
6 The Poincaré group and state-vectors representing

particles

In this chapter we make the first step towards formulating relativistic quantum theories of
interacting particles. We first recall properties of the Poincaré group symmetry generators
which should act in the Hilbert space of any relativistic quantum theory. Next, assuming
that a theory which is relativistic in this sense is given, we (following Wigner) single
out a class of the Hamiltonian and the three-momentum operator joint generalized (i.e.
non-normalizable) eigenvectors which, if exist in the theory Hilbert space, should be
identified with vectors representing states of single stable particles, and investigate their
behaviour under Lorentz and discrete (space reflection and time reversal) transformations
stressing the essential difference between properties of states of massless and massive
particles. Particles are therefore identified with special types of irreducible representations
of the Poincaré group; this definition of particles is very convenient, as the problem which
particles are truly “elementary”, and which are not (composed of “more fundamental”
constituents) , is irrelevant for it.

If the dynamics set by a given Hamiltonian is that of free particles (the Hamiltonian
has no interaction term) multiparticle state-vectors constructed as tensor products (as
in Chapter 5) of one-particle states are also its (generalized) eigenvectors (this property
can be taken for the definition of the free Hamiltonian). Some details of the kinematical
characterization of two-particle states constructed in this way are recalled in Section 6.4.
(The properties of the one-particle state-vectors remain the same whether the Hamiltonian
is free or not.) In typical scattering experiments particles which are prepared before the
collission and detected afterwards behave, long before and long after the reaction, as free
and the full Hamiltonian of a system of interacting particles should possess (generalized)
eigenvectors which correspond to such situations. The sense in which such eigenvectors
can be related to multiparticle eigenvectors of an appropriate free Hamiltonian will be
elucidated in Chapter 7.

6.1 The Poincaré group

Einstein’s principle of relativity singles out a class of inertial frames which are all equiv-
alent to each other: anyone of them can be chosen for a reference frame for physical
phenomena and, as states the first Einstein’s postulate, the formal mathematical form
of the physical laws is the same in all of them. The second Einstein’s postulate is the
equality of the speed of light measured in all these systems. These two postulates form
together the basis of the special theory of relativity.

Since we aim at exploiting the independence of the phenomena on the inertial frame
in which they occure as a symmetry principle, in what follows more convenient will be the
active view on the transformations that is, considered will be two physical systems: the
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original one and the transformed one. If xµ = (ct, x, y, z) are the coordinates of an event
occuring in the orignal system (in an inertial frame O) then xµ′ = (ct′, x′, y′, z′) are the
coordinates (in the same frame O) of the corresponding event occuring in the transformed
system. The light signals connecting two infinitesimally close events in the original system
and the corresponding (also infinitesimally close to one another) two events occuring in
the transformed system must (according to the Special Relativity postulate) propagate
with the same speed (c = 1). This is ensured1 if

ds2 = gµνdx
µdxν = gµνdx

µ′dxν′ = ds′2 , (6.1)

where gµν = diag(+1,−1,−1,−1). This can be translated into the condition

gµν
∂xµ′

∂xλ
∂xν′

∂xκ
= gλκ , (6.2)

the most general solution of which is

xµ′ = Λµ
νx

ν + aµ . (6.3)

Λµ
ν is here a constant matrix satisfying the relation

gµνΛ
µ
λΛ

ν
κ = gλκ , that is, ΛT · g · Λ = g , (6.4)

and aµ is an arbitrary constant four-vector.

The transformations (6.3) form the Poincaré group (in the usual sense: to each el-
ement there is the inverse one, the composition of any two transformations is another
transformation, etc.). Its elements are the transformations S(Λ, a). Their composition
law reads

S(Λ2, a2) · S(Λ1, a1) = S(Λ2 ·Λ1, a2 + Λ2 ·a1) . (6.5)

The inverse transformation is

S−1(Λ, a) = S(Λ−1, −Λ−1 ·a) . (6.6)

The Poincaré group is a semisimple product of the Lorentz group L (transformations
represented by Λ) and of the Abelian group of translations. The Lorentz group is, similarly
as the Poincaré one, a Lie group which can be identified with a differentiable manifold.
It consists of four disconnected components:

L = L↑
+ ∪ L↑

− ∪ L↓
+ ∪ L↓

− . (6.7)

1Since the light propagation is specified by the condition ds2 = 0, the equality of the speed of light
measured in both systems alone imposes in fact only a weaker condition, namely ds′2 = f(x)ds2, which
leads to the conformal group.
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From (6.4) it follows that (detΛ)2 = 1 and (Λ0
0)

2 ≥ 1. The proper ortochronous part
L↑
+ of the Lorentz group L consists of matrices Λ having the determinant equal +1 and

Λ0
0 ≥ 1. Since by a continuous change of parameters of Λ one cannot alter the sign

of the determinant, nor arrive at Λ0
0 ≤ −1 starting from Λ0

0 ≥ 1, it is clear that the
other components L↑

−, L
↓
+ and L↓

− of the Lorentz group (corresponding respectively to
detΛ = −1 and Λ0

0 ≥ 1, detΛ = +1 and Λ0
0 ≤ −1, detΛ = −1 and and Λ0

0 ≤ −1) must
be disconnected (as manifolds). Any Lorentz transformation not belonging to the proper
ortochronous component L↑

+ can be obtained by composing a proper ortochronous matrix
Λ (detΛ = +1 and Λ0

0 ≥ 1) with one of the matrices P , T or P ·T where

P µ
ν = diag(+1,−1,−1,−1) , T µ

ν = diag(−1,+1,+1,+1) . (6.8)

In agreement with the adopted active view, if the state of the original system (as
observed by some nertial observer O) is represented in the Hilbert space of a relativistic
quantum theory by the vector |Ψ〉, the state of the system transformed by the operation
S(Λ, a) is represented by the vector

|Ψ′〉 = U(Λ, a)|Ψ〉 . (6.9)

The operators2 U(Λ, a) form a representation of the Poincaré group (or, more precisely,
of its universal covering group, if one wants to avoid projective representations) in the
Hilbert space and satisfy

U(Λ2, a2)U(Λ1, a1) = U(Λ2 ·Λ1, a2 + Λ2 ·a1) . (6.10)

The algebra of the generators of the Poincaré group can be found by considering infinites-
imal transformations

Λµ
ν = δµν + ωµ

ν , aµ = ǫµ . (6.11)

From the condition (6.4) it follows that ωµν ≡ gµλω
λ
ν is an antisymmetric 4× 4 matrix

ωµν = −ωνµ . (6.12)

This shows that the Poincaré group has 6 + 4 = 10 independent (real) parameters. As
in Section 4.1, operators U corresponding to infinitesimal transformations can always be
written in the form

U(I + ω, ǫ) ≈ 1− i

2
ωµνJ

µν + iǫµP
µ, (6.13)

2Since any proper ortochronous Lorentz transformation Λ ∈ L↑
+ can be continuously deformed to

the identity transformation which in the Hilbert space is represented by the unit operator, all U(Λ, a)

corresponding to transformations Λ belonging to L↑
+ must be unitary and linear. We will see that

the Hilbert space symmetry operator corresponding to P must also be unitary and linear, but the one
corresponding to T must be antiunitary and antilinear.
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where the 10 generators Jµν are Hermitian3 operators: (Jµν)† = Jµν = −Jνµ, P µ† = P µ.

