
13.1 Off-shell amplitudes

Suppose we formally modify a given interaction picture Hamiltonian density HI
int(x) (ob-

tained either in the framework of relativistic quantum mechanics of particles by using
the prescriptions of Chapters 7 and 8 or by performing the transition to the interaction
picture on the quantum Hamiltonian of a system of interacting relativistic fields expressed
in terms of physically normalized field operators ϕph - see Section 11.10) by adding to it
terms of the form −∑

k Jk(x)O
I
k(x):

HI
int(x) → HI

int J(x) ≡ HI
int(x)−

∑

k

Jk(x)O
I
k(x) , (13.1)

where Jk(x) are some arbitrary c-number functions,2 which we will call external sources,
and OI

k(x) are the operators constructed out of the free field operators introduced in
Chapter 8 and their derivatives. In what follows Lorentz group representation indices li
of the operators Oli are also meant to denote the type of the operator: Ol1 can for instance
stand for φ and Ol2 for ψα, etc. The time dependence of OI

k(x) is therefore dictated by
H0:

OI
k(t,x) = eiH0tOk(0,x) e

−iH0t. (13.2)

All the Feynman rules resulting from HI
int(x) follow from HI

int J(x) as well, but there
are also additional rules like the ones shown in Figure 13.1, since the terms Jk(x)Ok(x)
in (13.1) are now treated as ordinary interaction vertices.3 These rules dictate that in a
new vertex to which an internal line (or multiple internal lines) of the diagram is (are)
attached, the source Jk(x) is integrated with the “free” end(s) of the propagator(s). For
example, if the dashed line shown in Figure 13.1a, comes from an ordinary vertex at y,
the expression associated with this part of the Feynman diagram is

∫

d4xiJ(x) i∆F (x−y)
(the line coming into the vertex 13.1a can also correspond directly to an initial or a final
state particle or can come from another new vertex).

With the additional Feynman rules S-matrix elements can still be computed as pre-
viously but become dependent on the arbitrary functions Jk(x):

Sβα → Sβα[J ] . (13.3)

2If the operator OI
k(x) is fermionic, i.e. constructed out of an odd number of half-integer spin particle

operators, then Jk(x) assume values which are not c-numbers but rather Grassman variables ξk, i.e.
anticommuting numbers ξiξj = −ξjξi. In addition, ξi are assumed to anticommute also with fermionic
field operators, so that the new terms added to HI

int(x) effectively commute under the chronological
ordering in the formula (7.63).

3If the operators OI
k(x) involve time derivatives, it is understood that they are coupled to the sources

together with appropriate noncovariant terms, so that noncovariant terms in propagators connecting the
vertices arising from OI

k(x) are canceled. This means that in both sides of the formula (13.6) derivatives
on the operators OI

k(x) should be effectively treated as standing outside the T -product.
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Figure 13.1: Additional Feynman rules: a) OI(x) = ϕI(x), b) OI
α(x) = ψ̄I

α(x), c) O
I(x) =

ϕI(x)ψ̄I
α(x)ψ

I
α(x).

Therefore Sβα[J ] can be functionally differentiated with respect to Jk(x) and derivatives
of Sβα[J ] with respect to the sources Jk taken at Jk = 0 define the amplitudes which we
will call the Green’s functions. The theorem which we now prove can be written as follows

(

1

i

)r
δrSβα[Jk]

δJl1(x1) . . . δJlr(xr)

∣

∣

∣

∣

Jk=0

= 〈β−|T
[

OH
l1
(x1) . . . O

H
lr (xr)

]

|α+〉 . (13.4)

That is, the r-th functional derivative of Sβα[Jk] taken at vanishing external sources gives
the matrix element between the in and out states |α+〉 and |β−〉 of the chronologically
ordered product of the Heisenberg picture operators OH

k (x) defined by

OH
l (x) = eiHtOl(0,x) e

−iHt , (13.5)

where H = H0 + Vint = H0 +
∫

d3x Hint(0,x) is the complete Hamiltonian and Hint

involves all the terms necessary to satisfy the assumptions on which the calculation of
the S-matrix elements is based (see Sections 9.7 and 11.10). Performing the functional
differentiations in (13.4) we get the theorem in the form

〈β0|T
[

OI
l1
(x1) . . . O

I
lr(xr) exp

(

−i
∫

d4x HI
int(x)

)]

|α0〉

= 〈β−|T
[

OH
l1 (x1) . . . O

H
lr (xr)

]

|α+〉 . (13.6)

with no reference to auxiliary external sources Jk(x) whatsoever. In this form it applies
also to fermionic operators Ol(x). The theorem thus states that Green’s functions ob-
tained with the help of the recipe given above are equal to matrix elements between the
in and out states of the Heisenberg picture operators OH

l which, because the recipe is
up to now formulated within the assumptions of Section 7.3, have to be interpreted as
being constructed out of physically renormalized canonical field operators ϕph and their
derivatives (that is Ok(0,x) in (13.2) are constructed out of ϕph and their derivatives
taken at t = 0). This means that if one wants to compute (with the scheme developed up
to now) e.g. the Green’s function 〈β−|T [ϕH(x1) . . . ϕH(xn)] |α+〉 of the canonical (bare)
field operators one has, before going over to the interaction picture, to write it first as
Zn/2〈β−|T [ϕph(x1) . . . ϕph(xn)] |α+〉 with the appropriate Z factors (which ought to be
fixed order by order computed separately by computing the relevant two-point Green’s
functions) and compute 〈β−|T [ϕph(x1) . . . ϕph(xn)] |α+〉 using (13.6).
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The proof of the theorem goes as follows. Consider the left hand side of (13.6):

∞
∑

N=0

(−i)N
N !

∫ +∞

−∞

dτ1 . . .

∫ +∞

−∞

dτN〈β0|T
[

OI
l1
(x1) . . . O

I
lr(xr)V

I
int(τ1) . . . V

I
int(τN )

]

|α0〉 , (13.7)

and assume that x01 ≥ . . . ≥ x0r . Performing the integrals one has to sum over different
orderings of the times τ1, . . ., τN with respect to x01, . . . , x

0
r . We consider therefore

partitions of the times τ1, . . . , τN into r + 1 clusters, such that

τ01, . . . , τ0N0
≥ x01 ≥ τ11, . . . , τ1N1

≥ x02 ≥ . . . ≥ x0r ≥ τr1, . . . , τrNr
,

and sum over all possible such partitions. Since the operators V I
int(τi) commute under the

chronological ordering, it does not matter which of the τ ’s belong to which partitions. All
that matter is how many τ ’s there are in the k-th cluster. Thus, (13.7) can be rewritten
in the form

∞
∑

N=0

(−i)N
N !

∑

N0,...,Nr

N !

N0! . . . Nr!
δN,N0+...+Nr

×
∫ +∞

x0
1

dτ01 . . . dτ0N0

∫ x0
1

x0
2

dτ11 . . . dτ1N1
. . .

∫ x0
r

−∞

dτr1 . . . dτrNr

×〈β0|T[Vint(τ01) . . . Vint(τ0N0
)]Ol1(x1)T [Vint(τ11) . . . Vint(τ1N1

)]Ol2(x2) . . .

. . . Olr(xr)T[Vint(τr1) . . . Vint(τrNr
)]|α0〉 .

The factor N !/N0! . . . Nr! accounts for the number of ways the N τ ’s can be distributed
among r + 1 clusters containing N0, N1, . . ., Nr time variables. δN,N0+...+Nr

ensures that
there are only N τ ’s. However, since

∞
∑

N=0

(−i)N
N !

∑

N0,...,Nr

N !

N0! . . . Nr!
δN,N0+...+Nr

=

∞
∑

N0=0

(−i)N0

N0!
. . .

∞
∑

Nr=0

(−i)Nr

Nr!
,

we get in this way that the left hand side of (13.6) equals to

〈β0|UI(∞, x01)O
I
l1
(x1)UI(x

0
1, x

0
2)O

I
l2
(x2) . . . O

I
lr(xr)UI(x

0
r ,−∞)|α0〉 ,

where UI(t
′, t) is the interaction picture evolution operator (7.26)

UI(t
′, t) = eiH0t′e−iH(t′−t)e−iH0t

=
∞
∑

N=0

(−i)N
N !

∫ t′

t

dτ1 . . .

∫ t′

t

dτN T
[

V I
int(τ1) . . . V

I
int(τN )

]

.

Recalling now the relation (7.39)

|α±〉 = lim
t→∓∞

eiHte−iH0t|α0〉 ≡ lim
t→∓∞

UI(0, t)|α0〉 , (13.8)
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and taking into account (13.2) and (13.5) we obtain the right hand side of (13.6). From
the proof it is clear that the assumed ordering x01 ≥ . . . ≥ x0r is by no means special, and
the same steps can be performed for any other ordering of x01, . . . , x

0
r with the same result.

The Green’s functions (13.6) have been introduced above using the interaction picture
formulation of quantum field theory which up to now was based on the assumptions of
Section 7.3 which enforce using physically normalized field operators only (i.e. the On-
Shell renormalization scheme). It should be clear, however, that these objects can be
defined without any reference to this picture as they involve only matrix elements of
Heisenberg picture operators OH

l (x) between true eigenstates of the full Hamiltonian. In
fact, vacuum Green’s functions of the form

iG
(n)
l1...ln

(x1, . . . , xn) = 〈Ω|T
[

OH
l1
(x1) . . .O

H
ln(xn)

]

|Ω〉 , (13.9)

are the quantum field theory most basic objects: their definition requires only the existence
of the ground state |Ω〉, which any physically sensible system should possess, but makes
otherwise no a priori assumptions about the spectrum of the Hamiltonian. In particular,
neither the kind of particles in terms of which the in and out states are interpreted,
nor even the mere possibility of interpretation in terms of particles of the Hamiltonian
eigenvectors, is presupposed here. As a matter of facts, vacuum Green’s functions (13.9)
carry themselves the full information about the spectrum of the Hamiltonian and allow
to determine also the S matrix elements (if the Hamiltonian does posses particle-like in

and out states).

