t = 0: one can
always imagine a function θ(t,x) such that ∂µθ(t,x) = 0 and ∂µθ̇(t,x) = 0 at t = 0, but
nonvanishing at t 6= 0. If Aµ(t,x) solves the Euler-Lagrange equations with the given
initial conditions, then so does Aµ(t,x) + ∂µθ(t,x) with the same initial conditions at
t = 0. Since the constraints Φ0 = 0 and Φ2 = 0 essentially make the canonical Hamilton’s
equations equivalent to the Euler-Lagrange equations, it is clear that they cannot help to
determine Aµ(t,x) uniquely at all t as it was possible in the case of the Proca vector field.

Unique determination of the time evolution of Aµ(t,x) becomes possible if one chooses
a gauge. In a fixed gauge the Euler-Lagrange equations can determine Aµ(t,x) for all
t unambiguously and it should be possible to find an equivalent Hamilton’s canonical
formulation too. One possibility is the Coulomb gauge

∇·A = 0 . (11.329)

88In computing Poisson brackets all variables and momenta have to be treated as independent; therefore,
for any two functionals G and H we have

{

G[Aµ,Πµ], H [Aµ,Πµ]

}

PB

≡
∫

d3x

(

δG

δAλ(x)

δH

δΠλ(x)
− δH

δAλ(x)

δG

δΠλ(x)

)

.

89To derive the relation {Φ2, HT}PB = c ∂µ(eJ
µ) crucial is taking into account the full Hamilto-

nian HT = HEM
T + Hmatt which in the case considered here includes, in addition to the terms dis-

played in (11.327), also the term Hmatt dynamics of the nonrelativistic particles; one then finds that
{J0, Hmatt}PB = c ∂0J

0.
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Another, convenient in some applications, is the temporal gauge A0 = 0. However, while
the latter makes the time evolution unique, it does not fix uniquely the initial data: gauge
transformations with time independent function θ(x) are still possible. As a result, the
constraint Φ2 = 0 (the Gauss law) remains in this approach first class and has to be
imposed as a subsidiary condition selecting physical state-vectors of the Hilbert space.
For this reason we here choose to work in the Coulomb gauge (11.329) which classically
has a clear physical interpretation: it separates electrostatic effects from those due to
radiation.

We restart, therefore, the whole procedure with the same Lagrangian density (11.324)
and one primary constraint

Φ1 ≡ ∇·A ≡ ∂iA
i , (11.330)

imposed from outside. As previously one finds Φ0 ≡ Π0 as the primary constraint and
has to consider the extended Hamiltonian which now involves two initially unspecified
functions u0 and u1:

HEM
T =

c2

2
ΠiΠi − cΠi∂iφ+

1

2
(∇×A)2 + Φ0u

0 + Φ1u
1 +

1

c
eJ0φ− 1

c
eJ·A .

The consistency condition {Φ0, HT}PB ≃ 0, leads again to the secondary constraint (the
Gauss law)

Φ2 ≡ c2∂iΠi + eJ0 . (11.331)

In turn, the requirement that {Φ1, H
EM
T }PB ≃ 0 leads to yet another constraint

Φ3 ≡ c2∂iΠi − c ∂i∂iφ . (11.332)

There are no more constraints: conservation of the current Jµ implies vanishing of Φ̇2,
provided the function u1 is set to zero, while u0 can be adjusted to ensure Φ̇3 = 0.

It is convenient to replace the constraint Φ3 (11.332) by the linear combination Φ3′ of
(11.332) and (11.331):

Φ3′ ≡ c ∂i∂iφ+ eJ0 = 0 . (11.333)

This shows that in the quantum theory the operator A0(t,x) ≡ φ(t,x) is related to the
operator J0 by the identity:90

φ(t,x) =
e

4πc

∫

d3y
J0(t,y)

|x− y| . (11.334)

Thus, the operatorA0(t,x) ≡ φ(t,x) becomes completely determined in terms of operators
representing the matter canonical variables only (note, that J0 given by (11.321) does not

90Recall that ∇2 1
|x| = −4π δ(3)(x).
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depend on vi and, hence, J0, unlike J, when expressed through r̂i and P̂i does not
depend on Ai). Since Φ0 = 0, the canonical momentum Π0 must be represented by the
zero operator, while the constraint Φ3′ = 0 realized as an operator identity effectively
eliminates the variable φ = A0 as an independent operator from the quantum theory.

The complete system of constraints Φ0, Φ1, Φ2 and Φ3′ is of second class. The cor-
responding 4 × 4 matrix CMN = −CNM is nonsingular - it has nonzero elements on its
antidiagonal:

C1x,2y = {Φ1(x), Φ2(y)}PB
= c2∂

(x)
i ∂

(y)
j

{

Ai(x), Πj(y)
}

PB
= −c2∂(x)i ∂

(x)
i δ(3)(x− y) , (11.335)

and

C0x,3′y = {Φ0(x), Φ3′(y)}PB =
1

c
C1x,2y = −c ∂(x)k ∂

(x)
k δ(3)(x− y) . (11.336)

The canonical commutation relation which must be imposed on the operators Ai, Πi,
A0 and Π0 are determined by the Dirac prescription (11.308). The inverse (C−1)Nx,My of
the CMN matrix has also nonzero elements only on its antidiagonal. These are

(

C−1
)1x,2y

= − 1

4πc2|x− y| =
1

c

(

C−1
)0x,3′y

, (11.337)

Using this matrix one determines the basic commutator:

1

i~

[

Ai(x), Πj(y)
]

=
{

Ai(x), Πj(y)
}

D
≡
{

Ai(x), Πj(y)
}

PB
(11.338)

−
∫

d3z

∫

d3w
{

Ai(x), Φ2(z)
}

PB

(

C−1
)2z,1w {Φ1(w), Πj(y)}PB

(terms with the remaining pairs of constraints give all zero). Using the Poisson brackets

{

Ai(x), Φ2(z)
}

PB
= −c2∂(x)i δ(3)(x− z) ,

{Φ1(w), Πj(y)}PB = ∂
(w)
j δ(3)(w − y) ,

it is easy to find that

{

Ai(x), Πj(y)
}

D
= δijδ

(3)(x− y) + ∂
(x)
i ∂

(x)
j

1

4π|x− y| . (11.339)

Proceeding in the similar way, one can check that all the remaining Dirac brackets among
the system of variables Ai, Πj , A

0 and Π0 vanish (vanishing of the Dirac brackets of
Π0 ≡ Φ0 with all functions of the canonical variables of the entire theory is ensured by
the property (11.310)). In particular,

{

Ai(x), Aj(y)
}

D
= {Πi(x), Πj(y)}D = 0 . (11.340)
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Therefore, the basic quantization conditions read

[

Ai(x), Πj(y)
]

= i~ δij δ
(3)(x− y) + i~ ∂

(x)
i ∂

(x)
j

1

4π|x− y| ,
[

Ai(x), Aj(y)
]

= [Πi(x), Πj(y)] = 0 . (11.341)

The function on the right hand side of the first commutation rule (11.341) is called the
transverse delta function. It has the following momentum space representation

δijδ(3)(x− y) + ∂i(x)∂
j
(x)

1

4π|x− y|

≡ δijtr(x− y) =

∫

d3k

(2π)3
eik·(x−y)

(

δij − kikj

|k|2
)

, (11.342)

which makes it explicit that

∂xi

(

δijδ
(3)(x− y) + ∂

(x)
i ∂

(x)
j

1

4π|x− y|

)

= 0 , (11.343)

and, therefore, that the commutation rules (11.341) are compatible with the constraint
(11.330).

The Hamiltonian density operator

HEM =
c2

2
ΠiΠi +

1

2
(∇×A)2 − cΠi∂iφ+

1

c
eJ0φ− 1

c
eJ·A , (11.344)

in which φ is now a shorthand for the operator (11.334) and Φ0 as well as Φ1 have been
set to zero, together with the quantization rules (11.341) specify in principle the dynamics
of the quantized electromagnetic field. There is, however, one technical problem that the
operator Πi(x) does not commute with matter sector canonical variables. This is because
the Dirac brackets of Πi(x) with functions F depending on the matter sector canonical
variables do not necessarily vanish.91 Indeed, according to the Dirac prescription such
commutators are given by i~ times the Dirac brackets

{F (mat), Πi(x)}D = {F (mat), Πi(x)}PB
−
∫

d3z

∫

d3w {F (mat), ΦM(z)}PB
(

C−1
)Mz,Nw {ΦN (w), Πi(x)}PB .

The Poisson bracket in the first line is of course zero. To the second line contributes only
the term with MN = 21. This line therefore gives

−
∫

d3z

∫

d3w {F (mat), Φ2(z)}PB
1

4πc2|z−w| ∂
(w)
i δ(3)(w − x)

=

∫

d3z
{

F (mat), eJ0(z)
}

PB
∂
(x)
i

1

4πc2|z− x| .