In order to find the algebra of these generators, that is the structure constants of
the Poincaré group, instead of using the method described in Section 4.2, it is easier to
proceed as follows (the same method has been adopted in Section 4.3). By writing the
product U(Λ, a)U(I + ω, ǫ)U−1(Λ, a) on one side in the form

U(Λ, a)

(

1− i

2
ωµνJ

µν + iǫµP
µ

)

U−1(Λ, a) , (6.14)

and on the other side (using the group composition rules (6.5) and (6.6)) as

U(I + Λ·ω ·Λ−1, Λ·ǫ− Λ·ω ·Λ−1·a)
≈ 1− i

2

(

Λ·ω ·Λ−1
)

λκ
Jλκ + i

(

Λ·ǫ− Λ·ω ·Λ−1·a
)

λ
P λ, (6.15)

and equating the coefficients of ωµν and ǫµ on both sides we find4

U(Λ, a)P µU−1(Λ, a) = (Λ−1)µλP
λ , (6.16)

U(Λ, a)JµνU−1(Λ, a) = (Λ−1)µλ(Λ
−1)νκ

(

Jλκ − aλP κ + aκP λ
)

, (6.17)

where we have used the relation (which follows from (6.4))

Λ µ
ν ≡ gνλΛ

λ
κ g

κµ = (Λ−1)µν . (6.18)

The result (6.16) shows that the four operators P µ transform as a four-vector whereas
(6.17) shows tha the six operators Jµν transform inhomogeneously; the inhomogeneity
allows to identify them (or at least their spatial components Jkl) with the angular mo-
mentum operators.5 Setting in the formulae (6.16), (6.17) Λ = I+ω and a = ǫ and writing
U(Λ, a) as in (6.13) we arrive at the commutation rules satisfied by the generators of the
Poincaré group:

[P µ, P ν ] = 0 ,

[Jµν , P λ] = i
(

P µgνλ − P νgµλ
)

, (6.19)

[Jκλ, Jµν ] = i
(

Jκνgλµ − Jκµgλν − Jλνgκµ + Jλµgκν
)

.

3Since the Lorentz group is not compact, it has also non-unitary representations. However, U(Λ, a)
have to be symmetry operators which preserve probabilities. According to the Wigner theorem (Section
4.1) they must, therefore, be either unitary or antiunitary.

4The relations for U−1PµU and U−1JµνU can be obtained either directly, by repeating the steps, or
by substituting here Λ → Λ−1, a → −Λ−1 · a. This gives

U−1(Λ, a)PµU(Λ, a) = Λµ
λP

λ ,

U−1(Λ, a)JµνU(Λ, a) = Λµ
λΛ

ν
κJ

λκ − Λµ
λa

νPλ + Λν
κa

µP κ .

5Suppose Λ = I and a0 = 0. |Ψ′〉 = U−1(a)|Ψ〉 is then the state of the system (actively) translated
by −a in space and J ij measured on |Ψ′〉 should differ by −a × P from J ij measured on |Ψ〉, i.e. e.g.
J3 ≡ J12 should differ by −a1P 2 + a2P 1 as indeed follows from (6.17).
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It can be shown, that possible central charges, which could appear in these commutation
rules can all be removed by redefining the generators P µ and Jµν . Furthermore, all phase
factors (discussed in Section 4.2) which could arise in the composition rule (6.10) of the
symmetry operators for topological reasons (see below) are removed by taking for the
symmetry group the SL(2, C) group - the universal covering of the Lorentz group in four
space-time dimensions.6

To distinguish the generators of rotations and of Lorentz boosts it is convenient to
introduce the three-dimensional notation

J i ≡ 1

2
ǫijkJ jk , Ki ≡ J0i , H ≡ P 0 . (6.20)

In this notation the commutation relations (6.19) take the form

[

J i, J j
]

= iǫijkJk ,
[

Ki, Kj
]

= −iǫijkJk ,
[

J i, Kj
]

= iǫijkKk ,
[

Ki, P j
]

= −iδijH , (6.21)
[

J i, P j
]

= iǫijkP k ,
[

Ki, H
]

= −iP i ,
[

J i, H
]

= 0 ,
[

P i, P j
]

= 0 ,
[

P i, H
]

= 0 .

The first of these relations allows to identify J i with the total angular momentum oper-
ators, which generate rotations. The operators Ki generate boosts. P i and H are the
total momentum operator and the Hamiltonian. The crucial difference with respect to
the commutation rules (4.50) satisfied by the Galileo group generators are the commu-
tators: [Ki, Kj ] which is nonzero here - the result of two successive infinitesimal boosts
performed in different orders differs by an infinitesimal rotation - and and [Ki, P j] which
differs from its Galileo group counterpart by the replacement of the mass operator by
the Hamiltonian. The consequence of this second difference is that either P or K (or
both) must be modified when the form of the Hamiltonian is changed (H0 is replaced by
H = H0 + Vint).

6.2 The little group and one-particle states

We now assume a relativistic quantum theory is given, that is the operators J, K, P and
H , satisfying the rules (6.21) are realized in some Hilbert space H, and use their prop-
erties (6.21) to identify state-vectors which will represent stable particles. Such vectors
should exist in the Hilbert space of any theory which is a theory of free or of interacting
particles because by definition a single stable particle cannot disappear nor transform
spontaneously into another particle or into several other particles (dacay).

6In general, universal coverings of SO(1, D) and O(1, D) are the Spin(1, D) and Pin(1, D) groups,
respectively. However Spin(1, 3) is isomorhic to SL(2, C).
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Out of the generators of the Poincaré group one can construct two operators:

P 2 ≡ PµP
µ , and W 2 ≡WµW

µ , (6.22)

which commute with all the generators P µ and Jµν . Here

W µ = −1

2
ǫµνλρJνλPρ , (6.23)

is the Pauli-Lubański vector (we use ǫ0123 = −ǫ0123 = 1). Eigenvalues of P µPµ and W µWµ

label, therefore, irreducible representations of the Poincaré group. Below we consider a
subspace of the full Hilbert space on which P µPµ and W µWµ have fixed eigenvalues. The
eigenvalues m2 of P µPµ can a priori be any real numbers. Physically, however, one is
interested only in m2 ≥ 0, that is, we assume the theory we consider does not predict the
existence of tachyons (in other words, that in the Hilbert space of the considered theory
there are no P µPµ eigenvectors corresponding to m2 < 0; if the Hamiltonian is not one of
free particles this is, of course, a dynamical question). Possible eigenvalues of W µWµ will
be determined below.

In agreement with the physical experience, vectors representing states of single parti-
cles should be defined as generalized, i.e. non-normalizable eigenvectors of the operators
P µ (i.e. as eigenvectors of H and P):

P µ|p, σ〉 = pµ|p, σ〉 , so that U(I, a)|p, σ〉 = eiaµp
µ|p, σ〉 . (6.24)

The symbol σ labels here different vectors having the same P µ eigenvalue pµ = (E(p), p)
with E(p) =

√

p2 +m2 (we assume, there are no states with the P µ eigenvalue pµ =
(−E(p), p)). Again, in agreement with the physical notion of a particle, labels σ label-
ing state-vectors supposed to represent single particles assume by definition only discrete
values. (Vectors representing e.g. states of several particles can also be chosen as eigen-
vectors of P µ - see Section 6.4 - but in this case the counterpart of the label σ takes on
continuous values characterizing the relative motion of the particles; note however, that
according to the definition adopted an atom in the ground state is a particle despite the
fact that electron(s) can be knocked out of it!) In addition, one requires that in a given
theory the number of different eigenvalues of the operator PµP

µ on states representing
single particles is finite (the theory predicts existence of only a finite number of differ-
ent stable particles). Using the transformation properties (6.16) of the four-momentum
operator one can write (U(Λ) = U(Λ, 0))

P µU(Λ)|p, σ〉 = U(Λ)U−1(Λ)P µU(Λ)|p, σ〉
= U(Λ)Λµ

νP
ν|p, σ〉 = Λµ

νp
νU(Λ)|p, σ〉 . (6.25)

This shows that U(Λ)|p, σ〉 is the eigenvector of P µ with the eigenvalue pµΛ ≡ Λµ
νp

ν .
Hence, it can be written as a general superposition of such state-vectors:

U(Λ)|p, σ〉 =
∑

σ′

|pΛ, σ
′〉Cσ′σ(Λ, p) . (6.26)

242



By appropriately choosing the basis in the Hilbert space, one can always make the matrix
Cσ′σ block diagonal, i.e. decompose the general representation of the Lorentz group acting
on one-particle states into irreducible representations. Stable particles are then identified
with irreducible representations of the Lorentz group. Of course, different particles, like
e.g. e−, e+, can correspond to isomorphic representations of the Lorentz group (they are
distinguished by a charge operator which corresponds to internal symmetries; instead the
representations corresponding to µ− and e− differ by the values of the Poincaré group
Casimir operator P 2 = P µPµ).