Before proving in Sections 13.2 and 13.4 the assertions made above, we want to for-
mulate the perturbative expansion for computing the vacuum Green’s functions (13.9).
This reduces to noticing, that while the derivation of the formula (13.6) with arbitrary in

and out states |α+〉 and 〈β−| relies on the one-to-one correspondence (13.8), which in turn
requires a special splitting of H into H0 and Vint (or in the language of fields, working with
physically renormalized operators and physical mass parameters in H0), for the vacuum
Green’s functions (13.9) the formula (13.6) remains formally valid even if the splitting of
H into H0 and Vint is arbitrary (if one works with arbitrarily renormalized operators and
arbitrary mass parameter in H0) and even if the spectra of H and H0 are different, i.e.
when the eigenvectors |α0〉 ofH0 constructed using the creation and annihilation operators
in terms of which is expressed the operator V I

int(t) are not in the one-to-one correspon-
dence with the true in and out eigenstates of H (this is true even if the H spectrum is not
interpretable in terms of particles; the only assumption needed is that the true ground
state |Ω〉 belongs to the discrete part of the H spectrum). Justification of this statement
is most straightforwardly obtained using the path integral formulation (Section 16.3) of
the perturbative expansion for Green’s functions (13.9) which turns out to be identical
with the one obtained from the formula (13.6), but does not rely on the one-to-one cor-
respondence of the |α0〉 and the in and out states. In the operator formalism developed
up to this point the formula (13.6) with |Ω〉 replacing the states |α+〉 and |β−〉 has been
demonstrated in Section 5.7. It directly relies of the Gell-Mann - Low construction given
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in Section 1.2 of the lowest energy eigenvector of H and is therefore subject to the same
restrictions: the splitting of the complete Hamiltonian into H0 and the interaction must
be such that the ground state |Ω〉 of H can be reached from the ground state |Ω0〉 of H0

adiabatically. This in particular means (especially in cases in which systems exhibit spon-
taneous - parametrical or genuinely dynamical - breaking of some symmetries) that the
classical theory of fields must be quantized using the appropriately chosen field variables
(to realize the canonical commutation relations in the right Fock space); in the case of
the approach of Chapters 7-9 performing an appropriate Bogolyubov-type transformation
may be necessary before setting the perturbative expansion.

With this justification, the vacuum Green’s functions (13.9) can be computed per-
turbatively from the formula (13.6) without imposing too strict restrictions (except for
those explained above) on the actual splitting of H into H0 and Vint (because vacuum
Green’s functions do not have on-shell external lines the question of canceling corrections
to them does not appear). This means that (in the language of fields) the theory can
be quantized in almost arbitrarily chosen variables ϕ̃, Π̃ (see the discussion around the
formula (11.440)). The interaction picture free field operators can be then introduced as
in (11.445), so that they (in most cases) diagonalize H0 (11.443) obtained for arbitrarily
split bare (Lagrangian) mass parameters (masses of free particles which are represented
by the H0 eigenvectors are then not equal to the physical masses of particles the states
of which are repressented by the in and out eigenvectors of H). To evaluate perturba-
tively the formula (13.9), the operators OH

l (x) in it, which can be arbitrarily renormalized
canonical (interacting) field operators or even composite operators like (ϕ̃2)(x), (ϕ̃∂µϕ̃)(x),

(ψ̃ψ̃)(x), etc. constructed out of arbitrarily renormalized elementary field operators and
their derivatives, have of course to be expressed through the elementary field operators
renormalized in the same way as the operators ϕ̃H in H0 (11.443) which in turn, upon
transition to the interaction picture and on account of the formula (13.6) for vacuum
matrix elements, are expressed through the free field (interaction picture) operators. E.g.
if OH

l (x) are built out of the bare canonical operators ϕH and the perturbative expansion
is set by replacing by the ϕI the renormalized canonical operators ϕph, one has to write

OH
l (x) ≡ Ol(ϕH(x), ∂) = Ol(Z

1/2ϕph(x), ∂) → Ol(Z
1/2ϕI(x), ∂) , (13.10)

where ϕI(x) = eiH0tϕph(0,x) e
−iH0t. In Section 13.4 we will show how the more general

Green’s functions (13.6) and in particular S-matrix elements can be obtained from the
appropriate vacuum Green’s functions (13.9).

The practical prescription for computing the Green’s function (13.9) within the per-
turbative expansion is then given by the Wick’s theorem discussed in Section 5.9 which
allows to reduce the right had sides of the expressions like

〈Ω0|T
[

ϕI
i1(x1) . . . ϕ

I
ik
(xk) exp

(

−i
∫

d4yHint(y)

)]

|Ω0〉

=

∞
∑

N=0

(−i)N
N !

∫

d4y1 . . .

∫

d4yN〈Ω0|T
[

ϕI
i1(x1) . . . ϕ

I
ik
(xk)Hint(y1) . . .Hint(yN)

]

|Ω0〉 ,

592



to unrestricted integrals of products of elementary contractions

〈ϕI
ik
(xk)ϕ

I
il
(xl)〉 ≡ 〈Ω0|T

[

ϕI
ik
(xk)ϕ

I
il
(xl)

]

|Ω0〉 , (13.11)

which are just the appropriate free field propagators (9.32), (9.33), (9.60), (9.65) or (9.68)
for different kinds of interaction picture operators. The resulting expansion can be repre-
sented in the form of Feynman diagrams and is equivalent to the previously formulated
technique for calculating amplitudes by drawing all possible Feynman diagrams with a
fixed number of external vertices corresponding to the operators ϕik(xk) and ascribing to
each element of a diagram an appropriate analytical expression. The only difference with
the rules formulated in Section 9 there are no integrations over the positions of vertices
corresponding to the operators ϕik(xk) and that no coupling factors are associated with
these vertices. If the operators ϕik(xk) are elementary one usually calls the lines ending
in the corresponding vertices external lines.

Taking the Green’s functions (13.9) for the basis of the quantum field theory is very
important conceptually (it allows to get rid of the restrictive assumptions of Section 7)
but is also convenient from the practical point of view. Firstly, within the perturbative
expansion, using the Green’s functions approach allows for a flexible formulation of the
renormalization programme (see Chapter 14). One can then work with arbitrarily normal-
ized field operators and with parameters which are not necessarily directly identified with
observables (observables are then computed as functions of these parameters). This, in
turn, enables one to formulate the powerful renormalization group methods (see Chapter
18). Secondly, the most effective methods for investigating the structure of quantum field
theory models without assuming the validity of the perturbative expansion are provided
by the path integral approach based on functional integrals (Chapter 16). These meth-
ods give most easily just the vacuum Green’s functions (13.9). As in the path integral
formulation of quantum field theory one deals with ordinary functions, rather than with
operators acting in an unknown Hilbert space, lattice methods can be employed to com-
pute vacuum Green’s functions numerically and to extract information about the field
theory structure nonperturbatively.4

13.2 Poles of the Green’s functions

As already said, the full information about predictions of a given field theory can in
principle be obtained from its vacuum Green’s functions. We will now argue that if the
field theory Hamiltonian does have a particle-like spectrum, Green’s functions have simple

4In practice, the results which are obtained to date in the most interesting case of quantum chromo-
dynamics with the help of numerical lattice computations are limited to static properties (like masses,
charge distributions, etc.) of hadrons and to matrix elements between one particle states and the vacuum
or other one particle states of some operators which are relevant for transitions induced by the weak
interactions.
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poles corresponding to these physical particles. The results of this section will be used in
Section 13.4 to obtain the S-matrix.

Consider the connected5 Green’s function6

G(n)
c (qn, . . . , q1) =

∫

d4xn . . .

∫

d4x1 e
−iqn·xn . . . e−iq1·x1

×〈Ω|T[On(xn) . . . O1(x1)]|Ω〉con , (13.12)

in which Oi(xi) are some Heisenberg picture field operators (since in this section all
operators will be taken in the Heisenberg picture, we suppress the subscript H as well as
possible indices related to their Lorentz transformation properties). As explained in the
preceding section, Oi(x) are not necessarily elementary fields operators of the theory -
they may also be composite operators like ψ̄ψ or ψ̄iA

a
µT

a
ijψj in gauge theories, etc. We are

interested in simple poles of G
(n)
c (qn, . . . , q1) treated as a function of a sum p of a subset

of its four-momenta:

p ≡ (q1 + . . .+ qr) = −(qr+1 + . . .+ qn) , 1 ≤ r ≤ n− 1 . (13.13)

We will argue that simple poles are located at p2 = m2
ph where m2

ph is the mass squared
(the eigenvalue of the PµP

µ operator) of a physical one-particle state |p, σ〉 (the full
HamiltonianH eigenstate) which has a nonvanishing scalar products (in the Hilbert space)
with the state-vectors

O†
r+1(xr+1) . . . O

†
n(xn)|Ω〉 ,

Or(xr) . . . O1(x1)|Ω〉 . (13.14)

More precisely, we will show, that in the vicinity of the pole G
(n)
c (qn, . . . , q1) behaves as

G(n)
c (qn, . . . , q1) ≈

i

p2 −m2
ph + i0

(2π)4δ(4)(qn + . . .+ q1)

×
∑

σ

A(qn, . . . , qr+1|pσ)A(pσ|qr, . . . , q1) , (13.15)

where7

(2π)4δ(4)(qn + . . .+ qr+1 + p)A(qn, . . . , qr+1|pσ) ≡
∫

d4xn . . .

∫

d4xr+1

5In the language of Feynman graphs, i.e. within the perturbative expansion, connected part of a
Green’s function is given by diagrams that do not contain disconnected pieces. More generally, the Fourier

transform G
(n)
c (qn, . . . , q1) of a connected Green’s function is proportional to the single delta function

expressing the overall conservation of the four-momentum. A connected n-point Green’s function can be
also defined recursively starting from the 1-point one, see Section 17.1, without any reference to diagrams.

6As the consideration of this and the next sections do not rely on the perturbative expansion, we will
assume that the in and out vacuum states, as well as the in and out one-particle states, coincide. Hence
we omit the subscripts + and −. In the perturbative expansion these states differ by a phase factor given
by disconnected vacuum graphs which are simply omitted.

7Alternative definition of A(qn, . . . , qr+1|pσ) reads

A(qn, . . . , qr+1|pσ) =
∫

d4yn−1 . . .

∫

d4yr+1
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e−iqn·xn . . . e−iqr+1·xr+1 〈Ω|T[On(xn) . . .Or+1(xr+1)]|pσ〉con ,
(13.16)

(2π)4δ(4)(qr + . . .+ q1 − p)A(pσ|qr, . . . , q1) ≡
∫

d4xr . . .

∫

d4x1

e−iqr·xr . . . e−iq1·x1 〈pσ|T[Or(xr) . . . O1(x1)]|Ω〉con .
In other words, in the vicinity of the pole G(n)(qn, . . . , q1) can be written in the form

G(n)
c (qn, . . . , q1) ≈

∫

d4k

(2π)4

∑

σ

(2π)4δ(4)(qn + . . .+ qr+1 + k)A(qn, . . . , qr+1|kσ)

× i

k2 −m2
ph + i0

(2π)4δ(4)(qr + . . .+ q1 − k)A(kσ|qr, . . . , q1) ,

which, compared with the Feynman rules, looks (see Figure 13.2) as if there was a con-
tribution of a propagator of a particle of mass mph connecting, as an internal line, two
multi-leg vertices (with the appropriate momentum space delta functions). However, the
point is that the particle associated with the pole may not correspond to any of the ele-
mentary fields out of which the Hamiltonian is built and need not have its counterpart in
the spectrum of H0. Note also, that even if the particle can be associated with an elemen-
tary field operator in the original Lagrangian, the mass mph of this particle determined
by poles of Green’s functions may not be identical with the bare mass parameter m of
this field in the original Lagrangian nor with the mass parameters in H0.