91It is easy to check that {F (mat), Ai(x)}D = 0.
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This is evidently nonzero, if F is a function of Pj because J
0(z) given by (11.321) depends

on ri, and {ri, Pj}PB = δij . Dealing with such an operator would be difficult. Therefore,
one defines another operator

ΠT
i = Πi −

1

c
∂iφ , (11.345)

which in fact is just (1/c2)Ȧi (cf. (11.326)), i.e. the transverse (the divergenceless) part
of the electric field, which has better properties. Firstly,

−1

c
∂
(x)
i {F (mat), φ(x)}D

=
1

c
∂
(x)
i

∫

d3z

∫

d3w {F (mat), ΦM (z)}PB
(

C−1
)Mz,Nw {ΦN (w), φ(x)}PB

= −1

c
∂
(x)
i

∫

d3z
{

F (mat), eJ0(z)
}

PB

1

4πc|z− x|

(only the element (C−1)3
′z,0w contributes to the sum over constraints; the Poisson bracket

{F (mat), φ(x)}PB obviously vanishes), so this precisely cancels out the unwanted term
in the Dirac bracket of Πi with F (mat). Hence, the operator ΠT

i does commute with the
matter variables. Secondly, since

−1

c
∂
(x)
i

{

Ai(x), φ(y)
}

D
= 0

(the Poisson bracket of Ai(x) with φ(y) vanishes, Ai has nonzero Poisson bracket only
with Φ2, while φ only with Φ0 and (C−1)2z,0w = 0, so the second term in the Dirac bracket
vanishes too), it follows that

[

Ai(x), ΠT
j (y)

]

= i~ δij δ
(3)(x− y) + i~ ∂

(x)
i ∂

(x)
j

1

4π|x− y| , (11.346)

i.e. the commutator of ΠT
j with Ai is the same as that of Πi(y). Finally, one has to check

the Dirac bracket

{

ΠT
i (x), Π

T
j (y)

}

D
= {Πi(x), Πj(y)}D +

1

c2
∂
(x)
i ∂

(y)
j {φ(x), φ(y)}D

−1

c
∂
(x)
i {φ(x), Πj(y)}D − 1

c
∂
(y)
j {Πi(x), φ(y)}D .

As already has been established in (11.340), the first term on the right hand side is zero.
To show that the remaining three terms also vanish, we note that

{φ(x), φ(y)}D = {φ(x), φ(y)}PB
−
∫

d3z

∫

d3w {φ(x), ΦM(z)}PB
(

C−1
)Mz,Nw {ΦN (w), φ(y)}PB = 0 :
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the Poisson bracket of two φ’s vanishes and the second term vanishes because φ’s have
nonzero Poisson bracket only with Π0 and (C−1)0z,0w = 0. To complete the proof, we
consider

{

Πi(x), ∂
y
j φ(y)

}

D
: the corresponding Poisson bracket is zero and

−
∫

d3z

∫

d3w {Πi(x), ΦM (z)}PB
(

C−1
)Mz,Nw {

ΦN (w), ∂yj φ(y)
}

PB

also vanishes because Πi has a nonzero Poisson bracket only with Φ1, φ only with Φ0 and
(C−1)1z,0w = 0. We have thus shown, that the new operator ΠT

i has all the properties
required from the canonical momentum operator but in contrast to Πi, it commutes with
operators representing the matter sector variables. In addition, ΠT

i satisfies a simpler
constraint than Φ2 = 0:

Φ2′ ≡ ∂iΠ
T
i = 0 . (11.347)

Expressing now the Hamiltonian density operator (11.344) through ΠT
i we obtain

HEM =
c2

2
ΠT
i Π

T
i +

1

2
(∇×A)2 − 1

2
∂iφ∂iφ+

1

c
e J0φ− 1

c
eJ·A

=
c2

2
ΠT
i Π

T
i +

1

2
(∇×A)2 +

1

2c
eJ0φ− 1

c
eJ·A . (11.348)

The noncovariantly looking term eJ0φ/2c (obtained after integrating by parts and using
the constraint Φ3′ = 0 (11.333)) produces in the Hamiltonian the term representing energy
of the ordinary electrostatic Coulomb interaction

HEM ⊃ 1

2

∫

d3x

∫

d3y
e2

4πc2
J0(x)J0(y)

|x− y| . (11.349)

It remains to find the representation of the Schrödinger picture operators Ai and ΠT
i in

terms of the creation and annihilation operators satisfying simple commutation rules and
diagonalizing (if it is possible) the Hamiltonian HEM

0 =
∫

d3xHEM
0 obtained from (11.348)

by setting Jµ = 0. In addition, these representations should automatically ensure that
the constraints Φ1 = Φ2′ = 0 hold as operator identities. It is easy to guess that

Ai(x)=

∫

d3k

(2π)3

√

~c2

2ωk

∑

λ=±1

[

ǫi(k, λ)aλ(k)e
ik·x + ǫi∗(k, λ)a†λ(k)e

−ik·x
]

, (11.350)

where ωk = c|k| and ǫi(k, λ) are two polarization vectors such that

k·ǫ(k, λ) = 0 (11.351)

(so that the constraint Φ1 ≡ ∇·A = 0 is satisfied) and

ǫ(k, λ)·ǫ∗(k, λ′) = δλλ′ . (11.352)
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Because together with k/|k| the two vectors ǫ(k, λ) form an orthonormal basis of the
three-dimensional space, the following summation rule holds

∑

λ=±1

ǫi(k, λ) ǫj∗(k, λ) = δij − kikj

|k|2 . (11.353)

We then postulate the expansion of the operator ΠT
i in the form

ΠT
i (x) =

1

i

∫

d3k

(2π)3

√

~ωk

2c2

∑

λ=±1

[

ǫi(k, λ) aλ(k) e
ik·x − ǫi∗(k, λ) a†λ(k) e

−ik·x
]

. (11.354)

It is then straightforward to check that with the commutation rules
[

aλ(k), a
†
λ′(k

′)
]

= (2π)3δλλ′δ(k− k′) ,

[aλ(k), aλ′(k
′)] =

[

a†λ(k), aλ′(k
′)
]

= 0 , (11.355)

imposed all the fundamental commutation relations between Ai(x) and ΠT
i (x) together

with the constraints Φ1 = 0, Φ2′ = 0 are satisfied and the free part of the Hamiltonian
(11.348) takes (after discarding an infinite constant) the form92

HEM
0 =

∫

d3k

(2π)3
~ωk

∑

λ=±1

a†λ(k)aλ(k) . (11.356)

As the full Hamiltonian of the electromagnetic field coupled to a system of N charged
particles we therefore get

H =

∫

d3k

(2π)3
~ωk

∑

λ=±1

a†λ(k)aλ(k) +
N
∑

i=1

1

2mi

(

P̂i −
qi
c
eA(r̂i)

)2

(11.357)

+

N
∑

i=1

V (r̂i) +
1

2

N
∑

i 6=j=1

V (r̂i − r̂j) +
1

2

∫

d3x

∫

d3y
e2

4πc2
J0(x)J0(y)

|x− y| .

92By the rescaling
√
2~ωkaλ(k) → aλ(k) the first of the rules (11.355) can be brought into the standard

relativistic form

[aλ(k), a
†
λ′(k

′)] = δλλ′δΓ(k − k′) .

The expansions of the operators Ai and ΠT
i then take the simple forms

Ai(x) = ~c

∫

dΓk

∑

λ=±1

[

ǫi(k, λ) aλ(k) e
ik·x +H.c.

]

,

ΠT
i (x) = − i

c

∫

dΓk ~ωk

[

ǫi(k, λ) aλ(k) e
ik·x −H.c.

]

,

and d3k/(2π)3 in (11.356) gets replaced by dΓk ≡ d3k/(2π)32~ωk.
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where A(r̂i) is the operator (11.350) depending now on the charged particle position
operators r̂i. This dependence is introduced into A by the integral in Lint (11.320) and
the delta functions in the current (11.321). Since in the considered NRQED J0 is of the
form (11.321), the last term in the Hamiltonian (11.357) is just

1

2

N
∑

i,j=1

e2qiqj
4π|r̂i − r̂j|

,

which is just the Coulomb electrostatic energy of a system of charged pointlike particles
(in the Heaviside system of units). Note however, that the summation includes infinite
terms arising for i = j which have to be subtracted by hand.

There can be no question about the relativistic covariance of the theory just con-
structed, because matter particles are treated nonrelativistically. Therefore we consider
here covariance of the quantum theory of the free (not coupled to matter particles) elec-
tromagnetic field. In this case from the Lagrangian density (11.258) one obtains the
canonical energy-momentum tensor (we set ~ = c = 1)

T µνcan = −fµλ∂νAλ +
1

4
gµνfλκfλκ , (11.358)

which is not symmetric and manifestly not gauge invariant (a disqualifying feature accord-
ing to some). The symmetric Belinfante energy-momentum tensor obtained according to
the prescriptions (11.58), (11.60) and (11.61) takes the form

T µνsymm = −fµλf νλ +
1

4
gµνfλκfλκ , (11.359)

which is already symmetric and gauge invariant and, in the Coulomb gauge (11.329)
gives93

P 0 =

∫

d3xT 00
symm =

1

2

∫

d3x
[

ȦiȦi + (∇×A)2
]

, (11.360)

which is just (11.348) for zero external current Jµ and

P i =

∫

d3xΠk∂
iAk . (11.361)

Of course, the same P 0 and P i are obtained from the nonsymmetric and not gauge
invariant canonical energy-momentum tensor (and in this sense it is not worse than the
Belinfante one). The canonical tensorMµνλ

can (11.62) of the electromagnetic field also takes
the non gauge invariant form

Mµνλ
can = xν T µλcan − xλ T µνcan + ifµκ

(

J νλ
vec

)κ

ρ
Aρ . (11.362)