To investigate possible forms of irreducible matrices Cσ′σ and possible eigenvalues of
the second Racah operator W µWµ, one has to give a meaning to the label σ. To this end,
we notice that all components of W µ commute with all components of the P µ operator
and, therefore, one their linear combination (W µ components do not commute with one
another) can be diagonalized simultaneously with the P µ operators and used for this
purpose.7 One possibility is to choose the operator

W 0 = J·P , (6.27)

the eigenvalues of which will be written as |p|λ, and to identify σ with the helicity λ
- the projection of the total angular momentum onto the particle’s three-momentum.
W 0, that is, the helicity quantum number λ, will be used to naturally label states of
massless particles. While helicity is physically most useful also as a quantum number
of massive particles (it is helicity which is usually most easily accessible to experimental
determination), the definition of eigenvectors of theW 0 operator has some subtleties which
makes its use a bit complicated, especially in the case of massive particles. Therefore,
to label states of a particle of mass m 6= 0 one uses the operator −sµp Wµ/m with some
four-vector sµp the precise form of which will be specified below.

We begin by noting that8 the only functions of pµ invariant with respect to proper
ortochronous Lorentz transformations are functions of p2 and, when p2 ≥ 0, also of sgn(p0).

7Normally - see Chapter 4 - one uses for this purposes commuting linear combinations of the symmetry
group generators (forming the Cartan subalgebra of the algebra of the symmetry generators). In the case
at hands, no linear combination of Jµν commutes with all components of Pµ, but nothing prevents
one from using a combination (even dependent on the Pµ’s eigenvalues) of Wµ’s which are nonlinear
combinations of Jµν ’s and Pµ’s. The situation here is different than in nonrelativistic quantum mechanics,
in which the spin operators can be separated from the total angular momentum operators and used to
give a meaning to the label σ.

8Indeed, taking the boost along the three-momentum pointing in the z-direction (an arbitrary transfor-

mation belonging to L↑
+ can always be composed out of rotations and a boost along the three-momentum)

so that nonzero are only Λ0
0 = Λz

z and Λ0
z = Λz

0, one has

sgn(p0′) = sgn(Λ0
0 p

0) sgn

(

1 +
Λ0

i p
i

Λ0
0 p

0

)

=

(

1 +
Λ0

z p
z

Λ0
0 p

0

)

.

Since Λ0
0 ≥ 1 (orthochronous transformations) and since detΛ = 1 implies that Λ0

0 > |Λ0
z|, while p2 ≥ 0

ensures that |p0| ≥ |pz|, it follows that if p2 > 0, the sign of the second bracket is positive and, therefore,
sgn(p0′) = sgn(p0).
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For all four-momenta pµ with a given p2 value (the PµP
µ eigenvalue - the particle mass

squared) and sgn(p0), if p2 > 0, we choose a standard four-momentum kµ and a standard
proper ortochronous Lorentz transformation, call it Lp, which transforms the standard
four-momentum kµ into a given four-momentum pµ:

(Lp)
µ
νk

ν = pµ . (6.28)

Next, for arbitrary four-momenta pµ = (±E(p),p), where E(p) =
√

p2 +m2 (with the
chosen p2 = m2 and sgn(p0), if p2 > 0) we define the state-vectors |p, σ〉 by the formula

|p, σ〉 = NpU(Lp)|k, σ〉 , (6.29)

in which Np is a normalization factor which will be fixed below. Thus, it is sufficient to
give the label σ a meaning in the frame in which the four-momentum of the particle is the
standard four-momentum kµ. The standard four-momentum kµ of massive particles will
correspond to the particle at rest: k0 = m, k = 0. On the subspace corresponding to the
zero P eigenvalue the operators Jk and P i effectively commute; hence Jz, equal in this
frame to W 3/m (or any other projection ŝ ·J = ŝ ·W/m with an arbitrarily directed unit
three-vector ŝ), can be used to define σ. As massless particles cannot be at rest, their
standard four-momentum will be taken in the form kµ = (κ, 0, 0, κ) with κ > 0. In this
case the label σ will be given a meaning in terms of the eigenvalues of the operator W 0.

Adopting the definition (6.29), and considering an arbitrary transformation Λ we can
write (k = 0 if |p, σ〉 represents a state of a massive particle and k = (0, 0, κ), if it
represents a state of massless particle; in the latter case σ will be later replaced by λ)

U(Λ)|p, σ〉 = U(Λ)NpU(Lp)|k, σ〉
= NpU(LΛ·p)U(L

−1
Λ·p ·Λ·Lp)|k, σ〉 , (6.30)

where we have multiplied from the left by 1̂ = U(LΛ·p)U
−1(LΛ·p) and used the group

composition properties9 of the operators U . From the definition of the transformation Lp

it follows that the matrix10

W µ
ν =

(

L−1
Λ·p ·Λ·Lp

)µ

ν
, (6.31)

is an element of the so-called little group (called also the stability group) of the stan-
dard four-momentum kµ, that is, it is an element of the subgroup of the (proper or-
tochronous) Lorentz group consisting of transformations which do not change the standard
four-momentum: W µ

νk
ν = kµ. Thus, in agreement with (6.26) for any such W

U(W )|k, σ〉 =
∑

σ′

|k, σ′〉Dσ′σ(W ) , (6.32)

9Since we deal with the universal covering of the Poincaré group, no phase factors enter the game
here.

10Do not confuse it with the operator Wµ!
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(the symbols Dσ′σ have been used in place of Cσ′σ). The matrices Dσ′σ form a represen-
tation of the little group in the standard sense:

∑

σ′

|k, σ′〉Dσ′σ(W2 ·W1) = U(W2 ·W1)|k, σ〉 = U(W2)U(W1)|k, σ〉

= U(W2)
∑

σ′′

|k, σ′′〉Dσ′′σ(W1) =
∑

σ′

∑

σ′′

|k, σ′〉Dσ′σ′′(W2)Dσ′′σ(W1)

=
∑

σ′

|k, σ′〉 [D(W2) ·D(W1)]σ′σ .