The proof is as follows. Among all orderings of x0n, . . . , x
0
1 contributing to the multiple

integral in (13.12) there are n!/r!(n− r)! orderings such that

x0n, . . . , x
0
r+1 > x0r , . . . , x

0
1 .

Assuming that the complete set of the full Hamiltonian eigenstates contains one-particle
states, the contribution of these orderings to G

(n)
c (qn, . . . , q1) definded in (13.12) is

∫

d4xn . . .

∫

d4x1 e
−iqn·xn . . . e−iq1·x1 Θ

(

min(x0n, . . . , x
0
r+1)−max(x0r , . . . , x

0
1)
)

e−iqn−1·yn−1 . . . e−iqr+1·yr+1〈Ω|T[On(0)On−1(yn−1) . . . Or+1(yr+1)]|pσ〉con .
To demonstrate the equivalence with the definition given in the text we introduce yn−1 = xn−1 −
xn, . . . , yr+1 = xr+1 − xn and write the right hand side of (13.16) in the form
∫

d4xn

∫

d4yn−1 . . .

∫

d4yr+1 e
−i(qn+...+qr+1+p)·xn

×e−iqn−1·yn−1 . . . e−iqr+1·yr+1 〈Ω|T[On(0)On−1(yn−1) . . . Or+1(yr+1)]|pσ〉con .

We have used here the fact that Oi(xi) = eiP̂ ·xi Oi(0) e
−iP̂ ·xi and that

T[On(xn) . . . Or+1(xr+1)] = eiP̂ ·xnT [On(0) . . . Or+1(yr+1)]e
−iP̂ ·xn ,

as can be seen by writing down T [On(xn)On−1(xn−1) . . . Or+1(xr+1)] as the sum of different orderings
of the operators multiplied by the appropriate θ functions. Taking the integral over d4xn yields then the
alternative definition. A(pσ|qr , . . . , q1) can be written similarly.
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G(n)

q1

qr

qn

qr+1

≈

q1

qr

qn

qr+1

k

Figure 13.2: Factorization of a pole of a Green’s function.

×
∫

dΓk

∑

σ

〈Ω|T[On(xn) . . .Or+1(xr+1)]|kσ〉con

× 〈kσ|T[Or(xr) . . .O1(x1)]|Ω〉con + remainder .

The “remainder” stands for other terms arising as a result of inserting the unit operator
in the form

1̂ = |Ω〉〈Ω|+
∫

dΓk

∑

σ

|kσ〉〈kσ|+ . . .

between the first r and the last n− r operators Ok(xk) as well as for terms arising from
other orderings of x0n, . . . , x

0
1. One can now write the operators On(xn) and Or(xr) using

the relation

Oi(xi) = eiP̂ ·xi Oi(0) e
−iP̂ ·xi ,

which follow from the assumed translational invariance. This allows us to introduce the
new variables

yi = xi − xr , if i = 1, . . . , r − 1 ,

yi = xi − xn , and i = r + 1, . . . , n− 1 ,

min(x0n, . . . , x
0
r+1)−max(x0r, . . . , x

0
1)

= x0n − x0r +min(0, y0n−1, . . . , y
0
r+1)−max(0, y0r−1, . . . , y

0
1)

and, representing the Heaviside step function Θ(τ) as

Θ(τ) =
i

2π

∫ +∞

−∞

dω
e−iωτ

ω + i0
, (13.17)

write

G(n)
c (qn, . . . , q1) =

i

2π

∫ +∞

−∞

dω

ω + i0

∫

dΓk

∑

σ
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∫

d4xn

∫

d4yn−1 . . .

∫

d4yr+1

∫

d4xr

∫

d4yr−1 . . .

∫

d4y1

e−i(qn+...+qr+1)·xn e−ik·xn e−i(qr+...+q1)·xr e+ik·xr

× exp
(

−iω
[

x0n − x0r +min(0, y0n−1, . . . , y
0
r+1)−max(0, y0r−1, . . . , y

0
1)
])

×e−iqn−1·yn−1 . . . e−iqr+1·yr+1 〈Ω|T[On(0)On−1(yn−1) . . .Or+1(yr+1)]|kσ〉con
×〈kσ|T ! [Or(0)Or−1(yr−1) . . . O1(y1)]|Ω〉con e−iqr−1·yr−1 . . . e−iq1·y1

+remainder,

where the factors e−ik·xn, e+ik·xr in the third line arose from the action of e−iP̂ ·xn and
eiP̂ ·xr on |kσ〉 and 〈kσ|, respectively (see the footnote, two pages back). Performing the
integrals over xn and xr one finds

G(n)
c (qn, . . . , q1) =

i

2π

∫ +∞

−∞

dω

ω + i0

∫

dΓk

∑

σ

A(qn, . . . , qr+1|kσ)A(kσ|qr, . . . , q1)

×(2π)4δ(3)(qn + . . .+ qr+1 + k) δ(q0n + . . .+ q0r+1 + Ek + ω)

×(2π)4δ(3)(qr + . . .+ q1 − k) δ(q0r + . . .+ q01 −Ek − ω)

× exp
(

−iω
[

min(0, y0n−1, . . . , y
0
r+1)−max(0, y0r−1, . . . , y

0
1)
])

+remainder,

where Ek =
√

k2 +m2
ph. Neither the “remainder” nor the exponent contribute at the

pole.8 The exponent can be therefore approximated by 1. The integrals over k and ω can
be then done with the result

G(n)
c (qn, . . . , q1) =

i

2
√

p2 +m2
ph

(

p0 −
√

p2 +m2
ph + i0

)

×(2π)4δ(4)(qn + . . .+ q1)
∑

σ

A(qn, . . . , qr+1|pσ)A(pσ|qr, . . . , q1)

+ the remainder. (13.18)

where p = qr + . . . + q1 and p0 = q0r + . . . + q01. Since for p0 ≈
√

p2 +m2
ph one has

2
√

p2 +m2
ph ≈ p0 +

√

p2 +m2
ph this is just the result (13.15). By appealing to the

Feynman rules it can also be expected that in (13.18) each of the factors A in the product
A(qn, . . . , qr+1|pσ)A(pσ|qr, . . . , q1) contains the appropriate “wave” function u(p, σ) and
u∗(p, σ) of the on-shell particle (or the functions v∗(p, σ) and v(p, σ) if in the formalism
this particle is treated as an antiparticle), which in the perturbative expansion come from
the free field operators (8.2). These, when summed over the spin states σ for p2 = m2

ph,
should reproduce the numerator of the Feynman propagator.

8If exp(−iω[. . .]) is expanded as 1− iω[. . .] + . . . only the first term will remain singular.

597



13.3 Two-point functions: the Källen-Lehman representation

Let us now consider the connected two-point Green’s function9

G
(2)
l1l2

(p1, p2) =

∫

d4x1d
4x2 e

+ip1·x1 e−ip2·x2 〈Ω|T[Ol1(x1)O
†
l2
(x2)]|Ω〉con .

(13.19)

of an operator Ol(x) and its Hermitian conjugate (l is the index which under changes
of the inertial frame transforms as some regular representation of the Lorentz group).
According to the analysis of the preceding section, for p21 ≈ m2

ph where mph is the mass

of a physical particle G
(2)c
l1l2

(p1, p2) takes the form

G
(2)
l1l2

(p1, p2) ≈ (2π)4δ(4)(p1 − p2)
∑

σ

〈Ω|Ol1(0)|p1σ〉
i

p21 −m2
ph + i0

〈p1σ|O†
l2
(0)|Ω〉 . (13.20)

Poincaré covariance implies that

〈Ω|Ol(x)|p1σ〉 = Z1/2
O ul(p1, σ) e

−ip1·x , (13.21)

with the functions ul(p1, σ) appropriate for this particle (or v
∗
l (p1, σ) if the particle is taken

for an antiparticle) and some factor Z1/2
O specific for the operator Ol(x) and depending on

the dynamics generated by the Hamiltonian H . Of course, if the particle corresponding to
the pole has its canonical field and Ol(x) is just the corresponding physically normalized

(in the sense specified in Section 11.10) field operator φi,ph of this particle, then Z1/2
O = 1

(possibly up to an irrelevant phase factor). It follows that in the vicinity of the pole the
two-point function has the form

G
(2)c
l1l2

(p1, p2) ≡ (2π)4δ(4)(p1 − p2) G̃
(2)c
l1l2

(p1)

≈ (2π)4δ(4)(p1 − p2)
iZO

p21 −m2
ph + i0

∑

σ

ul1(p1, σ)u
∗
l2
(p1, σ) , (13.22)

(from now on we denote with a tilde Green’s functions with the overall delta function
removed) i.e. it has the form of the free field propagator (notice that the sum over spin
projections σ of the particle “wave functions” ul1(p1, σ)u

∗
l2
(p1, σ), or v

∗
l1
(p1, σ)vl2(p1, σ)

for an antiparticle, reproduces the numerator of the propagator) with an extra factor ZO.

On the other hand, for a two-point Green’s function of an operatorOl and its Hermitian
conjugate (which may be identical to Ol itself) it is possible to derive an exact expression.
We discuss it taking asOl the canonical (bare, i.e. the one corresponding to the canonically
normalized kinetic term in the Lagrangian) field operator φH(x) transforming as a Lorentz
scalar. Consider first the matrix element

〈Ω|φH(x)φ
†
H(y)|Ω〉 =

∫

dγ e−ipγ ·(x−y) |〈Ω|φH(0)|γ〉|2 , (13.23)

9As in the preceding section we suppress the subscript H on Heisenberg picture operators Ol.
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where we have used φH(x) = eiP̂ ·xφH(0)e
−iP̂ ·x, and P̂ µ|γ〉 = pµγ |γ〉 (if the Hamiltonian

spectrum is particle-like, the states |γ〉 can be the in or the out basis of states). We now
introduce the spectral density ρ(p2)

θ(p0)ρ(p2) =

∫

dγ δ(4)(pγ − p) (2π)3 |〈Ω|φH(0)|γ〉|2 , (13.24)

which if the operator O(x) is a Lorentz scalar as in (13.24), can, by Poincaré covariance,
depend only on p2 and vanishes for p2 < 0 and p0 < 0 (we assume that the Hamiltonian
H has a ground state corresponding to p0Ω ≥ 0, so that all other H eigenstates |γ〉 have
p2γ ≥ 0 and p0γ ≥ 0). With the help of the spectral density the matrix element (13.23) can
be rewritten as

〈Ω|φH(x)φ
†
H(y)|Ω〉 =

∫

d4p

(2π)3
e−ip·(x−y) θ(p0) ρ(p2)

=

∫ ∞

0

dµ2 ρ(µ2)

∫

d4p

(2π)4
2π δ(p2 − µ2) θ(p0) e−ip·(x−y)

=

∫ ∞

0

dµ2 ρ(µ2)∆+(x− y;µ2) , (13.25)

where ∆+(x− y;µ2) is the function defined in Section 8.2 except that now also its depen-
dence on the mass parameter µ2 is explicitly indicated. Similarly,

〈Ω|φ†
H(y)φH(x)|Ω〉 =

∫ ∞

0

dµ2 ρ̃(µ2)∆+(y − x;µ2) ,

with an, a priori, different spectral function ρ̃(µ2) determined by |〈Ω|φ†
H(0)|γ〉|2. However,

local causality requires10 that the commutator [φ†
H(y), φH(x)] vanishes when (x− y)2 <

0. This is ensured if ρ̃(µ2) = ρ(µ2) (recall that ∆+(y − x;µ2) = ∆+(x − y;µ2) for
(x−y)2 < 0). Similar representation can be written down also for vacuum matrix element
〈Ω|Ol1(x)O

†
l2
(y)|Ω〉 of arbitrary operators Ol(x). It then follows that the connected two-

point function (13.19) has the Källen-Lehman spectral representation:

G(2)
c (x− y) =

∫ ∞

0

dµ2 ρ(µ2) i∆F (x− y;µ2) , (13.26)

or, in the momentum space,

G̃(2)
c (p2) =

∫ ∞

0

dµ2 ρ(µ2)
i

p2 − µ2 + i0
, (13.27)

which follows from adding the two matrix elements considered above with the appropriate
theta functions according to the definition of the chronological product of two operators.