93Since we consider here the free electromagnetic field, A0 = 0 and ΠT
i = Πi = Ȧi.
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and in the Coulomb gauge yields the generators J ij and J0i of the Lorentz transformations

J ij =

∫

d3x
{

Ȧk(xi∂j − xj∂i)Ak −
(

ȦiAj − ȦjAi
)}

,

J0i = tP i −
∫

d3xxi
1

2

[

ȦkȦk + (∇×A)2
]

. (11.363)

The operators H ≡ P 0, J i ≡ 1
2
ǫklJkl, P i and Ki ≡ J0i can be shown to satisfy

the Poincaré algebra commutation rules (6.21) by virtue of the canonical commutation
relations (11.346). However, while

eiaµP
µ

Ak(x) e−iaµP
µ

= Ak(x+ a) ,

e
i
2
ωijJ

ij

Ak(x) e−
i
2
ωijJ

ij

=
(

e−
i
2
ωijJ

ij
vec

)k

l
Al(Λ−1(ω)·x) ,

as usually (here Λ is a pure rotation), performing the transformation of Ak(x) correspond-
ing to a Lorentz boost one finds that

eiω0iJ
0i

Ak(x) e−iω0iJ
0i

=
(

e−iω0iJ
0i
vec

)k

l
Al(Λ−1(ω)·x) + ∆Ak(x) ≡ A′k(x) ,

where the extra term ∆Ak(x) ensures that the ∂kA
′k(x) = 0 as it must be for consistency:

the divergence of the left hand side of the above formula obviously vanishes. This means
that transformations of the photon field operator Ai(x) generated by Ki consist of the
corresponding Lorentz boost supplemented with a suitable gauge transformation. Thus,
transformations generated by the conserved Noether charges (11.358) and (11.362) in the
Coulomb gauge automatically preserve this gauge.

Finally we consider the thermodynamical properties of the free electromagnetic field
in equilibrium with the walls of a box of volume V = L3. If the field is quantized in the
box, the Hamiltonian takes the form

HEM =
∑

k

∑

λ=±1

~ωk a
†
kλakλ , (11.364)

where now the wave vectors k are discrete, k = (2π/L)n, ωk = c|k| and
[ak′λ′, a

†
kλ] = δk′kδλ′λ . (11.365)

The Hilbert space is spanned by the HEM eigenstates |nk1λ+ , nk1λ− , nk2λ+ . . .〉, where each
occupation number nkiλi can run from 0 to infinity. This allows to easily compute the
Gibbs Canonical Ensemble partition function

Zstat =
∏

k







∞
∑

nkλ+
=0

(

e−~ωk/kBT
)nkλ+

∞
∑

nkλ−
=0

(

e−~ωk/kBT
)nkλ−







=
∏

k

(

1

1− e−~ωk/kBT

)2

. (11.366)
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The Helmholtz free energy is then94

F (T, V ) = kBT
∑

k

2 ln
(

1− e−~ωk/kBT
)

,

or, in the thermodynamical limit,

F (T, V ) = kBT
2V

(2π)3

∫

d3k ln
(

1− e−~ωk/kBT
)

= kBT
V

π2c3

∫ ∞

0

dω ω2 ln
(

1− e−~ω/kBT
)

. (11.367)

All well known properties of the electromagnetic radiation in equilibrium, including the
celebrated equation of state p = 1

3
u(T ), where u(T ) = U(T )/V is the radiation energy

density, can be derived from the free energy F (T, V ).

11.8 Canonical construction of half-integer spin quantum fields

As demonstrated in Sections 11.2, 11.3, 11.5 and 11.7, the formal procedure of canonical
quantization (supplemented in the case of systems subject to constraints by the Dirac
methods described in Section 11.6) applied to classical (c-number) fields, which under
spatial rotations of the reference frame transform as integer spin representations of the ro-
tation group, allows to build theories of quantum fields elementary excitations (“quanta”)
of which are bosons. In the interaction picture (see Section 11.9), i.e. when the basic field
operators of such quantum theories are represented in Fock spaces of eigenvectors of the
free Hamiltonians of such theories, one recovers the same Feynman rules for computing
S-matrix elements, which in Chapters 8 and 9 were obtained in the approach based on
quantum mechanics of relativistic particles, without any reference to classical fields.

Apart from making (owing to the Noether theorem presented in Section 11.1) ex-
traction of consequences of various possible symmetries more straightforward, the most
important virtue of the approach based on field quantization is that being essentially
nonperturbative, it leads more straightforwardly to a deeper insight into the structure of
the quantum theory (see Chapter 13).

Here we want to lay similar foundations for relativistic interactions of half-integer spin
particles. Superficially, it could seem it should suffice to apply the same formalism as pre-
viously to classical c-number fields but transforming under changes of the Lorentz frame
as half-integer spin representations of the Spin(1, 3) ≃ SL(2, C) group (the universal cov-
ering of the Lorentz SO(1, 3) group). This indeed seems to be so in the case of the best
known kind of half-integer spin particles - massive charged fermions accompanied by their

94Had we not subtracted the (infinite) energy of the zero point oscillations, we would get in F (T, V )
an extra term

∑

k ~ωk.
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antifermions: as in many textbooks one can in this case start with a relativistically in-
variant Lagrangian density of a c-number complex Dirac field ψ transforming as the (1

2
, 1
2
)

representation of the SL(2, C) group arguing that to obtain a sensible quantum theory
it is necessary to replace the Poisson brackets with the anticommutators instead of com-
mutators (one usually passes freely over the fact that the ordinary Poisson brackets and
aticommutators have different symmetry properties and over the presence of constraints
in this case). Yet, relativistic interactions of not all types of half-integer spin particles
can be obtained in this way. The simplest counterexample is the massive neutral spin
1/2 particle (called Majorana fermion) the field operator of which was constructed at the
end of Section 8.3. This is because already the corresponding classical free Lagrangian
density cannot simply be written down: in the expression

L = λ̄iσ̄µ∂µλ− 1

2
m(λλ+ λ̄λ̄) (11.368)

(see Section 8.6 for the Lorentz transformation properties of λα and λ̄α̇) the term propor-
tional to m is simply zero, if λα and λ̄α̇ are treated as c-number spinors. This shows that
the consistent field-based approach to constructing quantum theories of fermions must
start with Lagrangian densities which are (bosonic) functions of fields taking values in
the Grassmann algebras generated by infinite sets of anticommuting generators.

To get acquainted with these notions it is convenient to consider first a classical bosonic
system having a finite number of degrees of freedom. Dynamics of such a system the state
of which is characterized by the values of n generalized (real) variables qi can be formulated
as a mapping from R (time) into the n-fold direct product F × . . . × F of an abstract
algebra F of functions f(a1, . . . , a2n) of 2n variables a1, . . . , a2n which are identified with
initial values q10, . . . , q

n
0 , q̇

1
0, . . . , q̇

n
0 of the variables qi(t) and the corresponding generalized

velocities q̇i(t). Indeed, the values qi(t) at a fixed instant t can be treated as a set
of n functions qi(t) = f i(t, a1, . . . , a2n) of the variables a1, . . . , a2n. With an appropriate
topology (to define convergence of sequences) functions like f i(t, a1, . . . , a2n) can be viewed
as elements of an abstract commutative and associative algebra over R generated by the
set of 2n commuting generators a1, . . . , a2n (akal = alak):

f(a1, . . . , a2n) = f0 +

2n
∑

k

fk a
k +

1

2

2n
∑

k1,k2

fk1k2 a
k1ak2 +

1

3!

2n
∑

k1,k2,k3

fk1k2k3 a
k1ak2ak3 + . . .(11.369)

Differentiation can in the algebra F be defined as a linear algebraic operation by the basic
rules

∂

∂aj
ai = δij , and

∂

∂ak
a1 . . . ak . . . al =

∂

∂ak
aka1 . . . al = a1 . . . al .

and their extension to arbitrary elements of F using linearity. Thus at fixed instant t each
qi(t) is an element of F ; a classical trajectory (q1(t), . . . , qn(t)) can be, therefore, viewed
as a mapping t→ F × . . .× F .
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A Lagrangian which determines the dynamics of such a system is in this picture a
mapping of the 2n-fold direct product of the algebra F into F itself: F × . . . × F →
L(f 1, . . . , f 2n) ∈ F and the action functional I[q(t)] is given by

I[q(t)] =

∫ t2

t1

dtL(a1, . . . , a2n)|a1=q1(t),...,a2n=q̇2n(t)

≡
∫ t2

t1

dt L(a1, . . . , a2n)
∣

∣ ≡
∫ t2

t1

dtL(q1(t), . . . , q̇2n(t)) . (11.370)

Its variation with respect to the trajectory is to be understood as

δI[q(t)] =

∫ t2

t1

dt

n
∑

i=1

(

∂L

∂ai

∣

∣

∣

∣

δqi(t) +
∂L

∂an+i

∣

∣

∣

∣

d

dt
δqi(t)

)

, (11.371)

where each δqi(t) is again a mapping from R into F which reduces to the zero element of
F for t = t1 and t = t2.