The importance of the matrices Dσ′σ stems from the fact that any Lorentz transformation
S(Λ, 0) of a one-particle state-vector |p, σ〉, obtained by acting on it with the correspond-
ing operator U(Λ), can be expressed through the matrix Dσ′σ(W ) corresponding to Λ
and acting on the σ label. Indeed, combining the formulae (6.30) - (6.32) and (6.29) one
obtains

U(Λ)|p, σ〉 = (Np/NΛ·p)
∑

σ′

|pΛ, σ
′〉Dσ′σ(W (Λ, p)) . (6.33)

Therefore the problem of classifying and finding the matrices Cσ′σ reduces to the simpler
problem of finding and classifying the matrices Dσ′σ. (As the little group of the standard
four-momentum kµ of massive particles is the SO(3) group, the matrices D(W ) appearing
in the transformation rule (6.32) of state-vectors representing such particles will be just
the D-matrices introduced in Section 4.4). To prevent appearances of the awkward factors
Np we will use the relativistic normalization of the one-particle states:

〈p′, σ′|p, σ〉 = (2π)3 2Ep δσ′σδ
(3)(p′ − p) ≡ δσ′σδ

(3)
Γ (p′ − p) . (6.34)

This corresponds to the relativistically invariant measure

∫

d3p

(2π)32p0
=

∫

d3pΛ

(2π)32p0Λ
. (6.35)

With this normalization NΛ·p = Np and we will simply set Np = 1. Finally, we notice
that from the relations U(Λ, a) = U(Λ, 0)U(I, Λ−1·a) - c.f. (6.5) - as well as p · (Λ−1·a) =
(Λ ·p)·a ≡ pΛ ·a and from (6.24) it follows that

U(Λ, a)|p, σ〉 = eia·pΛ
∑

σ′

|pΛ, σ
′〉Dσ′σ(W (Λ, p)) . (6.36)

Table 1 lists all possible (in four-dimensional space-time) little groups. E(2) is the
group of movements of a two-dimensional plane which consists of rotations (around the
axis perpendicular to the plane) and translations. We assume that only the possibilities
labeled i), iii) and vi) are realized in relativistic quantum theories which are theories of
(interacting) particles, that is that in the Hilbert spaces of such theories (or at least in their
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p2 sgn(p0) standard little
four− vector kµ group

i) m2 > 0 p0 > 0 (m, 0, 0, 0) SO(3)
ii) m2 > 0 p0 < 0 (−m, 0, 0, 0) SO(3)
iii) m2 = 0 p0 > 0 (κ, 0, 0, κ) E(2)
iv) m2 = 0 p0 < 0 (−κ, 0, 0, κ) E(2)
v) −κ2 < 0 (0, 0, 0, κ) SO(1, 2)
vi) pµ = 0 (0, 0, 0, 0) SO(1, 3)

Table 1: Possible little groups

exploited separable subspaces) there are no vectors corresponding to the remaining three
possibilites. The case vi) corresponds to the vacuum state, which is the lowest energy
eigenvectors of the system’s Hamiltonian H . Its stability group is the whole Lorentz
group, that is, it is preserved by all the Poincaré transformations:11

U(Λ, a)|Ω〉 = |Ω〉 . (6.37)

Although the existence in the system’s full Hilbert space of more than one such vacuum
vector |Ω〉 is not excluded,12 one assumes that (in the limit of infinite space volume) in
the separable subspace of the full Hilbert space one is working in there is only one such
state-vector which is normalizable (and mormalized 〈Ω|Ω〉 = 1). We will now consider
the remaining two cases separately.

Massive particles (m2 > 0, p0 > 0)

The little group of the standard four-vector kµ is in this case the rotation group SO(3)
generated by the three operators J i (their action obviously does not change the standard
four-momentum (m, 0), and which on the subspace corresponding to zero P eigenvalue
effectively commute with all P µ’s). The algebra of these operators can be solved as in the
nonrelativistic case. Its unitary irreducible representations are known to be labeled by
the spin quantum number s = 0, 1

2
, 1, . . . , with s(s + 1) being the eigenvalue of J2, and

have dimensions 2s+1. Since on the vectors |0, σ〉 the Lorentz invariant operator W µWµ

reduces to −m2J2, it follows that on a representation of the Poincaré group furnished
by state-vectors of a single massive particle of mass m the eigenvalue of W µWµ is equal
−m2s(s+ 1) with s being the particle spin.

11One assumes here that the lowest H eigenvalue - the ground-state energy EΩ of the system - is zero.
This assumption can be relaxed: at the price of dismissing the condition U(Λ)|Ω〉 = |Ω〉, which combined
with (6.25) would lead in this case to a contradiction (pµΩ = Λµ

νp
ν
Ω) one can admit a nonzero vacuum

energy in some Lorentz frame at the price of having a nonzero vacuum state total three-momentum
in other frames; as long as gravity is not taken into account one can argue that this part of the total
three-momentum of the system and of the total system’s energy is unobservable.

12Supersymmetric gauge theories typically have multiple vacua. Also ordinary gauge theories (Chapter
20) posses many vacua distinguished by a topological invariant. In the “thermodynamic limit” all these
vacua belong, as assumed, to different separable subspaces.
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A Lorentz transformation Λµ
ν = W µ

ν belonging to the little group of the standard
four-vector kµ of a massive particle has the form

W µ
ν =









1

O









, (6.38)

where O is a 3 × 3 orthogonal SO(3) (in fact a SU(2)) matrix. D
(s)
σ′σ(O) matrices corre-

sponding to infinitesimal transformations Oi
j = δi j + ωi

j must have the form (cf. (6.11)
and (6.13))

D
(s)
σ′σ = δσ′σ −

i

2
ωkl

(

Jkl
(s)

)

σ′σ
. (6.39)

The explicit form of the matrix generators Jkl
(s) (matrix elements of the generators Jkl =

ǫkliJ i) is obtained by solving algebraically the first of the commutation relations (6.21).
This is described in standard textbooks of quantum mechanics. Choosing for the basis of
the k = 0 subspace the vectors |0, σ〉 such that Jz|0, σ〉 = σ|0, σ〉, the result (quoted also
in Section 4.4) is

(

J12
(s)

)

σσ′
≡

(

Jz
(s)

)

σσ′
= σ δσσ′ , (6.40)

(

J23
(s) ± iJ31

(s)

)

σσ′
≡

(

Jx
(s) ± iJy

(s)

)

σσ′

= δσ,σ′±1

√

(s∓ σ′)(s± σ′ + 1) .

If the rotation O in the transformation W (6.38) is parametrized by three Euler angles
and represented in the form e−iαJ z

vec · e−iβJ
y
vec · e−iγJ z

vec (see Section 4.4), the corresponding

matrix in (6.36) is just the matrix D
(s)
σ′σ(α, β, γ) defined in (4.92).

Out of the state-vectors |0, σ〉 it is easy to construct the vectors |0, σs〉 such that
ŝ · J|0, σs〉 = σs|0, σs〉, where ŝ is an arbitrary vector of unit length (the state-vectors
|0, σ〉 correspond to ŝ = ẑ). The vectors |p, σs〉 with p 6= 0 are then (by definition) given
by

|p, σs〉 = U(Lp)|0, σs〉 , (6.41)

and can be shown to be the eigenvectors

− sµp Wµ

m
|p, σs〉 = σs|p, σs〉 , (6.42)

of the operator sµp Wµ in which

sµp = (Lp)
µ

ν
sνrest , sνrest = (0, ŝ) . (6.43)

One concludes therefore, that the vectors |p, σs〉 defined by (6.41), which span an irre-
ducible representation (labeled by P µPµ = m2 andW µWµ = −m2s(s+1)) of the Poincaré

247



group, are the eigenvectors of the P and −sµpWµ/m operators with the eigenvalues p and
σs, respectively.

Under an arbitrary Lorentz transformation Λ the state-vectors |p, σ〉 (labeled by the
Jz eigenvalue σ in the particle’s rest frame) transform according to the rule

U(Λ)|p, σ〉 =
∑

σ′

|pΛ, σ
′〉D(s)

σ′σ(W (Λ, p)) , (6.44)

with the matrices D
(s)
σ′σ(O) generated by the SO(3) (or SU(2)) matrix generators (6.40).