10In Chapter 8 this condition was imposed on the free field (interaction picture) operators. It should,
however, be satisfied by all local Heisenberg picture operators.
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From this representation it follows that the two-point function, i.e. the full propagator,
cannot vanish for p2 → ∞ faster than 1/p2. On this basis one can argue that Lagrangians
containing terms quadratic in fields and more than two derivatives must be interpreted as
effective Lagrangians, arising from integrating out some high energy degrees of freedom
(heavy particles, strings or anything else), valid only for processes with particle energies
not exceeding a certain cut-off scale. Otherwise the asymptotic vanishing of a propagator
faster than 1/p2 would conflict with basic principles of quantum mechanics.

The spectral representation allows to constrain the Z factor of the canonical (bare)
Heisenberg field operator φH the canonical momentum ΠH(x) of which following from the
first of the equations (11.133) is ΠH(x) = φ̇†

H(x). Differentiating the equality

〈Ω|[φH(x), φ
†
H(y)]Ω〉 =

∫ ∞

0

dµ2 ρ(µ2)
[

∆+(x− y;µ2)−∆+(y − x;µ2)
]

,

with respect to y0 and setting x0 = y0 one gets

〈Ω|[φH(x, t), φ̇
†
H(y, t)]|Ω〉 =

∫ ∞

0

dµ2 ρ(µ2) iδ(3)(x− y) ,

upon using the relation

∂x0∆+(x;µ
2)
∣

∣

x0=0
= − i

2
δ(3)(x) .

Since [φH(t,x), ΠH(t,y)] = [φH(t,x), φ̇
†
H(y, t)] = iδ(3)(x − y) (cf. (11.132)), it follows

that
∫ ∞

0

dµ2 ρ(µ2) = 1 . (13.28)

Furthermore, if there is a one-particle state |k〉 such that 〈Ω|φH(0)|k〉 = Z1/2, it produces

a simple pole in the Fourier transform of G
(2)
c (x − y). Indeed, comparing (13.27) with

(13.20) we see that the contribution of such a one-particle state to (13.24) must give

ρ(µ2) = Z δ(µ2 −m2
ph) + σ(µ2) , (13.29)

so that11

1 = Z +

∫ ∞

0

dµ2 σ(µ2) . (13.30)

11Considering the two-point Green’s function of arbitrarily renormalized elementary field operators
φ̃H = Z−1/2φH one would work with the spectral function ρ̃(µ2) satisfying (in agreement with the

canonical commutation rule [φ̃H , Π̃H ] = Z[φ̃H , ˙̃φ†
H ] = iδ) the relation

Z−1 = Z̃ +

∫ ∞

0

dµ2 σ̃(µ2) ,

with Z̃ = Z−1Z being the residuum at p2 = m2
ph of the two-point Green’s function of the φ̃H field

operators and σ̃ = Z−1σ. Of course, if φ̃H is renormalized in the physical way (see Section 11.10) then
Z̃ = 1, which means that the factor Z of the canonical field equals the Z renormalization factor of the
physically renormalized operator.
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G̃
(2)
c

= +

-iΣ

+

-iΣ -iΣ

+ . . .

Figure 13.3: Graphical representation of the connected two-point function G̃
(2)
c (p) in terms

of one particle irreducible (1PI) self energy insertions −iΣ(p) introduced in Section 9.7.

Since σ(µ2) ≥ 0, it follows that 0 < Z < 1. Let us also remark that if the spectrum of the
Hamiltonian H is not particle-like, the spectral functions of operators of such a theory do
not contain isolated delta-like contributions of the form (13.29). Similar exact results can
also be derived for spectral functions of other canonical (bare) operators transforming as
more complicated representations under changes of the Lorentz frame.

In the perturbative expansion full connected two-point Green’s functions G̃
(2)
c (p) of

canonical or renormalized canonical field operators, represented in Figure 13.3 by the open
circle, are given by infinite sums of Feynman diagrams which can be organized in subsets
(also consisting of infinitely many graphs) corresponding to one-particle irreducible (1PI)
self-energy insertions −iΣ(p) (1PI two-point Green’s functions with removed external
simple propagators). These are represented in Figure 13.3 by the black blobs, connected
by simple (i.e. free field) propagators. By definition the 1PI Green’s functions are the sums
of Feynman graphs which cannot be decomposed into two disconnected parts by cutting
just one line of the graph. By summing the resulting geometric series (see (13.52) for an

example) such a two-point Green’s function can be brought into the form [G̃
(2)
c (p)]−1 =

[G̃
(2)
tree(p)]

−1 + iΣ(p) (this will be shown more rigorously in in Chapter 17). For example,
the two-point Green’s function of a scalar field operators can be written in the form

G̃(2)
c (p) =

i

p2 −m2 − Σ(p2, m)
,

where m is the mass parameter in the free Hamiltonian H0.

From this representation of the two-point Green’s functions in terms of the 1PI self-
energy insertions Σ(p) it should be clear that if the interaction is adjusted (either by adding
appropriate interactions like (9.103) - in the approach based on quantum mechanics of
relativistic particles - or by working with physically normalized canonical field operator
ϕ̃H(x) = ϕph(x) and appropriately splitting m2 into m2

ph + δm2 - in the approach based
on classical field quantization) so that12 that the first two terms of the Taylor expansion
of Σ(p) around the value p2 = m2

ph = m2 (where m2 enters H0) vanish (as was required

in Section 9.7) the complete two-point connected function G̃
(2)
c (p) has, for p2 ≈ m2

ph =
m2, the form of the free field propagator with Z = 1 which ensures that the relation

12This is of course possible only if G̃
(2)
c (p) has a simple pole at a real value of p2.
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between the free particle states |α0〉 and the in and out states is given by (7.39), i.e. the
rescaled (renormalized) elementary field operator ϕ̃H is the “physical” one, i.e. it is just
the one denoted ϕph in Section 11.10. But as we have argued, working with physically
renormalized operators ϕph is not mandatory: perturbative expansion of vacuum Green’s
function is valid with arbitrary operators (and almost arbitrary splitting of the total
Hamiltonian between H0 and Vint, subject only to the conditions under which the Gell-
Mann - Low construction is valid) and S-matrix elements can be extracted from vacuum
Green’s functions of arbitrary operators with the help of the LSZ prescription which we
formulate in the next section.

Two-point vacuum Green’s functions (13.19) of other local composite operators Ol(x)
and the corresponding factors ZO can be defined analogously as those of elementary
operators. The factors ZO can be also computed using the perturbation expansion. The
only difference compared to the two-point Green’s functions of (renormalized) elementary
field operators is that the factors ZO of composite operators differ usually from unity
already in the lowest (zero-th in the coupling constants) order. It may also happen that
the two-point Green’s function of a given operator Ol(x) does not have a one particle
pole, that is, ZO = 0, (at least in the perturbation expansion).

13.4 The LSZ reduction

We now show how S-matrix elements can be extracted from vacuum Green’s functions
(13.9). The prescription in principle does not require introducing free particle states
|α0〉 nor the free field operators. Moreover, Green’s functions of arbitrary operators,
elementary or composite, can be used for this purpose equally well.

The basic tool is the Lehman-Symanzik-Zimmermann (LSZ) asymptotic condition
which in the usual formulation states that if a local operator Ol(x) has the matrix element
between the vacuum and a one-particle state |p, σ〉 given by (13.21), then in the limit
x0 → −∞(+∞)

Ol(x) −→ Z1/2
O φ

in(out)
l (x) , (13.31)

where φ
in(out)
l (x) is the in (out) field operator transforming under changes of inertial frames

in the same way as does Ol(x) and constructed out of the in or out creation and annihi-
lation operators of the particle represented by the H eigenvector |p, σ〉 (as discussed in
Section 8.7).

The limit (13.31) cannot be a strong operator limit. For example, if Ol(x) is the canon-
ical Heisenberg picture field operator ϕH(x) so that ΠH(x) = ϕ̇H(x), then at any instant
[ϕH(t,x), ϕ̇H(t,y)] = iδ(3)(x− y), which, if (13.31) with Z 6= 1 were treated as a strong
operator limit, would conflict with the relation [ϕin,out(t,x), ϕ̇in,out(t,y)] = iδ(3)(x − y)
trivially satisfied by the opertators ϕin,out. The limit (13.31) holds only between normal-
izable in (out) states

∫

dα g(α)|α±〉 and for operators Ol(x) appropriately smoothed and
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localized in space with normalizable functions of x. It expresses the crucial property of
a local quantum field theory that if an operator Ol(t) =

∫

d3x f(x)Ol(t,x), localized in
space with the help of a normalizable function f(x), acts on a state representing particles
which (in the limit t → −∞ or t → ∞) are also localized and well separated in space,13

it annihilates the particle corresponding to it only if the latter is localized within the op-
erator’s support (or creates the corresponding antiparticle localized within the operator’s
support) and in the limit x0 → −∞(+∞) it does it just as if there were no other particles
(because other particles are then spatially well apart). Hence, under these conditions a
matrix element of such an operator between in (out) states representing localized particles
factorizes in the limit x0 → −∞(+∞) into its matrix element between the vacuum and
the (localized) one-particle state times the scalar product of the “remainder” (see (13.34)
for an example). Taking into account (13.21) it follows that the action of such an operator

Ol on localized states is, up to the Z1/2
O factor, the same as the action of the (localized)

in or out field operators (with the same Lorentz transformation properties as Ol) which
create and destroy individual particles independently of the presence of other particles.