The fermionic counterpart of the algebra F of functions described above is the Grass-
mann algebra G over C generated by 2m elements (generators) ξ1, . . . , ξ2m which anti-
commute:

ξαξβ = −ξβξα . (11.372)

Each element of G is of the form

g = g0 +
∑

α

gα ξ
α +

∑

α1<α2

gα1α2
ξα1ξα2 ++

∑

α1<...<α2m

gα1...α2m
ξα1 . . . ξα2m . (11.373)

In contrast to (11.369), the number of terms in the above sum is finite owing to the
property (11.372) which implies that ξαξα = 0 (the zero element of the algebra G). In
the natural way the Grassmann algebra splits into the direct sum of Geven and Godd (the
only common element of these two subspaces being the zero element of G) the elements
of which have the general forms

geven = g0 +
∑

α1<α2

gα1α2
ξα1ξα2 + . . .+

∑

α1<...<α2m

gα1...α2m
ξα1 . . . ξα2m ,

godd =
∑

α

gα ξ
α + . . .+

∑

α1<...<α2m−1

gα1...α2m−1
ξα1 . . . ξα2m−1 ,

respectively. Elements of Geven and Godd can be distinguished by assigning them the G-
algebra parities Pg which assume values 0 and 1 respectively (a general element of G has
no definite parity).

In the algebra G one defines two linear operations called left- and right-derivatives
with respect to the generator ξα by the rules

∂

∂Lξα
ξβ =

∂

∂Rξα
ξβ = δβα ,
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∂

∂Lξα
ξγ . . . ξα . . . ξσ = (−1)L

∂

∂Lξα
ξαξγ . . . ξσ = (−1)Lξγ . . . ξσ ,

∂

∂Rξα
ξγ . . . ξα . . . ξσ = (−1)R

∂

∂Rξα
ξγ . . . ξσξα = (−1)Rξγ . . . ξσ ,

where L (R) stands for the numbers of interchanges of the generators needed to place ξα

to the left (right) of the string of the generators.

Analogously to the bosonic case, “classical” dynamics of a fermionic system described
by m variables ψα is a mapping from R into an m-fold direct product Godd × . . . × Godd

with the generators ξ1, . . . , ξm and ξm+1, . . . , ξ2m having the interpretation of the initial
“values” ψα0 and ψ̇α0 of ψα(t) and ψ̇α(t), α = 1, . . . , m. The Lagrangian is in this case a
mapping of the 2m-fold product Godd × . . .× Godd into Geven:

L(ψ1(t), . . . , ψ̇1(t), . . .) ≡ L(ξ1, . . . , ξ2m)|ξ1=ψ1(t),..., ξm+1=ψ̇1(t),... . (11.374)

Dynamics (the equations of motion) follows from the condition δI[ψ(t)] = 0 where the
variation is written in terms of the right derivatives95

δI[ψ(t)] =

∫ t2

t1

dt
m
∑

α=1

(

∂L

∂Rξα

∣

∣

∣

∣

δψα(t) +
∂L

∂Rξm+α

∣

∣

∣

∣

d

dt
δψα(t)

)

, (11.375)

where each δψα(t) is an arbitrary mapping from R into Godd reducing to the zero element
of Godd for t = t1 and t = t2. The resulting “classical” dynamics is then rather abstract
and, as has been discussed in the introduction to this chapter, no picture of fluctuating
fields can be associated with the corresponding quantum theory.

Finally, the mathematical structure allowing for a uniform treatment of mixed bosonic
and fermionic systems is the Bieriezin algebra B obtained from the Grassmann algebra
by treating the coefficient functions gα1... in (11.373) as elements of the algebra F of
functions.96 Thus, the Bieriezin algebra is generated by 2n + 2m elements (generators)
za, zi = ai, i = 1, . . . , 2n and z2n+α = ξα, α = 1, . . . , 2m, which have the property

zazb = (−1)PaPbzbza , (11.376)

with the natural assignments of the B-algebra parities Pa (which as in the Grassmann
algebra can assume values 0 and 1). Obviously, the parity of a product b1b2 of two elements
of B having well-defined parities Pb1 and Pb2 is Pb1+Pb2(mod 2) and b1b2 = (−1)Pb1

Pb2 b2b1.
Similarly as the Grassmann algebra, the Bieriezin algebra naturally splits into the direct
sum of the even and odd subspaces Beven and Bodd the elements of which have well defined
parities (0 and 1, respectively). Left- and right derivatives with respect to the generators

95Alternatively it can be written in terms of the left derivatives with the variations placed to the left -
see the formula (11.378).

96Of course real and imaginary parts of each gα1... are treated as two independent elements of F .
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za are linear operations defined by the rules similar to the ones in the G-algebra

∂

∂Lza
zb1 . . . zbk =

k
∑

i=1

(−1)Liδbia z
b1 . . . (no zbi) . . . zbk ,

∂

∂Rza
zb1 . . . zbk =

k
∑

i=1

(−1)Riδbia z
b1 . . . (no zbi) . . . zbk , (11.377)

where Li (Ri) are the numbers of odd generator interchanges needed to place zbi on the
extreme left (right) of the string of the generators. Left- and right-derivatives with respect
to bosonic generators ai are, of course, identical. A useful property of derivatives with
respect to fermionic generators ξα are

∂

∂Lξα
(bodd) =

∂

∂Rξα
(bodd) ,

∂

∂Lξα
(beven) = − ∂

∂Rξα
(beven) . (11.378)

Dynamics of a mixed bosonic-fermionic system is determined by the action principle

δI[q, q̇] =

∫ t2

t1

dt

(

∂L

∂Rqa
δqa +

∂L

∂Rq̇a
d

dt
δqa
)

= 0 ,

in which L(z1, . . . , z2n+2m) is a function taking values in Beven and its derivatives with
respect to qa and q̇a have to be understood as in (11.371) and (11.375). The equations of
motion take the standard form

d

dt

∂L

∂Rq̇a
=

∂L

∂Rqa
a = 1, . . . , n+m. (11.379)

Hamiltonization of the dynamics of a bosonic-fermionic system is analogous to the
one of the ordinary bosonic systems except that one has to fix a convention (which is
arbitrary) for the definition of the canonical momenta. We chose to define the momenta
pa(t) as right derivatives

pa(t) =
∂L

∂Rq̇a(t)
. (11.380)

Consequently, the Hamiltonian must take the form

H =
∑

b

pb q̇
b − L , (11.381)

in order for its differential dH to be independent of the differentials dq̇a of the velocities.
Indeed, with this definition, using

dpb =
∂

∂Rqa

(

∂L

∂Rq̇b

)

dqa +
∂

∂Rq̇a

(

∂L

∂Rq̇b

)

dq̇a,
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one can write the differential of H

dH =
∂H

∂Rqa
dqa + (−1)PaPb

∂

∂Rq̇a

(

∂L

∂Rq̇b

)

q̇b dq̇a,

in the form

dH =
∂H

∂Rqa
dqa − ∂

∂Rqa

(

∂L

∂Rq̇b

)

dqa q̇b + dpb q̇
b = dpb q̇

b − ∂L

∂Rqb
dqb .

The Poisson bracket of the two functions F and G of definite B-algebra parities must be
defined in agreement with the adopted convention. The correct definition is

{F, G}PB =
∑

a

(

∂F

∂Rqa
∂G

∂Lpa
− (−1)PFPG

∂G

∂Rqa
∂F

∂Lpa

)

, (11.382)

with the left derivatives with respect to the momenta. It has the easy to check properties:

{F, G}PB = −(−1)PFPG {G, F}PB ,
{F, GH}PB = {F, G}PBH + (−1)PFPGG {F, H}PB .

With the definition (11.382) of the Poisson bracket in the B-algebra the canonical equa-
tions of motion q̇a = {qa, H}PB, ṗa = {pa, H}PB, are, in the case of systems not subject to
constraints, equivalent to the Euler-Lagrange equations derived from the action principle
δI[q(t)] = 0.

Canonical quantization of such systems consists of promoting their canonical vari-
ables qi, pi and ψ

α, πα to Schrödinger picture operators q̂i, p̂i, ψ̂
α and π̂α satisfying the

(anti)commutation relations:

[q̂i, p̂j] = i~{qi, pj}PB , {ψ̂α, π̂β}+ = i~{ψα, πβ}PB , (11.383)

in agreements with the symmetry/antisymmetry properties (11.383) of the corresponding
Poisson brackets. The resulting equations satisfied by the Heisenberg picture operators
q̂iH(t) and ψ̂

α
H(t) are then formally identical with the classical Euler-Lagrange equations

(11.382).

The Dirac procedure allowing to handle systems subject to second class constraints
extends to the case of mixed bosonic-fermionic systems essentially without modifications.
The only difference is that the C matrix defined by (11.307) is in this case a superma-
trix and has more complicated symmetry/antisymmetry properties (the Poisson bracket
(11.382) in the B-algebra is not simply antisymmetric).

Transition from classical mechanics to classical field theory is achieved, as usually, by
passing with the number of variables qa (and therefore also with the number of generators
of the Bieriezin algebra) to the continuum, that is by ascribing a certain number of
independent variables to each space point x.
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As an example of the application of this formalism we consider here quantization of the
relativistic Grassmann field ψ transforming as the spinor representation of the Lorentz
group, or more precisely, as the representation of the group Spin(1, 3) - the universal
covering of the Lorentz SO(1, 3) group. The extension to Spin(1, 3) is possible because
(what is clearly reflected in the formalism of the Grassmann and Bieriezin algebras) such
fields are not classically measurable; all observables must be bosonic (i.e. belong to Geven or
Beven) that is bilinear or quadrilinear etc. in the fields ψ and transform as representations
(scalar, vector, tensors) of the true Lorentz group.97 We assume therefore that under
the change of the reference frame x → x′ = Λ ·x the Grassmann algebra valued field ψ
transforms as

ψ′(x′) = e−
i
2
ωµνJ

µν
spin ψ(x) , (11.384)

where the matrices J µν
spin of the spinor representation satisfy the commutation rule

[

J µν
spin, J λρ

spin

]

= i
(

gµρJ νλ
spin − gµλJ νρ

spin − gνρJ µλ
spin + gνλJ µρ

spin

)

. (11.385)

As discussed in Section 8.3 the matrices J µν
spin can be constructed either by means of the

Clifford algebras or by exploiting the isomorphism of Spin(1, 3) and SL(2, C). Here, as
in (8.53) we take

J µν
spin =

i

4
[γµ, γν ] ≡ 1

2
σµν4×4 , (11.386)

with the 4 × 4 matrices γµ satisfying the basic Clifford algebra relation (8.52) in the
representations (8.64) or (8.66).