The whole task is, therefore, to find the element W (Λ, p) of the Lorentz group which must
be a rotation

W = L−1
Λ·p · Λ · Lp = O . (6.45)

To this end, one has to specify first the standard transformation Lp. We choose the
following one:

(Lp)
0
0 = γ , (Lp)

i

j
= δi j − (γ − 1)

pipj
p2

,

(Lp)
i

0 =
pi

|p|
√

γ2 − 1 , (Lp)
0
j
= − pj

|p|
√

γ2 − 1 , (6.46)

with

γ ≡
√

1 +
p2

m2
=
E(p)

m
=

1√
1− v2

. (6.47)

It is easy to see that

(Lp)
0
0m = γ m = E , (Lp)

i

0m =
pi

|p|

√

p2

m2
m = pi , (6.48)

i.e. pµ = (Lp)
µ
νk

ν , as required. It can be also shown that Lp given above, which in fact
is just the boost in the direction of the three-momentum p, is the composition

Lp = Rẑ(p̂) · Bz(|p|) · R−1
ẑ
(p̂) , (6.49)

where Rẑ(p̂) is the rotation making a vector pointing in the p̂ direction specified by the
polar angles θp and φp:

p̂ = (sin θp cos φp, sin θp sin φp, cos θp) . (6.50)

out of a vector pointing in the ẑ direction and Bz(|p|) is the boost along the z axis changing
the four-vector (m, 0, 0, 0) into (E(p), 0, 0, |p|). The rotation Rẑ(p̂) can be obtained as a
composition of two successive rotations (see Appendix Appendix D)

Rẑ(p̂) = O(φp, ez)·O(θp, ey) = e−iφpJ
z
vec · e−iθpJ

y
vec . (6.51)
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The matrices J i
vec are the Lorentz group generators in the vector representation (D.3). In

the Hilbert space the rotation (6.51) acts through the operator

U(Rẑ(p̂)) = e−iφpJ
z

e−iθpJ
y

. (6.52)

Here the ranges 0 ≤ θp ≤ π, 0 ≤ φp ≤ 2π have to be specified explicitly because changing
φp to φp + 2π would give the same rotation (6.51) but the corresponding Hilbert space
operator U(Rẑ(p̂)) would give the opposite sign when acting on states of half-integer
spin particles.13 Notice, that the rotation Rẑ(p̂) could be defined with an additional
factor e+iφpJ

z
vec on its right extreme in agreement with the frequently used convention (see

Appendix Appendix D). This extra factor could even depend on an angle different than
φp as it has no effect when acting on the standard vector. From Lp and U(Lp) such an
extra factor would simply drop out, because being a rotation in the xy plane it would
commute with the boost Bz(|p|) which acts in the tz “plane”.

An important property of the adopted definition of the standard transformation Lp

is that whenever the transformation Λ is itself an ordinary three-dimensional rotation O,
the corresponding little group element W (Λ, p) = W (O, p) = O (in fact, this is the reason
for which Lp in (6.49) is defined with the factor R−1

ẑ
(p̂) on its right extreme). To prove

this, let us write W (Λ, p) explicitly14

W (O, p) = L−1
O·p · O · Lp

= Rẑ(O ·p̂) · B−1
z (|O ·p|) · R−1

ẑ
(O ·p̂) · O · Rẑ(p̂) · Bz(|p|) · R−1

ẑ
(p̂) .

The three successive transformations (rotations): R−1
ẑ
(O ·p̂) · O · Rẑ(p̂) transform first a

vector pointing in the z direction into a vector pointing in the direction p̂, then rotate it
by O and finally produce again a vector parallel to the z axis; hence together they must
simply be a rotation in the xy plane; such a rotation commutes with Bz(|p|) which has
the matrix structure

Bz(|p|) =









γ
√

γ2 − 1
1 0
0 1

√

γ2 − 1 γ









. (6.53)

Since B−1
z (|O ·p|) = B−1

z (|p|) - by definition rotations O do not change the length of a
three-vector - we indeed get W (O, p) = O. Thus, owing to the choice of Lp, state-vectors
of massive particles (as far as their three-momentum p and spin σ labels are concerned)
behave under rotations as in nonrelativistic quantum mechanics.

Massless particles (m2 = 0, p0 > 0)

13In other words, giving explicitly these angles amounts to specifying which one of the two SL(2, C)
transformations, which correspond to the same element of the Lorentz group, is chosen to define the
standard transformation Lp.

14In principle O is a 4 × 4 Lorentz transformation matrix; nevertheless we use here the notation O ·p
to denote corresponding rotation of the three-vector p.

249



The little group of the standard vector kµ = (κ, 0, 0, κ) - without loss of generality we
can set κ = 1 - is the group E(2) the structure of which is most easily unraveled by
using the following trick. Let us, in addition to kµ, consider also the unit time-like vector
tµ = (1, 0, 0, 0). By definition, the little group elements W satisfy W µ

νk
ν = kµ. From this

and from the basic property of W µ
ν ’s as Lorentz transformations (the preservation of the

scalar products of four-vectors) it follows that

(W ·t)µ(W ·t)µ = tµt
µ = 1 ,

(W ·t)µkµ = (W ·t)µ(W ·k)µ = tµk
µ = 1 .

The second equality implies that the most general structure of the vector (W ·t)µ reads:

(W ·t)µ = (1 + ζ, α, β, ζ) , (6.54)

and the first one imposes the condition ζ = (α2 + β2)/2. The result of the action of
W µ

ν on tν is therefore the same as of the Lorentz transformation S of the form (it is
straightforward to check that ST · g · S = g)

Sµ
ν =









1 + ζ α β −ζ
α 1 0 −α
β 0 1 −β
ζ α β 1− ζ









. (6.55)

This does not mean that W is identical with S, but only that S−1(α, β) ·W · t = t, that
is, that S−1(α, β) ·W is a rotation. Moreover, since W ·k = k and S ·k = k, the product
S−1(α, β) ·W preserves also kµ, and, therefore, can only be a rotation by some angle θ
around the z axis. Thus, the most general element of the E(2) group has the form

W (θ, α, β) = S(α, β) ·O(θ, ez) . (6.56)

The transformations corresponding to θ = 0 and those corresponding to α = β = 0 form
two Abelian subgroups of E(2):

θ = 0 : S(α2, β2) · S(α1, β1) = S(α2 + α1, β2 + β1) ,

α = β = 0 : O(θ2, ez) ·O(θ1, ez) = O(θ2 + θ1, ez) .

Moreover, as can be explicitly checked using (D.6) and (D.7),

O(θ, ez) · S(α, β) · O−1(θ, ez) = S(α cos θ − β sin θ, α sin θ + β cos θ) , (6.57)

which shows that the θ = 0 subgroup is an invariant subgroup of E(2). It is easy to
see that W (θ, α, β) do indeed form the group of movements of a two dimensional plane,
wchich translate its points by the vector (α, β) and rotate them in the plane around an
axis perpendicular to it by the angle θ.

We now find representations U(W (θ, α, β)) of the algebra of the matrices W (θ, α, β)
on Hilbert space vectors representing physical states of a single massless particle. Since
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W (θ, α, β) of the form (6.56) is a Lorentz transformation it is possible to write its in-
finitesimal form as (c.f. (6.11))

W µ
ν(θ, α, β) = δµν + ωµ

ν . (6.58)

By comparing this with the form (6.55) of Sµ
ν and with O(θ, ez) we find

ωµ
ν =









0 α β 0
α 0 −θ −α
β θ 0 −β
0 α β 0









, (6.59)

or

ωµν =









0 α β 0
−α 0 θ α
−β −θ 0 β
0 −α −β 0









. (6.60)

It follows, that the infinitesimal form of the corresponding symmetry operator U(W (θ, α, β))
acting in the Hilbert space reads

U(W (θ, α, β)) ≈ 1̂− i

2
ωµνJ

µν = 1̂− i(αA+ βB + θJz) , (6.61)

where in addition to Jz = J12 we have defined the following two combinations of the
generators:

A ≡ J01 + J13 = Kx − Jy , B ≡ J02 + J23 = Ky + Jx . (6.62)

These three operators, which in the Hilbert space generate transformations belonging
to the stability group of the standard four-vector kµ = (κ, 0, 0, κ), satisfy the following
commutation relations:

[Jz, A] = iB , [Jz, B] = −iA , [A, B] = 0 , (6.63)

which follow directly from the commutation rules (6.21). To solve this algebra in the
subspace of state-vectors |k〉 such that P µ|k〉 = kµ|k〉 (as was done in the case of massive
particles), one can work in the basis formed by common eigenvectors of the commuting
operators A and B:

A |k, a, b〉 = a |k, a, b〉 , B |k, a, b〉 = b |k, a, b〉 . (6.64)

However, using the same method, by which the transformation properties of the Poincaré
group generators P µ and Jµν have been established in Section 6.1, it can be shown that

U(O(θ, ez))AU
−1(O(θ, ez)) = A cos θ +B sin θ ,

U(O(θ, ez))BU
−1(O(θ, ez)) = −A sin θ +B cos θ .
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Consequently, if |k, a, b〉 is an eigenvector of A and B (with the eigenvalues a and b,
respectively), the same property have also all vectors of the form

|k, a, b〉θ ≡ U−1(O(θ, ez)) |k, a, b〉 , (6.65)

with and arbitrary angle θ, which have the A and B eigenvalues equal a cos θ+ b sin θ and
−a sin θ+b cos θ, respectively. Thus, the spectra of the operators A and B are continuous,
contrary to what is observed: massless particles do not carry any continuous quantum
numbers. One is, therefore, forced to declare, that only the A and B eigenvectors with
the eigenvalues a = 0, b = 0 represent physical states of massless particles. It will become
clear later, that the subgroup of the little group parametrized by α and β is related
to gauge invariance which is an inevitable feature of a consistent (quantum) theory of
massless particles of spin grater than 1/2.

In the subspace a = b = 0 of the Hilbert space the three generators, A, B, and Jz

effectively commute, and physical state-vectors can be labeled by their Jz eigenvalues15

Jz|k, λ〉 = λ|k, λ〉 . (6.66)

λ is just the helicity because Jz is simply the projection of the total angular momentum
onto the direction of the standard three-momentum k = (0, 0, κ). Therefore16

U(W (θ, α, β)) |k, λ〉 = e−i(αA+βB)e−iθJz |k, λ〉 = e−iθλ|k, λ〉 , (6.67)

which means that the matrices Dλ′λ(W ) appearing in the transformation rule (6.32) of
state-vectors representing massless particles have the simple form

Dλ′λ(W (Λ, p)) = e−iθλ δλ′λ . (6.68)

Thus, the action of an arbitrary Poincaré transformation S(Λ, a) on a state-vector |p, λ〉
of a single massless particle reads (cf. the formula (6.36))

U(Λ, a)|p, λ〉 = eia·pΛ e−iθλ |pΛ, λ〉 . (6.69)

The angle θ in this formula has to be found by forming the little group matrix W (Λ, p)
and decomposing it according to (6.56):

W (Λ, p) = L−1
Λ·p · Λ · Lp = S(α(Λ, p), β(Λ, p)) · O(θ(Λ, p), ez) . (6.70)

To use this formula one has to specify the standard Lorentz transformation Lp which
transforms the standard four-momentum kµ into a given four-vector pµ: (Lp)

µ
νk

ν = pµ.
In the case of massless particles one takes (for kµ = (κ, 0, 0, κ))

Lp = Rẑ(p̂) · Bz(|p|/κ) , (6.71)

15Instead of σ we now use the symbol λ.
16Since [A, B] = 0, the form U(S(α, β)) = e−i(αA+βB) follows from (4.27).
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where the action on the Hilbert space states of the rotation Rẑ(p̂) defined by (6.51) is
specified in (6.52), and the Lorentz boost along the z axis reads17

Bz(u) =









u2+1
2u

0 0 u2−1
2u

0 1 0 0
0 0 1 0

u2−1
2u

0 0 u2+1
2u









, (6.72)

with u =
√

(1 + v)/(1− v), that is, γ = (u2 + 1)/2u and vγ = (u2 − 1)/2u. Of course,
with Lp given by (6.71) the factor S in (6.70) equals unity, if Λ = O.

Up to now we have not encountered any restriction on the values the helicity λ of a
massless particle can assume. In fact, no such a restriction can be derived algebraically.18

There is however, a topological argument which shows that λ can assume only integer or
half-integer values. The Lorentz group SO(1, 3) is doubly connected, its universal covering
group being the SL(2, C) group of all complex matrices of unit determinant. This can be
shown in a way similar to the one which was used (in Section 4.2) to show that SU(2) is
the twofold covering of SO(3). Consider a four-vector V µ and the four 2× 2 matrices σµ:

σµ = (1,σ) . (6.73)

It is easy to check, that det(Vµσ
µ) = V µVµ. If a matrix M belongs to SL(2, C),

det
(

M ·Vµσµ ·M †
)

= det(Vµσ
µ) , (6.74)

because (by the definition of the SL(2, C) group) det(M) = det(M †) = 1. Since

M ·Vµ σµ ·M † = V ′
µ σ

µ , (6.75)

it follows that to eachM corresponds a Lorentz transformation Λ(M) transforming Vµ into
V ′
µ. Moreover, it is clear that Λ(M) = Λ(−M). This shows that SO(1, 3) = SL(2, C)/Z2,

where Z2 is the invariant subgroup of SL(2, C) consisting of the matrices I and −I.
To investigate the topology of the SL(2, C) group one can use the fact that any

matrix M belonging to it can be written as M = U · eH , where U is a unitary matrix
and H is a Hermitian matrix (this is called the polar decomposition). Since 1 = det(U ·
U †) = (det U)(det U)∗ = |det U |2, and det(eH) = etrH is real and positive, det(M) = 1
requires det(U) = 1 and trH = 0. The topology of the SL(2, C) group is therefore
the product topology of the set of unitary unimodular 2 × 2 matrices U and the set of
the Hermitian traceless 2 × 2 matrices H . Any such matrix can be written as a linear
combination of the three Pauli matrices with arbitrary real coefficients. On the other

17The form of Bz(u), which is very different from the boost appearing in the standard transformation
Lp (6.49) for massive particles and misleadingly denoted also by Bz(·), follows from the requirement that
|p| = γ(1 + v)κ when one goes over to the frame moving along the z axis with the velocity −v. Thus,
u ≡ |p|/κ =

√

(1 + v)/(1− v), that is, v = (u2 − 1)/(u2 + 1) and γv = (u2 − 1)/2u.
18See “The Feynman Lectures on Physics”, vol. III, a footnote in Section 17.4.
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hand, any unitary unimodular 2× 2 matrix can be parametrized by four real parameters
a, b, c, d:

U =

(

a + ib c + id
−c+ id a− ib

)

, (6.76)

which are subjected to the constraint a2+ b2+ c2+ d2 = 1 (so that detU = 1). Therefore,
the topology of SL(2, C) is that of the Cartesian product S3 × R

3. SL(2, C) is therefore
simply connected - any path connecting two its points can be continuously deformed
to another such a path. The fact that SO(1, 3) = SL(2, C)/Z2 makes SO(1, 3) doubly
connected: taking the quotient with respect to Z2 amounts to identifying U and −U
in the polar decomposition19 therefore a path that makes a jump (or an odd number of
jumps) from U to −U cannot be continuously deformed to a path connecting the same
two group points which does not make any jump (or makes an even number of jumps);
however, a path which makes two jumps can be continuously deformed to a path without
jumps (more generally, paths with the same number of jumps modulo 2 are deformable
to each other).