Consider now an S-matrix element corresponding to a transition from an in state of r
particles |(p1σ1, . . . ,prσr)+〉 to an out state of n−r particles |(p′

r+1σ
′
r+1, . . . ,p

′
nσ

′
n)−〉 and

a connected Green’s function G
(n)
c (qn, . . . , q1) (13.12) with the operators Oi chosen so that

to each particle in the in state there corresponds one operator having nonvanishing matrix
element 〈pk, σk|Ok|Ω〉 and to each particle in the out state corresponds one operator Oj

such that 〈Ω|Oj|p′
j, σ

′
j〉 6= 0. Applying to such a Green’s function the theorem (13.15)

with r = 1, p ≡ p1 = q1 (assuming without loss of generality that it is the operator
O1 that corresponds to the first particle of momentum p1 in the in state) we obtain for
p21 ≈ m2

ph,1

G(n)(qn, · · · , q1) ≈ (2π)4δ(4)(qn + . . .+ q2 + p1)

×
∑

σ1

A(qn, · · · , q2|p1σ1)×
i

p21 −m2
ph,1 + i0

〈p1σ1|O1(0)|Ω〉 . (13.32)

It is straightforward to apply the theorem (13.15) once again to the factorA(qn, · · · , q2|p1σ1)
given by (13.16), this time assuming that the operator On corresponds to the particle of
momentum p′

n in the out state. For qn = −p′n, with p′2n ≈ m2
ph,n this gives

G(n)(qn, · · · , q1) ≈ (2π)4δ(4)(−p′n + qn−1 + . . .+ q2 + p1)

×
∑

σ′

n

∑

σ1

i

p′2n −m2
ph,n + i0

A(p′
nσ

′
n|qn−1, · · · , q2|p1σ1)

i

p21 −m2
ph,1 + i0

×〈Ω|On(0)|p′
nσ

′
n〉 × 〈p1σ1|O1(0)|Ω〉 , (13.33)

where

(2π)4δ(4)(−p′n + qn−1 + . . .+ q2 + p1)A(p′
nσ

′
n|qn−1, . . . , q2|p1σ1)

13The assumption that the particles can be separated in space is in fact equivalent to the assumption
that the considered Hamiltonian H possesses the spectrum interpretable in terms of particles that is,
that its in and out eigenvectors transform under changes of inertial frames as collections of free particles.
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=

∫

d4xn−1 . . .

∫

d4x2 e
−iqn−1xn−1 . . . e−iq2x2

×〈p′
nσ

′
n|T [On−1(xn−1) . . .O2(x2)]|p1σ1〉 .

Suppose now it is the operator O2 that corresponds to a particle of momentum p2 in
the in state. We consider the contribution to the multiple integral above of the ordering
x0n−1, . . . , x

0
3 > x02 and insert the complete set of the in state-vectors between O2 and the

other operators. This gives (among others) a term14

∫

d4xn−1 . . .

∫

d4x2 e
−iqn−1xn−1 . . . e−iq2x2 Θ

(

min(x0n−1, . . . , x
0
3)− x02

)

∫

dΓk1

∫

dΓk2

∑

σ̃1,σ̃2

〈p′
nσ

′
n|T[On−1(xn−1) . . . O3(x3)]|(k1σ̃1,k2σ̃2)+〉

× 〈(k1σ̃1,k2σ̃2)+|O2(x2)|(p1σ1)+〉+ remainder.

After changing the integration variables to yn−1 = xn−1−x3, . . . , y4 = x4−x3, representing
the theta function by the integral (13.17) and performing the integral over x3 this is

∫

d4yn−1 . . .

∫

d4y4
i

2π

∫ +∞

−∞

dω

ω + i0
e−iωmin(y0n−1,...,y

0
4,0) e−iqn−1yn−1 . . . e−iq4y4

∫

dΓk1

∫

dΓk2

∑

σ̃1,σ̃2

〈p′
nσ

′
n|T[On−1(yn−1) . . . O3(0)]|(k1σ̃1,k2σ̃2)+〉

×(2π)4δ(3)(−p′
n + qn−1 + . . .+ q3 + k2 + k1)

×δ(−Ep′

n
+ q0n−1 + . . .+ q03 + Ek2

+ Ek1
+ ω)

×
∫

d4x2 e
iωx0

2 〈(k1σ̃1,k2σ̃2)+|O2(x2)|p1σ1〉 e−iq2x2 + remainder.

If A(p′
nσ

′
n|qn−1, . . . , q2|p1σ1) has for q2 ≈ p2 with p

2
2 = m2

ph,2 a one-particle pole, this pole
must be due to the x02 → −∞ lower limit of the integral over dx02 (this integral is obviously
cut-off from the other side by the theta function). Therefore, near the pole, the matrix
element of O2(x2) factorizes on account of the LSZ asymptotic condition (13.31):

〈(k1σ̃1,k2σ̃2)+|O2(x2)|(p1σ1)+〉 →
〈(k1σ̃1)+|(p1σ1)+〉 × 〈(k2σ̃2)+|O2(x2)|Ω〉 . (13.34)

Incidentally, the same factorization has the effect that the other terms resulting from
inserting the complete set of in states between O2(x2) and the remaining operators vanish
at the pole just by the orthogonality of |(p1σ1)+〉 with respect to all other in states with
the number of particles different then one.

14If the particles with momenta k1 and k2 are identical the integrals over dΓk1
dΓk2

have to be divided
by the factor 2! - see (7.4) but there will be then also two terms in the formula (13.34).
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Representing then O2(x2) in the form eiP̂ ·x2O2(0)e
−iP̂ ·x2 allows to perform the integra-

tion over dx2. This produces a pole for k22 ≈ m2
ph,2 in the same way as in (13.18) so that

one gets

G(n)(qn, · · · , q1) ≈ (2π)4δ(4)(−p′n + qn−1 + . . .+ q3 + p2 + p1)
∑

σ′

n

∑

σ2σ1

i

p′2n −m2
ph,n

A(p′
nσ

′
n|qn−1, · · · , q3|p2σ2,p1σ1)

i

p22 −m2
ph,2

i

p21 −m2
ph,1

×〈Ω|On(0)|p′
nσ

′
n〉 × 〈p2σ2|O2(0)|Ω〉 × 〈p1σ1|O1(0)|Ω〉 , (13.35)

with A(p′
nσ

′
n|qn−1, · · · , q3|p2σ2,p1σ1) being the matrix element of the T -product of the re-

maining operators between the in state |(p1σ1,p2σ2)+〉 and the out state 〈p′
nσ

′
n|. Similarly,

“reducing” operators corresponding to particles in the out state we insert the complete
sets of out states because the poles arise then from the limit x0j → +∞ (r < j ≤ n) and in
this limit the condition (13.31) allows to find the matrix elements of the operators Oj(xj)
between the out states. At the last step of the procedure one is left with the matrix
element

∫

d4x e−iq·x 〈(p′
nσ

′
n, . . .)−|O(x)|(p1σ1, . . .)+〉 .

To exhibit the pole, the integral over dx0 has to be split by inserting 1 = Θ(x0)+Θ(−x0).
If the operator O is to be associated with a particle in the in state it is Θ(−x0) which
produces the pole and one inserts the complete set of in states between 〈(p′

nσ
′
n, . . .)−| and

the operator O the matrix elements of which between the in states can, on account of the
condition (13.31), be computed.

After “reducing” all the operators and using the formula (13.21) we obtain15

G(n)
c (−p′n, . . . ,−p′r+1, pr . . . , p1) ≈ (2π)4δ(4)(−p′n . . .− p′r+1 + pr + . . .+ p1)

×
n
∏

j=r+1





∑

σ′

j

iZ1/2
Oj

p′2j −m2
ph,j + i0

u(p′
j , σ

′
j)



 (13.36)

×
r
∏

k=1

[

∑

σk

u∗(pk, σk)
iZ1/2

Ok

p2k −m2
ph,k + i0

]

(−i)A(p′
nσ

′
n, . . . ,p1σ1) ,

where (−i)A(p′
nσ

′
n, . . . ,p1σ1) is related to the connected part of the S-matrix element as

in (7.81):

〈(p′
nσ

′
n, . . . ,p

′
r+1σ

′
r+1)−|(p1σ1, . . . ,prσr)+〉con (13.37)

= (2π)4δ(4)(−p′n + . . .− p′r+1 + pr + . . .+ p1)(−i)A(p′
nσ

′
n, . . . ,p1σ1) .

15If some of the particles in the in (out) state are treated as antiparticles then the corresponding u∗

(u) functions should be replaced by v (v∗).
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The formula (13.36) gives the required relation between the momentum space connected

Green’s function G
(n)
c (qn, . . . , q1) and the S-matrix elements that can be extracted from it.

It is important that this relation is exact, i.e. does not rely on the perturbative expansion
nor on the assumptions of Section 7.3. In particular, since the operators Ol do not need
to be the elementary field operators, (13.36) allows to find the S-matrix also (at least in
principle) in theories in which particles in terms of which the asymptotic states (the in

and out eigenstates of the full Hamiltonian) are interpreted are not the “quanta” of the
elementary fields used to build the Hamiltonians H and H0.

Extraction of S-matrix elements with the help of the LSZ procedure from vacuum
Green’s functions computed perturbatively does not require in principle that the free
particle states |α0〉 created by the interaction picture operators are related to the in

and out states |α±〉 by (7.39) nor that the mass parameters of H0 be equal to masses
of physical particles in the in and out states but in practice, setting the perturbative
expansion, one makes a simplifying assumption that all true in and out states |α±〉 do
have their counterparts (as far as their quantum numbers and Lorentz transformation
properties are concerned) in the |α0〉 states because one assumes that the all one-particle
poles factorized in the LSZ procedure from n-point Green’s functions are only those
poles which are found in two-point Green’s functions of the elementary (however suitably
rescaled) operators of the considered theory.16 With this (weak) assumption it is of course
most convenient to use for the operators Ol(x) just the elementary operators of the theory,
the canonical ones φH(x) or arbitrarily rescaled (renormalized) ones φ̃H(x) = Z−1/2φH(x),
but it is also possible to chose composite operators. (For example, in the ϕ4 theory it is
possible to use the operator ϕ3

H). Below we will analyze the LSZ prescription within the
perturbative approach working with the elementary field operators. (Similar steps should,
of course be performes if composite operators are used). It will turn out that in this case
the prescription reduces to a small modification of the Feynman rules for external lines
formulated in Section 9.4. The required modification can be obtained as follows.