The most frequently encountered Lagrangian density (leading to the theory of nonin-
teracting fermions) has the form98

L = iψ†γ0γµ∂µψ −mψ†γ0ψ ≡ ψ̄(iγµ∂µ −m)ψ (11.387)

(Lorentz invariance of this Lagrangian density can be shown using the formulae given in
Chapter 8). The Grassmann algebra-valued fields ψα and ψ†

α are four-component spinors.
They are all treated as independent Grassmann algebra valued variables. The Euler-
Lagrange equations derived from (11.387)

γ0 (iγµ∂µ −m)ψ = 0 , (11.388)

ψ̄
(

−iγµ←∂µ −m
)

= 0 ,

97At the “classical” level this is the only argument why to consider fields transforming under a larger
symmetry group than SO(1, 3) despite the fact that only the Lorentz group of symmetries can be inferred
from physical experience. In the quantum case, as was discussed in Chapter 4, going over to the universal
covering of the SO(1, 3) group is a natural consequence of the possible occurrence of the projective
representations of SO(1, 3).

98Another, less frequently encountered, is the symmetric form:

L =
i

2
ψ†γ0γµ∂µψ − i

2
∂µψ

†γ0γµψ −mψ†γ0ψ .

Using the Dirac formalism it is easy to check that it leads to the same quantum theory as (11.387).
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are just the Dirac equations.

To set up the canonical formalism for this system we first find the canonical momenta
(recall that the derivatives are the right ones)

Πψ =
∂L
∂Rψ̇

= iψ† , Πψ† =
∂L
∂Rψ̇†

= 0 . (11.389)

It is clear that it is impossible to express ψ̇ and ψ̇† through Πψ and Πψ† . The system is
therefore subject to constraints (we suppress spinor indices)

Φ1(x) ≡ Πψ(x)− iψ†(x) = 0 , Φ2(x) ≡ Πψ†(x) = 0 , (11.390)

which are of second class. Although in this case the Dirac procedure described in Section
11.6 is not really indispensable, because the canonical equations when restricted to ψ and
Πψ are fully equivalent to the original Euler-Lagrange equation (11.388), it is instructive
to go through this procedure to see how it leads to the well established results.

Constructing the extended Hamiltonian density according to the rules of Section 11.6
one gets

HT = Πψψ̇ +Πψ†ψ̇
† − ψ†iψ̇ − ψ̄iγi∂iψ +mψ̄ψ

= ψ†γ0
(

−iγi∂i +m
)

ψ + Φ1u
1 + Φ2u

2 . (11.391)

The functions u1 and u2 are just the velocities ψ̇ and ψ̇†. Equating to zero the Poisson
brackets of the constraints with the Hamiltonian HT =

∫

d3xHT

{Φ1, HT}PB = −ψ̄(iγk←∂k +m)− iu2 ,

{Φ2, HT}PB = γ0(−iγk∂k +m)ψ − iu1 ,

determines these functions. No new (secondary) constraints are needed. Combining
u1 and u2 obtained in this way with the canonical equations ψ̇ = {ψ, HT}PB = u1,
ψ̇† = {ψ†, HT}PB = u2 one obtains the equations which are fully equivalent to the Euler-
Lagrange ones (11.388).

In order to quantize the theory one computes the Dirac brackets. The nonzero elements
of the C matrix are C1x,2y = C2x,1y ≡ {Φ1(x), Φ2(y)}PB = −iδ(3)(x−y) (it is in this case
symmetric). Its inverse reads

(C−1)1x,2y = (C−1)2x,1y = iδ(3)(x− y) . (11.392)

The Dirac brackets computed as in (11.309) read

{ψ(x), Πψ(y)}D = δ(3)(x− y) ,

{ψ(x), ψ†(y)}D = −iδ(3)(x− y) ,

{ψ(x), Πψ†(y)}D = 0 ,

{ψ†(x), Πψ(y)}D = 0 ,

{Πψ†(x), Πψ(y)}D = 0 ,

{ψ†(x), Πψ†(y)}D = 0 .
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The canonical quantization rule is now {A, B}+ = i~{A, B}D which leads to the canon-
ical anticommutators

{ψα(x), ψ†
β(y)}+ = ~ δαβ δ

(3)(x− y) , (11.393)

{ψα(x), ψβ(y)}+ = {ψ†
α(x), ψ

†
β(y)}+ = 0 .

Since in the quantum theory the constraints are realized as operator identities, Πψ† be-
comes the zero operator and Πψ can everywhere be eliminated in favour of iψ†. The
Hamiltonian density operator therefore reads

H = ψ†γ0(−iγk∂k +m)ψ . (11.394)

The next step is to expand the basic operators ψα(x) and ψ†
α(x) into creation and

annihilation operators, satisfying simple anticommutation rules. Since ψα has four inde-
pendent components, there must be four annihilation and four creation operators. As the
Grassmann variables ψα and ψ†

α are not real c-numbers, there corresponding operators ψα
and ψ†

α need not be Hermitian. We write therefore their expansions in the forms

ψα(x) =

∫

dΓp e
ip·x
∑

σ

[uα(p, σ) au(p, σ) + vα(−p, σ) av(−p, σ)] , (11.395)

ψ†
α(x) =

∫

dΓp e
−ip·x

∑

σ

[

u∗α(p, σ) a
†
u(p, σ) + v∗α(−p, σ) a†v(−p, σ)

]

,

using the functions uα(p, σ) and vα(p, σ) constructed in Section 8.3 and with dΓp =

(2π)32Ep, Ep =
√

p2 +m2. Computing the anticommutators (11.393) and anticipating
that {au, av}+ = {a†u, a†v}+ = 0 we get

{ψα(x), ψ†
β(y)}+ =

∫

dΓp

∫

dΓp′ e
i(p·x−p′·y)

∑

σ

∑

σ′
(

uα(p, σ)u
∗
β(p

′, σ′) {au(p, σ), a†u(p′, σ′)}+
+vα(−p, σ) v∗β(−p′, σ′) {av(−p, σ), a†v(−p′, σ′)}+

)

.

Recalling the summation rules (8.105):

∑

σ

uα(p, σ)u
∗
β(p, σ) =

∑

s

uα(p, σ) ūβ(p, σ)γ
0 =

[

(Epγ
0 − p·γ +m)γ0

]

αβ
,

∑

σ

vα(−p, σ) v∗β(−p, σ) =
[

(Epγ
0 + p·γ −m)γ0

]

αβ
,

it is easy to check that the commutation rules (11.393) are satisfied if

{au(p, σ), a†u(p′, σ′)}+ = δΓ(p− p′) δσσ′ ,

{av(p, σ), a†v(p′, σ′)}+ = δΓ(p− p′) δσσ′ , (11.396)
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and the other anticommutators are zero as anticipated.

To express the Hamiltonian through the operators au etc. we use the equality99

γ0(−iγi∂i +m)ψ(x)

=

∫

dΓpEp e
ip·x
∑

σ

[au(p, σ)u(p, σ)− av(−p, σ) v(−p, σ)] ,

and the normalization conditions

u†(p, σ) · u(p, σ′) = 2Ep δσσ′ ,

v†(p, σ) · v(p, σ′) = 2Ep δσσ′ , (11.397)

u†(p, σ) · v(−p, σ′) = v†(−p, σ) · u(p, σ′) = 0 ,

which can be derived from the rules of constructing the functions u(p, σ) and v(p, σ)
given in Section 8.3. In this way one gets

H =

∫

d3x ψ†(x)γ0(−iγi∂i +m)ψ(x)

=

∫

dΓpEp

∑

σ

[

a†u(p, σ) au(p, σ)− a†v(p, σ) av(p, σ)
]

. (11.398)

If the basic rules (11.393) and consequently (11.396) involved commutators (instead of
anticommutators) this form of the Hamiltonian would be a disaster: from the commutation

rules it would unambiguously follow (at least if the system is quantized in a finite box)
that there is a state |Ω0〉 annihilated by all au and av and that all other states are
created by acting on |Ω0〉 with a†u and a†v. But the states created by a†v would then
have negative energy! In the Fock space there would exist states with arbitrarily large
negative energy and, therefore, the spectrum of the Hamiltonian would not be bounded
from below. Fortunately, with the anticommutators such a conclusion does not follow:
since the anticommutation relations are symmetric with respect to interchanges a ↔ a†

we can call av the creation operator. More formally, one can make the substitution

au(p, σ) = b(p, σ) , a†u(p, σ) = b†(p, σ) ,

av(p, σ) = d†(p, σ) , a†v(p, σ) = d(p, σ) , (11.399)

which allows to rewrite the Hamiltonian (discarding the infinite constant) as

H =

∫

dΓpEp

∑

σ

[

b†(p, σ) b(p, σ) + d†(p, σ) d(p, σ)
]