Let us take two paths Λ1(ξ1) and Λ2(ξ2) in the Lorentz group manifold, where ξ1 and
ξ2 are two parameters, 0 ≤ ξ ≤ 1, such that Λi(0) = I and Λi(1) = Λi and consider
the following composition of the corresponding symmetry operators acting in the Hilbert
space

U−1(Λ2(ξ2)·Λ1(ξ1))U(Λ2(ξ2))U(Λ1(ξ1)) . (6.77)

When ξ1 and ξ2 vary from 0 to 1, the product U(Λ2(ξ2)) U(Λ1(ξ1)) on the right can be
viewed as the operator corresponding to Λ2 ·Λ1 but defined along a path going first from I
to Λ1 and only then from Λ1 to Λ2 ·Λ1. Because SO(1, 3) is, as argued, doubly connected,
this may not be the same operator as the one corresponding to Λ2 · Λ1 which is obtained
by integrating the differential equation (4.31) along the standard path going directly from
I to Λ2 · Λ1. Therefore, although in the SO(1, 3) group itself always

(Λ2(ξ2) · Λ1(ξ1))
−1 · Λ2(ξ2) · Λ1(ξ1) = I , (6.78)

the operator (6.77) may differ from the unit operator if the path I → Λ1 → Λ2 · Λ1 and
the standard path I → Λ2 · Λ1 are not continuously deformable to each other. However,

[

U−1(Λ2(ξ2)·Λ1(ξ1))U(Λ2(ξ2))U(Λ1(ξ1))
]2

= 1̂ , (6.79)

because the path I → Λ1 → Λ2 · Λ1 → I → Λ1 → Λ2 · Λ1 → I is always continuously
contractible to the point I. Hence,

U(Λ2(ξ2))U(Λ1(ξ1)) = ±U(Λ2(ξ2)·Λ1(ξ1)) , (6.80)

19This follows from the fact that if H = xσx + yσy + zσz with real x, y and z, tr(eH) = 2 cosh r > 0

where r =
√

x2 + y2 + z2, while tr(−I) = −2.
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that is the actions of the operators U(Λ2(ξ2))U(Λ1(ξ1)) and of U(Λ2(ξ2) ·Λ1(ξ1)) on state-
vectors may differ only by the sign. To see that this implies a restriction on possible values
of the helicity λ of massless particles it suffices to consider Λ1 = Oz(π) and Λ2 = Oz(π)
that is, two rotations by π around the z axis. Obviously, Λ2 · Λ1 = I, but

U(Oz(π))U(Oz(π)) = ±U(I) = ±1̂ . (6.81)

Since the action of U on one-particle state-vectors of massless particles is realized through
the matrices Dλ′λ of the form (6.68), it is clear that this means that the helicity λ can
assume only integer or half-integer values.

Because the matrices Dλ′λ(W (Λ, p)) are diagonal, helicity of a massless particle is a
Lorentz invariant quantity. That is, a massless particle having helicity λ in one reference
frame O, has the same helicity λ in any other reference frame20 O′ (only the phase of
its state-vector can be altered due to the strict specification of the angles defining the
directions p and pΛ). It follows, that from the point of view of the proper ortochronous
Lorentz transformations there could exist only photons of, say, helicity −1. One could say
that helicity −1 photons and helicity +1 photons are different kinds of particles. We will
see however, that the parity transformation - if parity is to be a symmetry of at least some
interactions - requires the existence of photons of both helicities and this justifies treating
them as two internal states of the same particle. Parity is not a symmetry of the weak
interactions, and it became customary in the past (but in fact purely conventionally!)
to treat massless neutrinos of helicity −1/2 as different particles from the helicity +1/2
neutrinos (which were called antineutrinos). The physics of massless neutrinos would
not change, however, if one had declared that these were two internal states of the same
particle: if neutrinos were strictly massless there would be no way to experimentally
distinguish between the so-called Majorana neutrinos (which are their own antiparticles
and have both helicity states) and the Weyl neutrinos (which have only one helicity state
and are different from their antiparticles which have opposite helicity). In the years that
have passed, however, evidence has been accumulated that the neutrinos are not massless,
and therefore, the issue whether neutrinos are massive Majorana particles or massive
Dirac particles (that is neutrinos and antineutrinos both having two spin projections) is
no longer an academic one...

6.3 Parity and time reversal

For completeness we also investigate the action of the operators

P ≡ U(P, 0) and T ≡ U(T, 0) ,

on one-particle states. Before we do it, it is necessary to make the following comments. In
considering the Hilbert space constructed out of (appropriately symmetrized or antisym-
metrized) tensor products of one-particle states one can always assume that the operators

20Helicity of a massive particle - the corresponding one-particle states are defined by (6.99) - can change
as a result of a boost reversing the direction of the particle’s three-momentum.
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P and T , acting in the way established below on the |α0〉 states (defined in Chapter 7),
exist (that is, the Hilbert space of free particles can always be appropriately enlarged).
The problem whether parity and/or time reversal are are good symmetry operations also
in a theory of interacting particles depends then on the structure of interactions, that
is on the questions whether (see below) H = H0 + Vint commutes with the P and/or T
operators. In fact, owing to the experiment of C.S. Wu (and that of L. Lederman, R.L.
Garwin and M. Weinrich, see Section ??) it is now known that in the real world P is not
a good symmetry (and this fact has become the cornerstone of the Standard Model of
fundamental interactions); similarily neither is T , as was (under the assumption of CPT
invariance - see below) revealed by the experiment of J.H. Christenson, J.W. Cronin,
V.L. Fitch and R. Turlay (see Chapter 12). Therefore neither parity nor time reversal
are, strictly speaking, good symmetries of fundamental particle interactions. However,
if the weak interactions are neglected, that is one considers only strong and electromag-
netic interactions of elementary particles, they are good symmetries and as such play an
important role in our understanding of strong and electromagnetic interactions. Here we
assume that parity and time reversal are symmetries of the complete theory.

From the composition rule (6.5) it follows that

P U(Λ, a)P−1 = U(P ·Λ·P−1, P ·a) ,
T U(Λ, a)T −1 = U(T ·Λ·T−1, T ·a) , (6.82)

(the matrices P and T are given in (6.8)). Taking Λ and a to be infinitesimal one finds
the relations

P iJµν P−1 = (P−1)µλ(P
−1)νκiJ

λκ , P iP µP−1 = (P−1)µλiP
λ ,

T iJµν T −1 = (T−1)µλ(T
−1)νκiJ

λκ , T iP µ T −1 = (T−1)µλiP
λ . (6.83)

From these relations one readily infers that P has to be unitary, while T must be antiu-
nitary: antiunitarity of P would lead to PHP−1 = −H , which in turn would imply that
to each H eigenvector |Ψ〉 of energy E there exists the H eigenvector P−1|Ψ〉 of energy
−E. The spectrum of the Hamiltonian would then not be bounded from below. In con-
trast, the same reasoning leads to the conclusion that T must be antiunitary. Writing the
generators in the three-dimensional notation one has, therefore:

P JP−1 = J , T JT −1 = −J ,

PKP−1 = −K , T K T −1 = K , (6.84)

P PP−1 = −P , T P T −1 = −P .

We now consider the action of P and T on one-particle states.21 Again the cases of
massive and massless particles have to be treated separately.

21The assumption that parity and time-reversal are good symmetries of the theory means also that
P|Ω〉 = |Ω〉, T |Ω〉 = |Ω〉, i.e. they are not spontaneously broken.
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P and T transformations of states of massive particles

If m2 > 0, since the state-vector |0, σ〉 (0 represents here the standard four-momentum
kµ = (m, 0) is an eigenvector of H , P and Jz with the eigenvalues m, 0 and σ, from the
rules (6.84) written in the form JP = PJ it follows that

P|0, σ〉 = ησ|0, σ〉 , (6.85)

where (because ησ are eigenvalues of the unitarity operator P) |ησ| = 1. In fact, the phase
factor ησ cannot depend on σ (as can be easily seen by acting with P on both sides of
the equalities (Jx ± iJy)|0, σ〉 = √· · · |0, σ± 1〉). Therefore η is an intrinsic property of a
given particle, called its intrinsic parity; it is frequently denoted just by P .