16With loop corrections included, some of the two-point Green’s functions of elementary field operators
can have poles only for complex values of q2. Such poles, which manifest themselves phenomenologically
as unstable particles, do not, strictly speaking, correspond to any particles in the asymptotic states.
Thus, even in the perturbative expansion, not all elementary field operators building the Hamiltonian
generate the true asymptotic one-particle states. On the other hand, even perturbatively computed

Green’s functions G
(n)
c for n ≥ 4 can exhibit poles, either for complex or for real values of p2 = (p1 +

. . . + pr)
2, where p1, . . . , pr is some subset of the external four-momenta, which are not found in two-

point Green’s functions of the elementary field operators. Such poles correspond respectively to unstable
and stable bound states. For instance four-point (and higher) Green’s functions computed in quantum
electrodynamics of electrons and muons should have poles at complex values of p2 = (p1 + p2)

2 (where
p1 and p2 are the four-momenta brought in by the appropriate two elementary operators) corresponding
to the unstable e−e+ or µ−µ+ bound states and poles at real values of p2 = (p1 + p2)

2 corresponding to
the stable e−µ+ and e+µ− bound states. These, in principle, do have the corresponding asymptotic in

and out states. In practice it is technically difficult to extract S-matrix elements corresponding to these
asymptotic states using the perturbative expansion, because the corresponding poles appear only after
an infinite subset of Feynman diagrams is resummed and finding the S-matrix element corresponding to,
say, electron (elastic or inelastic) scattering on the muonic atom would require investigating the six-point
Green’s function.
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As will be demonstrated rigorously using the functional methods (path integral formu-
lation of quantum field theory) in Chapter 17, for n > 2 any connected n-point Green’s

function G̃
(n)
c (qn, . . . , q1) of the elementary17 (however rescaled) field operators φ̃H can be

written in such a way that on each of its external legs the full propagator G̃
(2)
c (ql) - the

(Fourier transform of the) two-point function of φ̃H and φ̃†
H - corresponding to this line

is factorized out.18 More generally, any connected n-point function G̃
(n)
c (qn, . . . , q1) with

n > 2 can be represented as a sum of block diagrams composed from 1PI Green’s functions
iΓ̃(r) with 2 < r < n, connected by the full propagators G̃

(2)
c (the n-point function is then

represented as a sum of tree diagrams whose vertices are given by the 1PI functions iΓ̃(r)

and internal lines are the full propagators G̃
(2)
c ). Moreover, from the derivation presented

in Chapter 17 it will be clear that this representation of vacuum Green’s function is valid
also outside the perturbative expansion.

Consider now one of the external lines, say the first one, of a connected n-point Green’s
function G

(n)
c (qn, . . . , q1). Factorizing out the full propagator G̃

(2)
c (q1) corresponding to it

and using the formulae (13.20), (13.21) with Ol = φ̃H and q1 ≈ p1 where p21 = m2
ph1 one

can write G
(n)
c (qn, . . . , q1) in the form19

G(n)
c (qn, . . . , q1) = (2π)4δ(4)(

∑

i

qi) G̃
(2)
c (q1)Nc(qn, . . . , q1) (13.38)

≈ (2π)4δ(4)(p1 +
n

∑

i=2

qi)
∑

σ1

iZ̃ u(p1, σ1)⊗ u∗(p1, σ1)

p21 −m2
ph,1 + i0

Nc(qn, . . . , p1) ,

where Nc(qn, . . . , p1) denotes the rest of the (connected) diagram (we suppress all Lorentz
indices on the functions u(p, σ), amplitudes, etc.) and Z̃ ≡ Zφ̃H

. Similar factors can be

isolated on other external lines of G
(n)
c (qn, . . . , q1) (we continue to denote Nc(p

′
n, . . . , p1)

the remaining part of G
(n)
c (−p′n, . . . , p1)).

In the limits qk → pk, where p
2
k = m2

ph k, 1 ≥ k ≥ r, and qj → −p′j , with p′2j = m2
ph j ,

r + 1 ≥ j ≥ n one can therefore give two different expressions for G
(n)
c (qn, . . . , q1): one

with the factors as displayed in (13.38) for each external line and with Nc(p
′
n, . . . , p1)

being the sum of Feynman diagrams without propagators on external lines (i.e. without
any corrections to these lines), and another one given by (13.36). Comparing them, we

17The same applies also to composite operators.
18We assume here for simplicity that the fields do not mix, i.e. that the mixed two-point functions

G
(2)
c ij = 〈Ω|T [φ̃H

j (x)φ̃H†
i (x)]|Ω〉 with i 6= j all vanish (because of a mismatch of quantum numbers of φH

i

and φH
j ). The LSZ prescriptions remains valid also if the fields can mix (there are several operatorsφ̃H

j (x)

with the same quantum numbers); in such a case anyone of the fields φ̃H
j (x) can be used in Green’s

functions to extract S-matrix elements with the considered particle in the asymptotic state.
19If in the position space this two-point function is 〈Ω|T [φ̃†

H(z)φ̃H(x1)]|Ω〉 with x1 being the argument

of G
(n)
c (xn, . . . , x1), the factor u(p1, σ1)⊗ u∗(p1, σ1) should be replaced by v∗(p1, σ1)⊗ v(p1, σ1).
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get the final result

−iA(p′
mσ

′
m, . . . ,p

′
1σ

′
1, pnσn, . . . ,p1σ1) = Z̃1/2

m . . . Z̃1/2
1 Z̃1/2

n . . . Z̃1/2
1 (13.39)

×
∑

l′m,...,l′1

∑

lm,...,l1

N c
l′m,...,l′1,ln,...,l1

(p′
m, . . . ,p1)u

∗
l′m
(p′

m, σn) . . . ul1(p1, σ1) . . . ,

where the momenta of the external lines are put on their respective mass-shells (we have
restored the Lorentz indices). Thus, the prescription for calculating the S matrix elements
reads: compute the sum of all Feynman diagrams contributing to connected Green’s func-
tions G̃

(n)
c (qn, . . . , q1) but without diagrams contributing to full propagators on external

lines and take the momenta on external lines on their respective mass-shells. Instead
of the external lines propagators insert the appropriate wave functions uli(pi, σi) and
u∗l′j

(p′
j , σ

′
j) (or, for antiparticles, v∗li(pi, σi) and ul′j(p

′
j , σ

′
j)) and include for each external

line an appropriate factor Z̃1/2
i . The necessary factors Z̃i should in turn be extracted

by computing the full propagators, i.e. the connected Green’s functions G
(2)
c (pi) of the

operators φ̃H as in (13.20) and investigating their behavior near the poles at p2i ≈ m2
ph,i.

Of course, working in the On-Shell scheme, i.e. using the physically (re)normalized
elementary field operators φ̃H = φph = Z−1/2φH and the physical masses mph included in
H0 one has Z̃ = 1 (and Z = Z where Z are the factors corresponding to the bare canon-
ical field operators φH) and one recovers the rules of Section 9.4 with the prescriptions
for treating external lines (corresponding to particles in the initial or final states) formu-
lated in Sections 9.7 and 11.10. However, with the rules for obtaining S-matrix elements
established above one can work with arbitrarily rescaled elementary field operators φ̃H(x)
and with arbitrary mass parametrs included in H0; moreover it is also possible to replace
the elementary operators like φ̃H(x) by composite operators:20 as long as one includes for
external lines the appropriate Z̃1/2 factors of the employed operators (determined as in
Section 13.3) and expresses the final results in terms of physical masses (determined by
positions of the Green’s function’s poles) the physical predictions will be the same.

13.5 Simple examples

We shall now illustrate the LSZ reduction on the simplest examples. Consider first the
ϕ4 theory with the Lagrangian density specified by (11.479) and (11.478) and quantized
using the canonical field ϕ as the dynamical variable. The corresponding Heisenberg
picture operator will be the canonical (bare) one, ϕH(x). Taking as the interaction term
only the quartic term (so that the mass squared parameter in H0 will be the original,

20In principle such operators must be used if a physical particle in the initial or final state is composite.
For instance, to obtain S-matrix elements corresponding to strong interactiosn of hadrons one should
consider in QCD Green’s functions of composite operators which are singlets w.r.t. the color SU(3)
group and having appropriate flavour quantum numbers.
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a)
(z1, α)

(z2, β) (z3, δ)

(z4, κ)

q1

q2 q3

q4

b)

Figure 13.4: Four-point amplitudes: a) in the ϕ4 theory; the arrows show the flow of the
four-momenta as defined by the Fourier transform (13.40), b) in the Fermi theory of weak
interactions (the arrows show the flow of the four-momenta defined by (13.47) and of the
fermion number).

“bare” parameter M2) one arrives in the interaction picture at HI
int(x) = (λ/4!)ϕ4

I(x).
The theory cast in the interaction picture will be therefore equivalent to the theory of
interacting spin 0 particles which can be constructed directly in the approach of Chapter
9 with the simplest interaction term V I

int(t) = (λ/4!)
∫

d3x ϕ4
I(t,x). Direct computation

of S-matrix elements would therefore lead to a catastrophe due to singularities related
to external lines. Nothing however prevents computing the Green’s function represented
graphically in Figure 13.4a of four canonical field operators ϕH . It is formally given by
(we omit I on the interaction picture operators)

G(4)(x4, . . . , x1) = 〈Ω−|T [ϕH(x4)ϕH(x3)ϕH(x2)ϕH(x1)]|Ω+〉

=

(

1

i

)4
δ4

δJ(x4) . . . δJ(x1)
〈Ω0|T exp

(

−i
∫

d4x

[

λ

4!
ϕ4(x)− J(x)ϕ(x)

])

|Ω0〉
∣

∣

∣

∣

∣

J=0

= 〈Ω0|T
[

ϕ(x4)ϕ(x3)ϕ(x2)ϕ(x1) exp

(

−i λ
4!

∫

d4xϕ4(x)

)]

|Ω0〉 .

As will be clear (see Chapter 17), the four-point Green’s function can be split into the
disconnected and connected parts (much in the same way as were split S-matrix elements
in Section 7.8. The lowest order contribution to the connected part reads

G(4)
c (x4, . . . , x1) = −iλ

∫

d4x i∆F (x− x1) i∆
F (x− x2) i∆

F (x− x3) i∆
F (x− x4)

=

∫

d4q4
(2π)4

. . .