. (11.400)

99It follows from the equalities

γ0(−iγk∂k +m)u(p, σ) eip·x = γ0(γ ·p+m)u(p, σ) eip·x = Ep u(p, σ) e
ip·x

γ0(−iγk∂k +m) v(−p, σ) eip·x = γ0(γ ·p+m) v(−p, σ) eip·x = −Ep v(−p, σ) eip·x ,

which in turn follow from the formulae (8.101) written in the form (γ0Ep − γ · p − m)u(p) = 0 and
(γ0Ep + γ ·p+m)v(−p) = 0.
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The Hamiltonian (11.400) is positive semidefinite and the operators b†(p, σ), b(p, σ) and
d†(p, σ), d(p, σ) satisfying the rules

{

b(p, σ), b†(p′, σ′)
}

+
= δΓ(p− p′) δσσ′ ,

{

d(p, σ), d†(p′, σ′)
}

+
= δΓ(p− p′) δσσ′ , (11.401)

(with all other anticommutators zero) are the creation and annihilation operators of par-
ticles and antiparticles, respectively. This interpretation follows from the fact that states
created by b†(p, σ) and d†(p, σ) have the same energies (and, hence same masses). More-
over, the Lagrangian (11.387) is invariant under the global transformations

ψ → ψ′ = e−iQθψ ψ† → ψ†′ = eiQθψ† , (11.402)

forming a U(1) symmetry group withQ being the charge (arbitrary in the free field theory)
and θ the transformation parameter. The corresponding conserved Noether100 current is

jµ = ψ†γ0γµψ , (11.403)

and the states created by b† and d† are eigenstates of

Q̂ =

∫

d3x j0(x) = Q

∫

dΓp

∑

σ

[

b†(p, σ) b(p, σ)− d†(p, σ) d(p, σ)
]

, (11.404)

with opposite eigenvalues

Q̂ b†(p, σ)|Ω0〉 = Qb†(p, σ)|Ω0〉 ,
Q̂ d†(p, σ)|Ω0〉 = −Qd†(p, σ)|Ω0〉 . (11.405)

Quantization of the theory defined by the Lagrangian (11.368) can be performed along
the same lines. Quantization of theories of fermionic and mixed fermionic-bosonic systems
of fields the complete Lagrangians of which consist of (11.387) (or (11.368)) plus terms
involving higher powers of fields than the second (examples of realistic such theories will
be discussed in Section 11.12), also proceed along the same lines.

As in the case of the scalar field ϕ discussed in Section 11.2, one can now introduce
time dependent field operators ψ(t,x) ≡ ψ(x), ψ†(t,x) ≡ ψ†((x) by the formulae

ψ(t,x) = eiHtψ(x) e−iHt , ψ†(t,x) = eiHtψ†(x) e−iHt . (11.406)

They satisfy the canonical equations of motion

d

dt
ψ(t,x) = i[H, ψ(t,x)] ,

d

dt
ψ†(t,x) = i[H, ψ†(t,x)] , (11.407)

100The Noether theorem is for theories of Grassmann algebra valued fields derived exactly as described
in Section 11.1.
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which take the form formally identical with the classical equations of motion derived
from the underlying Lagrangian (that is with the equations (11.388) in the case of the
Lagrangian (11.387)). The time-dependent operators ψ(t,x) and ψ†(t,x), which in the
theory of free fields are the Heisenberg operators and in the theory of interacting fields
in which the Hamiltonian (11.394) or (11.400) play the role of the free part H0 of the full
Hamiltonian, are the interaction picture operators, take the forms

ψα(x) =

∫

dΓp

∑

σ

(

e−ip·x uα(p, σ) b(p, σ) + eip·x vα(p, σ) d
†(p, σ)

)

,

ψ†
α(x) =

∫

dΓp

∑

σ

(

e−ip·x v∗α(p, σ) d(p, σ) + eip·x u∗α(p, σ) b
†(p, σ)

)

.

One can also find the canonical energy-momentum tensor

T µνcan =
∂L

∂R(∂µψ)
∂νψ − gµνL .

As long as the Lagrangian is linear in ψ and ψ† (as in (11.387)), the time dependent
(Heisenberg picture) operators satisfy the equations of motion which make L vanishing
(as the operator) and T µνcan simplifies to the first term only. Thus, in the theory (11.387)

T µνcan = iψ†γ0γµ∂νψ . (11.408)

When expressed through the field operators
∫

d3x T 00
can is just the Hamiltonian (11.400)

and

P i =

∫

d3xT 0i
can =

∫

dΓp p
i
∑

σ

[

b†(p, σ)b(p, σ) + d†(p, σ)d(p, σ)
]

, (11.409)

is the momentum operator commuting with H . Finally, the canonical tensor

Mµνκ = xν T µκcan − xκ T µνcan +
∂L

∂R(∂µψ)

(

−iJ νκ
spin

)

ψ , (11.410)

gives the operators generating rotations and boosts

Jνκ = i

∫

d3xψ†

(

xν∂κ − xκ∂ν − i

2
σνκ4×4

)

ψ . (11.411)

To see that the particles which are “quanta” of the field ψ have spin s = 1/2 it is enough
to act with J12 = Jz on the one-particle states representing particles at rest

Jz b†(0, ±1
2
)|Ω0〉 = ±1

2
b†(0, ±1

2
)|Ω0〉 ,

Jz d†(0, ±1
2
)|Ω0〉 = ±1

2
d†(0, ±1

2
)|Ω0〉 . (11.412)
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More generally, one can check the commutation rules of the operators H , P, J and K

and verify that the one-particle states b†(p,±1
2
)|Ω0〉 and d†(p,±1

2
)|Ω0〉 transform under

the action of the U(Λ) ≈ 1− i
2
ωµνJ

µν + . . . operators in the way appropriate for spin 1/2
particles.

Statistical properties of the quantized fermionic field can also be readily obtained. If
it is quantized in the box of volume V = L3 the Hamiltonian (before subtracting the
infinite constant) is

H =
∑

p

∑

σ

Ep

(

b†pσbpσ + d†pσdpσ − 1
)

, (11.413)

and the Hilbert space is spanned by the states |nbpσ, . . . , ndpσ, . . .〉 with nbpσ, ndpσ = 0 or 1.

Since there is a conserved charge Q̂, one computes the Grand Statistical Ensemble sum

Ξ(T, V, µ) = Tr e−β(H−µQ̂)

=
∏

p





1
∑

nb
p=0

e
1
2
βEpe−β(Ep−µ)nb

p





2

×
∏

p





1
∑

nd
p=0

e
1
2
βEpe−β(Ep+µ)nd

p





2

=
∏

p

e2βEp
(

1 + e−β(Ep−µ)
)2 (

1 + e−β(Ep+µ)
)2
, (11.414)

(the squares come from the two spin states). Thus, for Ω(T, V, µ) = −kBT ln Ξ, after
going over to the continuous normalization, one gets the formula

Ω(T, V, µ) = −2V

∫

d3p

(2π~)3
{

Ep + kBT ln
(

1 + e−β(Ep−µ)
)

+kBT ln
(

1 + e−β(Ep+µ)
)}

, (11.415)

where Ep =
√

c2p2 +m2c4 and the factor of 2 accounts for two spin states per each p.

11.9 Transition to the interaction picture

As in the approach to quantum field theory based on quantum mechanics of relativistic
interacting particles, also in the approach relying on quantizing fields one can assume
that the full Hamiltonians of interacting fields possesses (in the infinite space) in and
out particle-like generalized eigenvectors |α±〉 which, owing to ther Lorentz transforma-
tion properties, can be interpreted as representing particles entering or emerging after
interactions. One is therefore primarily interested in obtaining S-matrix elements

Sβα = 〈β−|α+〉 ,

allowing to compute various transition rates using the recipes formulated in Chapter 10.
It is therefore necessary to discuss how to recover in the approach based on quantization
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of interacting classical fields the perturbative expansion (and the related Feynman rules)
which in Chapter 9 was formulated within the approach based on constructing interac-
tions of relativistic particles. As we will see, the procedure by which this is achieved,
called transition to the interaction picture, when applied to classical relativistic fields au-
tomatically produces all the additional interactions which in the previous approach had
to be included by hands in order to obtain a Lorentz covariant S-matrix.

We begin with the simplest example of the theory of a single scalar field ϕ(x) defined
by the Lagrangian density

L =
1

2
∂µϕ∂

µϕ− 1

2
M2ϕ2 −Hint(ϕ) . (11.416)

in which Hint(ϕ) is some interaction Hamiltonian density. After performing quantization
as in Section 11.2, the Hamiltonian of this system, expressed through the Schrödinger
picture (time independent) operators ϕ(x), Π(x) satisfying the rules (11.78) takes the
form of the sum of the free Hamiltonian

H0 =
1

2

∫

d3x
[

Π2(x) + (∇ϕ(x))2 +M2ϕ2(x)
]

, (11.417)

which is quadratic in the field operators and the of interaction101

Vint =

∫

d3xHint(ϕ(x),Π(x)) . (11.418)

The formula

Sβα = 〈β0|T exp

(

−i
∫ +∞

−∞

dt V I
int(t)

)

|α0〉 , (11.419)

for S-matrix elements established in Section 7.3 using general rules of quantum mechanics
should apply also to the field theory case. In (11.419), as in (7.64),

V I
int(t) = eiH0t

∫

d3xHint(ϕ(x),Π(x)) e
−iH0t

=

∫

d3xHint(ϕI(t,x),ΠI(t,x)) ≡
∫

d3xHI
int(t,x) . (11.420)

and for the states |α0〉 one should take the generalized eigenvectors of H0 (11.417) con-
structed in Section 11.2. The time-dependent operators ϕI(x) ≡ ϕI(t,x) and ΠI(x) ≡
ΠI(t,x) given by

ϕI(t,x) = eiH0t ϕ(x) e−iH0t ,

ΠI(t,x) = eiH0tΠ(x) e−iH0t , (11.421)

101To be more general we write the formulae as if Hint depended also on Π(x).
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are called in this context the interaction picture operators and have the structure of the
free-field operators constructed in Chapter 8:

ϕI(x) =

∫

dΓk

(

a(k) e−ik·x + a†(k) eik·x
)

,

ΠI(x) =
1

i

∫

dΓkE(k)
(

a(k) e−ik·x − a†(k) eik·x
)

. (11.422)

with k · x ≡ Ekt− k·x. They satisfy (by construction) the equal-time commutation rules

[ϕI(t,x), ΠI(t,y)] = iδ(3)(x− y) , (11.423)

etc. and the “Klein - Gordon” equation

(∂µ∂
µ +M2)ϕI(t,x) = 0 . (11.424)

It should also be clear that the free Hamiltonian H0 (11.417) can be also written in terms
of the time dependent interaction picture operators

H0 = eiH0tH0 e
−iH0t =

1

2

∫

d3x
[

Π2
I(t,x) + (∇ϕI(t,x))

2 +M2ϕ2
I(t,x)

]

.

In the case of the theory (11.416) it is obvious that ϕ̇I(t,x) = ΠI(t,x). In more
complicated cases like the one of the electromagnetic field interacting with other fields
(to be discussed below) it is useful to remember that ϕI(t,x) and ΠI(t,y) satisfy the
equations

ϕ̇I(t,x) = i[H0, ϕI(t,x)] ,

Π̇I(t,x) = i[H0, ΠI(t,x)] , (11.425)

with the initial conditions ϕI(0,x) = ϕH(0,x) = ϕ(x), ΠI(0,x) = ΠH(0,x) = Π(x). The
first of the equations (11.425) unambiguously fixes the relation of ϕ̇I(t,x) to ΠI(t,x).

In this way the perturbation expansion for the S-matrix (which leads to the Feynman
rules discussed in Sections 9.3-9.6) derived from principles of quantum mechanics in the
framework of Chapters 8 and 9 is recovered in the approach based on quantization of
relativistic fields. It should be obvious, that this perturbative expansion is based on the
same assumptions as those formulated in Section 7.3, namely that the particle-like in and
out eigenstates of the complete Hamiltonian are in the strict one-to-one correspondence,
specified by (7.39), with the eigenstates |α0〉 of the free Hamiltonian (11.417).

Transition to the interacting picture is more subtle in the case of vector (massive and
massless) fields. Let us first consider the Lagrangian density

L =
1

2
∂µϕ∂

µϕ− 1

2
M2ϕ2 −Hint(ϕ)− Jµ∂µϕ+ . . . , (11.426)
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in which Jµ is some four-vector constructed out of fields other than ϕ itself (the ellipses
stands for terms depending on these other fields). The canonical momentum is given by

Π =
∂L
∂ϕ̇

= ∂0ϕ− J0 , (11.427)

and the Hamiltonian constructed according to the rules takes the form

H =

∫

d3xΠ(x)ϕ̇(x)−
∫

d3xL(ϕ(x), ϕ̇(x))

=

∫

d3x

{

Π(Π + J0)−
1

2
(Π + J0)

2 +
1

2
(∇ϕ)2

+
1

2
M2ϕ2 +Hint + J·∇ϕ+ J0(Π + J0)

}

. (11.428)

Upon canonical quantization ϕ(x) and Π(x) become Schrödinger picture operators ϕ(x)
and Π(x) satisfying the standard canonical commutation rules. Splitting the full Hamil-
tonian into the free part H0 and the interaction Vint one gets H0(Π(x), ϕ(x)) of the same
form as in (11.417) and

Vint =

∫

d3x [Π(x)J0(x) + J(x) ·∇ϕ(x) +
1

2

(

J0(x)
)2

+Hint(ϕ(x))] . (11.429)

As in the preceding case, H0 gets diagonalized upon introducing the creation and anni-
hilation operators and the Fock basis of H0 eigenvectors is constructed to play the role
of the |α0〉 states in the formula (11.419). The interaction picture operators ϕI(t,x) and
ΠI(t,x) are obtained as in (11.421). The important point is that the first of the equations
(11.425) tells that the operator ΠI(t,x) is related to ∂0ϕI(t,x) by

ΠI(t,x) = ∂0ϕI(t,x) , (11.430)

and not by ∂0ϕI(t,x) − J0
I (t,x) (as in the case of the corresponding Heisenberg picture

operators). For this reason the interaction V I
int(t) used in the perturbation expansion for

the S-matrix takes the form

V I
int(t) =

∫

d3x

[

JµI (t,x) ∂µϕI(t,x) +
1

2

(

J0
I (t,x)

)2
+Hint(ϕI(t,x))

]

, (11.431)

i.e. it acquires a noncovariant term (J0
I )

2, so that the expression under the integral over
d3x in (11.431) is not a Lorentz invariant interaction density (as was assumed in (7.101)).
However, as we have seen in Section 9.5, precisely such a noncovariant term had to be
added (by hands in the approaches of Chapters 7, 8) to compensate for the noncovariant
term in the propagator of the vector field ∂µϕI(x) (arising due to the singular nature
of products of field operators taken at the same space-time point) and to restore the
Poincaré covariance of the S-matrix. Similarly, in the case of the Proca theory (quantized
in Section 11.5) the Hamiltonian density of which takes (after exploiting the constraint
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I Electromagnetic units

In comparing electromagnetic quantities in the SI and Gauss systems one should keep
in mind that this is not only the question of using different units (in mechanics the
difference between the SI and the cgs systems is only the one of units): electromagnetic
quantities in the two systems have different physical dimensions. Hence we use below the
sub(super)scripts distinguishing quantities in different systems.

The Maxwell equations in the SI system read

∇×ESI +
∂BSI

∂t
= 0 , ∇·BSI = 0 , (I.1)

∇×BSI − µ0ε0
∂ESI

∂t
= µ0 jSI , ε0∇·ESI = ρSI , (I.2)

with ε0µ0 = 1/c2. The action giving rise to (I.2) is

I[ASI, J ] =

∫

dt

∫

d3x

(

−1

4
ε0c

2fSI
µνf

µν
SI −ASI

ν eSIJ
ν

)

. (I.3)

Here fSI
µν = ∂µA

SI
ν − ∂νA

SI
µ (recall that x0 ≡ ct) and

fSI
µνf

µν
SI = − 2

c2
E2

SI + 2B2
SI . (I.4)

In this system of units the following identifications1 hold:

AµSI =

(

1

c
ϕSI, ASI

)

, eSIJ
µ = (c ρSI, jSI) , (I.5)

and

1

c
ESI = −∇

ϕSI

c
− 1

c

∂ASI

∂t
, BSI = ∇×ASI . (I.6)

The dimensionless fine structure constant αEM = 1/137.03599 is given by

αEM =
e2SI

4πε0~c
. (I.7)

In the Gauss’ system of electromagnetic units

∇×EGauss +
1

c

∂BGauss

∂t
= 0 , ∇·BGauss = 0 , (I.8)

∇×BGauss −
1

c

∂EGauss

∂t
=

4π

c
jGauss , ∇·EGauss = 4πρGauss . (I.9)

1All components of a four-vector have the same physical dimension.
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The action giving rise to (I.9) is

I[AGauss, J ] =

∫

dt

∫

d3x

(

− 1

16π
fGauss
µν fµνGauss −

1

c
AGauss
ν eGaussJ

ν

)

. (I.10)

fGauss
µν fµνGauss = −2E2

Gauss + 2B2
Gauss . (I.11)

Here the identifications are

AµGauss = (ϕGauss, AGauss), eGaussJ
µ = (c ρGauss, jGauss) . (I.12)

and

EGauss = −∇ϕGauss −
1

c

∂AGauss

∂t
, BGauss = ∇×AGauss . (I.13)

In this system

αEM =
e2Gauss

~c
. (I.14)

Outside electromagnetically active media (dielectrics or magnetics) in the SI units one
has BSI = µ0HSI, whereas in the Gauss’ system BGauss = HGauss. For this reason in most
textbooks using the latter system one uses H in place of B.

The following pairs of quantities in the two systems have the same physical dimension

[eGauss] =
[eSI]

[ε0]1/2
=

[M ]1/2[L]3/2

[T ]
,

[ϕGauss] =
[eGauss]

[L]
= [ε0]

1/2[ϕSI] =
[eSI]

[ε0][L]
,

[EGauss] =
[eGauss]

[L]2
=

[

ε0]
1/2[ESI

]

=
[eSI]

[ε0]1/2[L]2
,

[BGauss] = [EGauss] = [c][ε0]
1/2 [BSI] =

[

ε0]
1/2[ESI

]

. (I.15)

In both systems the physical dimension [I] of the action I is obviously [I] = [~] ≡
[M ][L]2[T ]−1.