∫

d4q1
(2π)4

e+iq4·x4 . . . e+iq1·x1 G(4)
c (q4, . . . , q1) , (13.40)

and its Fourier transform is

G(4)
c (q4, . . . , q1) = −iλ (2π)4δ(4)(q4 + . . .+ q1)

i

q24 −M2 + i0
. . .

i

q21 −M2 + i0
. (13.41)

Thus, in this order, the poles of the Green’s function G
(4)
c (q4, . . . , q1) are located at q2i =

M2, so that in this order the parameter M2 is to be identified with the physical mass
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squared. This is consistent with position of the pole of the Fourier transform of the lowest
order approximation to the the two-point function G(2)(x− y)

∫

d4x eip·x 〈Ω−|T [ϕH(x)ϕH(0)]|Ω+〉 =
∫

d4x eip·x
[

i∆F (x) + higher orders
]

=
i

p2 −M2 + i0
+ higher orders, (13.42)

(the free propagator i∆F (x − y) is given by (9.32)). It is also clear that, as advo-
cated, four two-point functions can be factorized out of the connected Green’s function
G

(4)
c (q4, . . . , q1). From the two-point function we learn however, that to this order the fac-

tor Z of the canonical (bare) field operator ϕH(x) equals unity, because the the residuum
of the simple pole at p2 = M2 is just i. From (13.39) it follows, therefore, that to this
order the element of the S-matrix corresponding to the elastic 2 → 2 scattering of the
spinless particles of mass M having the initial and final four-momenta k1 = (Ek1

,k1),
k2 = (Ek2

,k2) and p1 = (Ep1
,p1), p2 = (Ep2

,p2) is (because the u functions of spin-

less particles are equal 1) directly obtained by stripping off from G
(4)
c (q4, . . . , q1) the four

propagators and by substituting for (or, more precisely, by analytically continuing) the
four four-momenta q1, . . . , q4 (to) the values

q1 → k1 , q2 → k2 , q3 → −p1 , q4 → −p2 . (13.43)

This gives the lowest order scattering amplitude −iA(p2,p2,k2,k1) = −iλ, as previously.
It is instructive to consider also a different treatement of the same theory. If quan-

tization is performed taking as the field variable ϕ̃ = Z−1/2ϕ one is led, as in Section
11.10, to the Hamiltonian density (11.440). Suppose however that one does not take for
H0 the expression (11.443) but instead splits (11.440) so that the interaction term is just
−(λ/4!)Z2ϕ̃4. The free momentum space propagator will then take the form21

i

Z(q2 −M2 + i0)
,

with the residue Zϕ̃ = Z−1, and the Fourier transform of the lowest order approximation
to the Green’s function 〈Ω|T [ϕ̃(x1) . . . ϕ̃(x4)|Ω〉 will take the form

G(4)
c (q4, . . . , q1) = −iZ2λ (2π)4δ(4)(q4 + . . .+ q1)

i Z−1

q24 −M2 + i0
. . .

i Z−1

q21 −M2 + i0
, (13.44)

21This is obvious in the path integral formulation which will be discussed in Section 16.3. Another
argument is that the Green’s function 〈Ω|T [ϕ̃H(x)ϕ̃H(y)]|Ω〉 (in the perturbative expansion of which the
free propagator is the first term) is related to 〈Ω|T [ϕH(x)ϕH(y)]|Ω〉 which leads to (13.42) just by the
factor Z−1. It is however a good exercise to perform the canonical steps of Sections 11.2 and 11.9 and to
obtain this free propagator using the definition (9.32), that is as the Fourier transform of

θ(x0 − y0)[ϕ̃
(+)
I (x), ϕ̃

(−)
I (y)] + θ(y0 − x0)[ϕ̃

(+)
I (y), ϕ̃

(−)
I (x)],

where ϕ̃I(x) is the interaction picture operator corresponding through the adopted H0 to ϕ̃H(x).
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and the prescription (13.39) with N c = −iZ2λ = −iZ−2
ϕ̃ λ will again lead to the scattering

amplitude −iA(p2,p2,k2,k1) = −iλ. We will extend this analysis up to one-loop order
after considering another example.

As the second example we consider the four-Fermi interaction of leptons (again, it
is assumed that the corresponding field theory has been quantized using the canonical
field variables and transition to the interaction picture has been performed equating the
canonical, that is bare, Heisenberg picture operators at t = 0 to the interaction picture
operators and that all terms bilinear in field operators - mass terms - have been left in
H0)

Hweak
I =

GF√
2

(

ψ̄(νµ)Γ
λψ(µ)

)(

ψ̄(e)Γλψ(νe)

)

+H.c. (13.45)

where Γλ = γλ(1− γ5), and compute in the lowest order the amplitude

G
(4)
κδβα(z4, . . . , z1) = 〈Ω−|T

[

ψH
(e)κ(z4)ψ̄

H
(νe)δ(z3)ψ

H
(νµ)β(z2)ψ̄

H
(µ)α(z1)

]

|Ω+〉 , (13.46)

shown in Figure 13.4b. In the lowest order (because all the field operators are different

this Green’s function has no disconnected part, that is G(4) = G
(4)
c )

G
(4)
κδβα(z4, . . . , z1) =

−iGF√
2

∫

d4x
[

iS(e)
κϕ(z4 − x)ΓϕγiS

(νe)
γδ (x− z3)

][

iS
(νµ)
βρ (z2 − x)ΓρχiS

(µ)
χα (x− z1)

]

.

We have explicitly indicated which propagator corresponds to which particle22 (at the
price of suppressing the superscript “F”). The considered function can be written as the
Fourier transform

G
(4)
κδβα(z4, . . . , z1) =

∫

d4q1
(2π)4

. . .

∫

d4q4
(2π)4

e−iz4·q4e+iz3·q3e−iz2·q2e+iz1·q1

×G(4)
κδβα(q4, . . . , q1) , (13.47)

and the lowest order contribution reads

G
(4)
κδβα(q4, . . . , q1) = (2π)4δ(4)(q1 − q2 + q3 − q4)

(

−iGF√
2

)

×
[

i
6q4 +me

q24 −m2
e

Γλ i
6q3
q23

]

κδ

[

i
6q2
q22

Γλ i
6q1 +mµ

q21 −m2
µ

]

βα

. (13.48)

The exponential factors have been written in (13.47) in such a way that the flow of the
four-momenta q1, . . ., q4 agrees with the flow of the fermion number (i.e. with the flow

22Strictly speaking, since as we have argued, the correspondence between elementary field operators
and (physical) particles (to which in and out H eigenstates correspond) need not be direct nor one-to-one,
one should rather speak of propagators of (interaction picture) field operators.
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of particles and not antiparticles) as shown by arrows in Figure 13.4b. The poles (at

m2
e, m

2
µ and zero in the respective channels) of G

(4)
κδβα(q4, . . . , q1) are again explicit and

their positions agree with the positions of the poles of the appropriate two-point Green’s
functions evaluated in the lowest order. These two-point Green’s functions indicate that,
to this order, the Z factors of all operators entering the Green’s function (13.46) are
equal to unity. These four two-point Green’s functions can again be neatly factorized
out of Green’s function (13.48). Therefore, in order to obtain the S-matrix element
corresponding to the muon decay µ− → e−νµν̄e considered in Section 9.2 it is sufficient to

replace the external propagators in G
(4)
κδβα(q4, . . . , q1) by the appropriate wave functions

u and v as in (13.39) and to set (in the notation defined in Figure 9.1) q1 = (Eq,q),
q2 = (Ek2

,k2), q3 = (−Ek1
,−k1) - because the flow of physical energy and momentum

through this line is opposite to the flow of the fermion number - and q4 = (Ep,p). The
resulting amplitude is then, perhaps up to a sign23, identical to (9.27). Moreover, when
the four-momenta of the Green’s function are continued to the mass shells, as indicated,
that is, when q1 is continued to q1 = (Eq,q), the numerator 6q1 + mµ of the two-point
Green’s function corresponding to this line becomes equal to

∑

σq
u(q, σq) ⊗ ū(q, σq);

similarly, when q3 is continued to q3 = (−Ek1
,−k1) the numerator 6 q3 can be written as

∑

σ1
v(k1, σ1) ⊗ v̄(k1, σ1). This is how the wave function factors present in the general

form (13.36) of Green’s functions arise.

This example shows also that the Green’s function G
(4)
κδβα(q4, . . . , q1) is a more general

object than the mere S-matrix element corresponding to the µ− → e−νµν̄e decay: S-
matrix elements of all “crossed” processes like µ−e+ → νµν̄e, or µ

−νe → e−νµ, or νeν̄µ →
µ+e− etc. can be also extracted from it by continuing the external momenta q1, q2, q3, q4
to different physical domains and by providing the appropriate wave functions.

In order to illustrate the considerations of the previous section in the one-loop order
we return to the ϕ4 theory and, in the same setting as specified at the beginning of
this section, compute the amplitude of the elastic scattering to the one-loop accuracy.
Unfortunately, the ϕ4 theory is slightly pathological - as we will see to the one-loop order
still Z = 1 - but this will not a serious obstacle for illustrating the main points.

The tree level (lowest order) contribution to the connected off-shell Green’s function

G
(4)
c (q4, . . . , q1) = (2π)4δ(4)(

∑

i qi) G̃
(4)
c (q4, . . . , q1), represented by the diagram of Fig-

ure 13.4a, is given by (13.41). We write G̃
(4)
c (q4, . . . , q1) here in the form

G̃(4)
c (q4, . . . , q1) = −iλ× (ext. prop.) . (13.49)

At the one-loop order (in the case of this Green’s function identical with the order λ2)

there are seven additional contributions to G̃
(4)
c (q4, . . . , q1). They are shown in Figure 13.5.

23Performing the LSZ reduction of the Green’s functions of the fermionic operators one has in principle
to keep track of the minus signs present in the definition of the chronological product of such operators.
This is however in most cases not important as the overall sign of the complete amplitude is irrelevant
for physical quantities.
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q3q4

q1 q2

q3q4

Figure 13.5: One-loop contributions to G̃
(4)
c (p1, . . . , p4) in ϕ4 theory. All momenta are

incoming.

According to the Feynman rules, the first upper diagram in Figure 13.5 contributes to
G

(4)
c (q4, . . . , q1) the expression

1

2
(−iλ)2

∫

d4k1
(2π)4

∫

d4k2
(2π)4

i

k21 −M2 + i0

i

k22 −M2 + i0

×(2π)4δ(q4 + q3 + q2 + q1)× (2π)4δ(q3 + q4 − k1 − k2) × (ext. prop.) ,

(1/2 is the combinatoric factor). Therefore the contribution to G̃
(4)
c (q4, . . . , q1) is

−iλ
2

2

∫

d4k

(2π)4
i

[k2 −M2 + i0][(k + q1 + q2)2 −M2 + i0]
× (ext. prop.) .

The integral over d4k is logarithmically divergent because in the limit |kµ| → ∞ it behaves
as

∫

dk/k. As will be shown in the next Chapter, the divergent part of this integral is real
and independent of the external momenta q1, q2. Therefore, we write this contribution as

−i λ2

2(4π)2
[Idiv + f(s)]× (ext. prop.) , (13.50)

where we have factorized 1/(4π)2 typical for one-loop integrals and introduced the Man-
delstam variable s = (q1 + q2)

2: since the integral is Lorentz invariant it can depend only
on s; similarly, the loop integrals associated with the second and third upper diagrams in
Figure 13.5 depend only on t = (q1 + q3)

2 and u = (q1 + q4)
2, respectively.