The SI system quantities are related to their Gauss’s system conterparts by

eSI/
√
4πε0 = eGauss ,√

4πε0ϕSI = ϕGauss ,√
4πε0 cA

0
SI = A0

Gauss ,√
4πε0 cASI = AGauss , (I.16)√
4πε0ESI = EGauss ,√

4πε0 cBSI = BGauss .
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It is easy to check that inserting these relations converts Maxwell’s equations (I.8), (I.9)
into (I.1), (I.2).

The Heaviside-Lorentz system of electromagnetic units, the one which is implicitly
used in quantum field theory formulae, differs from the Gauss’ system only by rescaling
the physical quantities back by the

√
4π factor (see section 11.4). Thus, in the Heaviside-

Lorentz system electromagnetic quantities have the same physical dimension as in the
Gauss’ system.

In d = D+1 space-time dimensions the electromagnetic quantities have (in the system
of units corresponding to the Heaviside-Lorentz one for d = 4) the units

[Aµ] = [M ]1/2[T ]−1[L]
4−D

2 ,

[E] = [B] = [M ]1/2[T ]−1[L]
2−D

2 , (I.17)

[e] = [M ]1/2[T ]−1[L]
D
2 .

The dimension of Aµ follows from [I] = [~], the dimension of E and B from the fact that
they are elements of fµν = ∂µAν − ∂νAµ and that of e from the Gauss’ law in (I.8), given
that [ρ] = [e][L]−D.

The non-Abelian gauge fields and coupling constants have the same physical dimen-
sions (I.17) as the electromagnetic fields (i.e. [g] = [e], [Aaµ] = [Aµ]). The full field strength
tensor then is

F µν
a = ∂µAνa − ∂νAµa − (g/~c)f bc

a AµbA
ν
c ,

and the covariant derivatives with the dimensionfull constants restored read

Dµ = ∂/∂xµ + i(g/~c)T aAµa .

For the basis of the mechanical units one takes c and ~ (the two fundamental units).
The natural third unit would be the Planck mass

MPl =

(

~c

GN

)1/2

,

set by the third fundamental constant of Nature - the Newton constant GN - but since it
is not very practical from the point of view of elementary particle physics, one normally
uses for the third unit a conveniently chosen mass unit like e.g. eV/c2 or GeV/c2.

Unlike the electromagnetic fields which do have a classical limit the physical dimen-
sion of fermionic fields can be chosen arbitrarily. In ordinary nonrelativistic quantum
mechanics the probability

∫

dDx |ψ|2 is dimensionless and the dimension of ψ is [L]−D/2.
However, since the fermionic fields ψ are not directly related to the nonrelativistic wave
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functions, it is more convenient to chose the dimension of the fermionic fields so that the
kinetic part of the action

I =

∫

dt

∫

dDx ψ̄ iγ0
∂

∂t
ψ ,

has the right dimension without any compensating factors of c or ~. Similarly, it is
convenient to take

I =

∫

dt

∫

dDx

[

(

∂ϕ

∂t

)2

− c2 (∇ϕ)2
]

,

for the kinetic part of the action of a scalar field ϕ. The physical dimensions of the fields
(canonical dimensions of the corresponding field operators) then are

[ψ] = [M ]1/2[T ]−1/2[L]
2−D

2 , [ϕ] = [M ]1/2[L]
2−D

2 .

Dimensions of the other terms in the field theory Lagrangians can be then easily
established. For example, the action describing a multiplet of complex scalar fields φ
of mass M interacting with the gauge fields Aaµ with all dimensionfull constants written
down explicitly has form

I =

∫

dt

∫

dDx

{

c2
(

φ∗←∂
µ − i(g/~c)φ∗T aAaµ

) (

∂µφ+ i(g/~c)T aAaµφ
)

−M
2c4

~2
φ∗φ− c3

~
λ (φ∗φ)2

}

.

Notice that the coupling λ has dimension [L]D−3, i.e. it is dimensionless only in D = 3
(d = 4); in D 6= 3 this dimension cannot be removed by adjusting the powers of c and ~

- for this a mass unit is necessary.
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J Primary constraints

Here we give the derivation of the starting point for quantization of systems subject
to constraints. To this end we consider a system described by some variables qi and
their generalized velocities q̇i, i = 1, . . . , n. The dynamics is assumed to be determined
by a Lagrangian L = L(q, q̇). It is convenient to treat it as a function of qi and vi:
Lv(q, v) ≡ L(q, v). Standard transition to the Hamilton’s formulation is obstructed if the
matrix

Mv
ij ≡

∂2Lv

∂vi∂vj
, (J.1)

is singular, because then some of the generalized velocities vi cannot be expressed through
the canonical momenta pi. Hamiltonization of the system requires then a special approach.

The standard Euler-Lagrange equations corresponding to the Lagrangian Lv can be
written in the equivalent form as the set of first order equations

Mv
ij v̇

j =
∂Lv

∂qi
− ∂2Lv

∂vi∂qj
vj ,

q̇i = vi , (J.2)

pi =
∂Lv

∂vi
.

The last group of the equations (J.2) is at the moment redundant - it only serves to define
the momenta pi. The equations (J.2) can be rewritten in another, equivalent form

ṗi =
∂Lv

∂qi
,

q̇i = vi , (J.3)

pi =
∂Lv

∂vi
.

The equivalence follows by differentiating the last set of equations with respect to time
and substituting the result in the first set of equations.

One now introduces the quasi-Hamiltonian

Hv(q, p, v) ≡ piv
i − Lv(q, v) . (J.4)

which is treated as a function of three sets of independent variables: q, p and v. This
allows to cast the equations (J.3) in the form:

q̇i = {qi, Hv}PB ≡ ∂Hv

∂pi
,

ṗi = {pi, Hv}PB ≡ −∂H
v

∂qi
, (J.5)

∂Hv

∂vi
= 0 ,
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in which the Poisson brackets are taken with respect to the variables qi and pi treating
the velocities vi as independent variables. The quasi-Hamiltonian system (J.5) is fully
equivalent to the equations (J.3) and, hence, to the original Euler-Lagrange equations.
Moreover, if the last group of equations (J.5) is satisfied, one can treat vi in the first two
groups of equations as (unknown) functions of qi and pi even in computing the Poisson
brackets.

Suppose now the matrix Mv
ij (J.1) is of rank r < n. It is then possible to express r

velocities vi in terms of the variables qi, the momenta pi and the remaining n−r velocities.
Labeling the variables so that it is the first r velocities which can be expressed in this
way, it is convenient to introduce the following notation:

Πi ≡ pi , V i ≡ vi , for i = 1, . . . , r,

πM ≡ pr+M , uM ≡ vr+M , for M = 1, . . . , n− r

Of the last group of equations (J.5), which in this notation read

∂Hv

∂V i
≡ Πi −

∂Lv

∂V i
= 0 ,

∂Hv

∂uM
≡ πM − ∂Lv

∂uM
= 0 ,

the first r ones can be solved yielding V i = V
i
(q,Π, u) ≡ V

i
(q,Π, u), while the remaining

n− r equations become the primary constraints.

Next we introduce the total Hamiltonian HT ≡ Hv|V=V :

HT(q, Π, π, u) = ΠiV
i
(q,Π, u) + πMu

M − Lv(q, V (q,Π, u), u) . (J.6)

After substituting V
i
(q,Π, u) for V i the primary constraints take the form

ΦM ≡ ∂Hv

∂uM

∣

∣

∣

∣

V=V

≡ πM − fM(q,Π) , (J.7)

with fM (q,Π) ≡ (∂Lv(q, V, u)/∂uM)V=V . The constraints ΦM can be also obtained as

ΦM = (∂HT/∂u
M) because the additional contributions vanish for V i = V

i
. It is impor-

tant to realize that the constraints (J.7), ΦM = 0, do not depend on uN - if they did, one
could solve for more velocities, contary to what has been assumed.

The system of equations (J.5) is now fully equivalent to the following one

q̇i = {qi, HT}PB , qi = (X i, xM) ,

Π̇i = {Πi, HT}PB , (J.8)

π̇M = {πM , HT}PB ,
ΦM = 0 ,

because, as has been noted, it is admissible to substitute in (J.5) V
i
(q,Π, u) in place of

V i in computing the Poisson brackets.
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The final step is to make clear the structure of HT. To this end one can use the
identity1

Hv = Ev +
∂Hv

∂vi
vi ≡

(

∂Lv

∂vi
vi − Lv

)

+
∂Hv

∂vi
vi .

Using it one can write

HT = Hv|V=V =

(

Ev +
∂Hv

∂V i
V i +

∂Hv

∂uM
uM
)

V=V

= Ev|V=V + ΦMu
M ≡ H + ΦMu

M , (J.9)

because (∂Hv/∂V i)V=V = 0. The Hamiltonian H defined in this way does not depend on
the primarily unsolvable velocities uM . Indeed, on one hand,

∂HT

∂uM
=

∂H

∂uM
+ ΦM .

On the other hand, as has been noted below the formula (J.7),

∂HT

∂uM
≡ ∂

∂uM
(Hv|V=V ) = ΦM .

Hence, (∂H/∂uM )V=V must vanish.

1To justify it just insert in the right hand side Hv as given by (J.4).
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