The contribution to G̃
(4)
c (q4, . . . , q1) of the first one of the four diagrams shown in the

lower part of Figure 13.5 can be written in the form

(−iλ) i

q21 −M2 + i0
[−iΣ(q1)]× (ext. prop.) ,
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in which the self-energy insertion Σ(p) is given by the (quadratically divergent) integral

−iΣ(p) = −iλ
2

∫

d4k

(2π)4
i

k2 −M2 + i0
, (13.51)

and is, in this order in λ, just the 1PI part of the one-loop contribution to G̃
(2)
c (p) (by

definition, −iΣ(p) is the sum of all 1PI Feynman diagrams contributing to G̃
(2)
c (p) with

simple propagators on external lines removed). It is then clear that the full propagator,
as represented in Figure 13.3 can be written (suppressing i0) in the form

G̃(2)
c (p) =

i

p2 −M2
+

i

p2 −M2
[−iΣ(p)] i

p2 −M2

+
i

p2 −M2
[−iΣ(p)] i

p2 −M2
[−iΣ(p)] i

p2 −M2
+ . . .

=
i

p2 −M2 − Σ(p)
. (13.52)

Tn the last line the geometric series has been resummed. For future use it is also conve-
nient to define the 1PI two-point function Γ̃(2)(p) as

iΓ̃(2)(p) = i
(

p2 −M2 − Σ(p2)
)

, (13.53)

so that iΓ̃(2)(p) = −[G̃
(2)
c (p)]−1. Combining together the contributions to G̃

(4)
c (q4, . . . , q1)

corresponding to all diagrams shown in Figure 13.5 we get

G̃(4)
c (q4, . . . , q1) = (−iλ)× (ext. prop.)

− i
λ2

2(4π)2
[3Idiv + f(s) + f(t) + f(u)]× (ext. prop.)

− iλ

[

1

q24 −M2 + i0
Σ(q4) + . . .+

1

q21 −M2 + i0
Σ(q1)

]

× (ext. prop.) .

Since Σ(p) is of order λ, it is easy to see, that up to terms O(λ3) the above expression for
G̃(4)(q4, . . . , q1) can be rewritten as

G̃(4)
c (q4, . . . , q1) = −i

(

λ+
λ2

2(4π)2
[3Idiv + f(s) + f(t) + f(u)]

)

× i

q24 −M2 − Σ(q4) + i0
. . .

i

q21 −M2 − Σ(q1) + i0
.

This formula illustrates the statement made in the paragraph preceding the one contain-
ing the formula (13.38): the Green’s function of the four (bare) operators ϕH can be
represented in the form24

G̃(4)
c (q4, . . . , q1) = iΓ̃(4)(q4, . . . , q1) G̃

(2)
c (q4) . . . G̃

(2)
c (q1) (13.54)

24Due to the ϕ → −ϕ symmetry of the Lagrangian density (11.479) and (11.478)the three-point 1PI
function Γ̃(3) vanishes.
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in which corrections to its external legs are factorized in the form of the full two-point
functions.

The position of the pole (which is to be identified with the mass squared M2
ph of the

physical particle in terms of which the in and out eigenstates are interpreted) of the full
two-point function (13.52) is given by the solution of the equation

M2
ph −M2 − Σ(M2

ph,M) = 0 (13.55)

in which we have explicitly indicated the dependence of Σ also on the mass parameterM2

(the one present in H0). To the one loop accuracyM can be replaced in Σ(p2,M) byMph,
so that the equation (13.55) takes the formM2 =M2

ph−Σ(M2
ph,Mph). In order to find the

factor Z associated with the employed bare operators ϕH , we expand the denominator in
the general form (13.52) of their two-point function (the Green’s function of the two bare
field operators ϕH) in the Taylor series around p2 =M2

ph

p2 −M2 − Σ(p2) = 0 + (p2 −M2
ph)

d

dp2
[

p2 −M2 − Σ(p)
]

∣

∣

∣

∣

p2=M2
ph

+ . . .

= (p2 −M2
ph)

[

1− Σ′(M2
ph)

]

+ . . . (13.56)

Comparison with (13.20) shows that

Z =
1

1− Σ′(M2
ph)

≈ 1 + Σ′(M2
ph) + . . . (13.57)

The pathology of the ϕ4 theory is that at one-loop order Σ(p) does not depend on p (see
(13.51)) and therefore Z = 1. This is of course no longer true in higher orders of the
perturbative expansion.

Summarizing, the amplitude of the elastic scattering in the ϕ4 theory is in order λ2

given by

−iA(p′
4,p

′
3,p2,p1) = −iZ2

(

λ+
λ2

2(4π)2
[3Idiv + f(s) + f(u) + f(t)]

)

, (13.58)

(we keep Z2 although it is 1 to this order) with the Mandelstamm variables given now by
s = (p1 + p2)

2, t = (p1 − p′3)
2 and u = (p1 − p′4)

2. It is still infinite, but the coupling λ is
not yet related to anything physical. Removing the divergence by relating λ to something
measurable will be disscussed in the next chapter.

Before we discuss renormalization, it is useful to understand the origin of the Z1/2

factors in physical amplitudes in a different way, by using the effective Lagrangian tech-
nique. This technique is widely exploited in modern approach to quantum field theory
problems. Usually it is used in the context of “integrating out” heavy degrees of freedom

615



(heavy particles).25 Here we use the effective Lagrangian in a simpler context: we con-
struct Leff , so that it reproduces already at the tree-level the four-point Green’s function
G

(4)
c calculated in the full ϕ4, theory including loop contributions. Of course, because the

full off-shell Green’s function has a complicated dependence on its external momenta, the
tree level diagrams derived from the local (i.e. having a finite number of terms constructed
from causal field operators and their derivatives of finite order) effective Lagrangian can-
not reproduce it exactly for all values of the external line momenta. Tree level diagrams
generated by the local effective Lagrangian

Leff =
1

2
(1 + δz) ∂µϕ∂

µϕ− 1

2
∆M2ϕ2 − 1

4!
∆λϕ4 (13.59)

can, however, reproduce the full Green’s function G
(4)
c at some (arbitrarily chosen) fixed

kinematical point in the (q1, . . . , q4) space, in particular for p2i ≈M2
ph and fixed values of

the Mandelstam variables s0, t0 and u0. From the representation (13.54) of G
(4)
c it follows

that it is sufficient to reproduce G̃
(2)
c and Γ̃(4) in this kinematical regime. Reproducing

Γ̃(4) is simple: it is sufficient to replace in the Lagrangian (13.59) the coupling ∆λ by
−Γ̃(4)(s0, t0, u0). Furthermore, treating the parts with δz and ∆M2 − M2 of Leff as
interactions and using the Taylor expansion of Σ(p2) around p2 =M2

ph

Σ(p2) ≈ Σ(M2
ph) + (p2 −M2

ph)Σ
′(M2

ph) (13.60)

it is easy to see that in order to reproduce the full self energy for p2 ≈M2
ph already at the

tree level, that is to have

i

p2 −M2

[

i δz p2 − i
(

∆M2 −M2
)] i

p2 −M2
=

i

p2 −M2
[−iΣ(p2)] i

p2 −M2
,

it is sufficient to take δz = −Σ′(M2
ph) and ∆M2 −M2 = Σ(M2

ph) −M2
phΣ

′(M2
ph). The

effective Lagrangian takes then the form

Leff =
1

2

(

1− Σ′(M2
ph)

)

∂µϕ∂
µϕ− 1

2
∆M2ϕ2 +

1

4!
Γ(4)(s0, t0, u0)ϕ

4. (13.61)

The Lagrangian has a non-canonical form because the residue of the simple tree-level
propagator derived by inverting its quadratic part is not equal to i. To bring it to the

25If the mass scale M of some particles in a quantum field theory model is much larger than the
energy scale E of light particle processes we are interested in, the low energy effective Lagrangian can
be constructed out of fields of light particles only in such a way that (using the Feynman rules derived
from it) one reproduces Green’s functions relevant for low energy processes (i.e. those with external lines
corresponding to light particles only) of the original theory up to some fixed power of the ratio E/M . For
example, the Fermi theory of weak interactions discussed in section 12 reproduces the Green’s functions
of the full electroweak theory (to be discussed later) up to E4/M4

W , where MW = 80.4 GeV is the mass
of the W± vector bosons. Transition from the full to the effective theory is frequently referred to as
integrating out of heavy particles. The name derives from the path integral formulation of quantum field
theory in which this indeed corresponds to performing the functional integration over the fields of heavy
particles.
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canonical form it is necessary to rescale the field

ϕ→ ϕ′ =
[

1− Σ′(M2
ph)

]1/2
ϕ . (13.62)

The kinetic term of the effective Lagrangian becomes then canonical and for the physical
mass M2

ph we get26

M2
ph =

∆M2

1 + δz
=
M2 + Σ(M2

ph)−M2
phΣ

′(M2
ph)

1− Σ′(M2
ph)

(13.63)

which is the same as (13.55). Moreover, after rescaling the field ϕ the interaction Hamil-
tonian becomes

Hint = − 1

4!

[

1− Σ′(M2
ph)

]−2
Γ(4)(s0, t0, u0) ϕ

4 . (13.64)

Using then the ordinary Feynman rules we obtain the connected off-shell Green’s function
G

(4)
c eff th(q4 . . . , q1) (of the effective theory) for q21 ≈ M2

ph and (q1 + q2)
2 ≈ s0, etc. at the

tree level in the form

G̃
(4)
eff th(q4 . . . , q1) = i

[

1− Σ′(M2
ph)

]−2
Γ(4)(s0, t0, u0)

i

q24 −M2
ph

. . .
i

q21 −M2
ph

.

Stripping off the external propagators we obtain directly at the tree level the elastic
scattering amplitude in the form (13.58) including the correct Z2 factor (Z1/2 per each
leg). This effective Lagrangian technique for properly obtaining Z factors in the physical
amplitudes is particularly useful in the case of fermionic external lines where the matrix
structure of the propagators introduces some complications.

Let us also remark, that the off-shell Green’s functions obtained from the effective
Lagrangian after rescaling the field ϕ as in (13.62) are not the same as the off-shell
Green’s functions obtained from the effective Lagrangian (13.61). Nevertheless, physical,
on-shell amplitudes are unchanged by the rescaling (13.62) which is just equivalent to
working with a differently renormalized canonical field operator. This is the special case
of a general result that the S matrix elements are not modified if one makes arbitrary
redefinitions of the Lagrangian fields (the dependence of the off-shell Green’s functions
on external momenta may be, for nonlinear redefinitions, drastically altered).

13.6 The LSZ reduction in the position space

For some applications it is useful to formulate the LSZ reduction formula for S matrix
elements directly in terms of the position space Green’s functions. Unlike the derivation

26Note: we first expand Σ(p2) around unknown M2
ph and only at the end get the equation determining

M2
ph!
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