Using the explicit form (6.46) of the standard transformation Lp it is easy to see that

P · Lp · P−1 = LP ·p , where (P ·p)µ = (E(p), − p) . (6.86)

This allows to find

P|p, σ〉 = U(P ·Lp ·P−1)P|0, σ〉 = η U(LP ·p)|0, σ〉 = η| −p, σ〉 , (6.87)

as could be expected. We will need this result when constructing causal (free) field
operators in Chapter 8.

As to the time reversal operator, from the rules (6.84) it follows that
JzT |0, σ〉 = −T Jz|0, σ〉 = −σT |0, σ〉. Therefore

T |0, σ〉 = ζσ|0,−σ〉 , (6.88)

where again |ζσ| = 1, because of the antiunitarity of T .22 Using a similar reasoning as in
the case of the P operator, one can show that ζσ±1 = −ζσ, or, in other words,

ζσ = (−1)s−σζ . (6.89)

Because the operator T is antiunitary, the phase ζ is unphysical (nothing like “intrinsic
time-reversality” exists) and can be removed by redefining the one-particle state-vectors.
Indeed, let |0, σ〉′ ≡ √

ζ |0, σ〉. Then (recall: T ζ = ζ∗T !)

T |0, σ〉′ = T
√

ζ |0, σ〉 =
√

ζ∗ T |0, σ〉 =
√

ζ∗ ζ (−1)s−σ|0,−σ〉
=

√

ζ∗ζ (−1)s−σ|0,−σ〉′ = (−1)s−σ|0,−σ〉′ .
22This follows from the equality (written in the mathematical notation, see Section 4.1)

ζ∗σ′ζσ(Ψ0,−σ′ |Ψ0,−σ) = (T Ψ0,σ′ |T Ψ0,σ) = (Ψ0,σ′ |T †T Ψ0,σ)
∗ = (Ψ0,σ′ |Ψ0,σ)

∗ .

and the fact that (Ψ0,−σ′ |Ψ0,−σ) = (Ψ0,σ′ |Ψ0,σ)
∗ ∝ δσ′σ.
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Furthermore, from the explicit form (6.46) of Lp we get that T ·Lp ·T−1 = P ·Lp ·P−1 =
LP ·p (because T µ

ν = −P µ
ν - cf. (6.8)), so we find

T |p, σ〉 = ζ(−1)s−σ| −p,−σ〉 . (6.90)

It follows (in agreement with the discussion of Section 4.8) that

T 2|p, σ〉 = ζ∗(−1)s−σT | −p,−σ〉 = ζ∗ζ(−1)s−σ(−1)s+σ|p, σ〉 = (−1)2s|p, σ〉 ,
that is, T 2 acting on states of half-integer spin massive particles gives −1. (Compare with
the result (4.200) in the nonrelativistic case).

P and T transformations of states of massless particle

In the m = 0 case, the state-vector |k, λ〉 is the eigenvector of P µ with the eigenvalue
(κ, 0, 0, κ) and of Jz with the eigenvalue λ. The operator P acting on this state produces
a state with a non-standard four-momentum, so it is more convenient to consider the
action on |k, λ〉 of the operator U(Ry(π))P where Ry(π) = eiπJ

y
vec is the rotation around

the y-axis by π. Since U−1(Ry(π))J
zU(Ry(π)) = −Jz and JzP = PJz it follows that

U(Ry(π))P|k, λ〉 = ηλ|k,−λ〉 . (6.91)

To find the action of P on the state-vector |p, λ〉 we write

P|p, λ〉 = P U(Rẑ(p̂))U(Bz(|p|/κ)) |k, λ〉
= U(Rẑ(p̂))P U(Bz(|p|/κ))P−1U−1(Ry(π))U(Ry(π))P|k, λ〉
= ηλ U(Rẑ(p̂))U

−1(Ry(π))U(Bz(|p|/κ)) |k,−λ〉 ,
where in going to the second line we have used the fact that because of the rule PJP−1 = J,
the parity operator P commutes with U(Rẑ(p̂)), and for the last equality, the fact that
Ry(π) · P = diag(1, 1,−1, 1), and therefore its inverse, commutes with B(|p|/κ) given
in (6.72) (and so must do the corresponding operators). Now, Rẑ(p̂) · R−1

y (π) rotates a
vector pointing in the ẑ direction into a vector pointing in the −p̂ direction, but there
is a subtlety related to the fact that U(Rẑ(p̂)) U

−1(Ry(π)) is not necessarily equal to
U(Rẑ(−p̂)). If p̂ is given by (6.50) then according to (6.52)

U(Rẑ(−p̂)) = e−i(φp±π)Jz

e−i(π−θp)Jy

, (6.92)

where the sign + (−) applies if 0 < φp < π (π < φp < 2π) so that φp ± π always remains
in the range (0, 2π) as it should. One can then compute23

U−1(Rẑ(−p̂))U(Rẑ(p̂))U
−1(Ry(π))

= e+i(π−θp)Jy

e+i(φp±π)Jz

e−iφpJ
z

e−iθpJ
y

e−iπJy

= e−iθpJ
y (

e+iπJy

e±iπJz

e−iπJy)

e−iθpJ
y

= e−iθpJ
y (

e∓iπJz

e−iθpJ
y

e±iπJz)

e∓iπJz

= e∓iπJz

.

23Using similar manipulations one can check that for massive particles indeed PU(Lp)P−1 = U(LP ·p)
(without any extra phase factors), thus better justifying the formula (6.87).
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Hence,24

U(Rẑ(p̂))U
−1(Ry(π)) = U(Rẑ(−p̂)) e∓iπJz

, (6.93)

and finally (using again the fact that rotations around the z axis commute with boosts
along the z axis) one gets

P|p, λ〉 = ηλ e
±iπλ| −p,−λ〉 . (6.94)

Setting ηλ = ηe∓i(λ+s)π ensures that the state-vectors representing single massless particles
of definite helicity (the so-called helicity state-vectors) transform under parity in the same
way as do the state-vectors (defined in (6.99)) of massive particles of definite helicities.
Thus, finally25

P|p, λ〉 = η e∓iπs| −p,−λ〉 , (6.95)

which shows that the phase factor appearing in the parity transformation rule of the
helicity state-vectors of massless (and massive) half-integer spin particles is discontinuous
(e.g. for s = 1

2
the phase factor is −i or +i, depending on whether py > 0 or py < 0).

From (6.95) it follows, that a theory of massless particles can be invariant under parity
transformations only if particles of both opposite helicities exist. For example, quantum
electrodynamics is parity invariant because photons come with two helicities.

To find the action of T on state-vectors of massless particles with an arbitrary four-
momentum pµ we again consider

U(Ry(π))T |k, λ〉 = ζλ|k, λ〉 , (6.96)

which is justified in the same way as (6.91). Then

T |p, λ〉 = T U(Rẑ(p̂)·B(|p|/κ)) |k, λ〉
= U(T ·Rẑ(p̂)·B(|p|/κ))T −1U−1(Ry(π))U(Ry(π))T |k, λ〉
= ζλ U(Rẑ(p̂))U

(

R−1
y (π)

)

U(B(|p|/κ)) |k, λ〉
= ζλ e

∓iπλ| −p, λ〉 ,

where we have again used first the fact that T (T ) commutes with Rẑ(p̂) (with U(Rẑ(p̂))
- because it is antilinear!) and next, that Ry(π) · T = diag(−1, 1, 1,−1) commutes with
B(|p|/κ) given in (6.72) (and so must do the operators). Finally we have used the result
(6.93). Continuity of the transformation rule of the massive particle helicity states for
m→ 0 can be ensured by setting ζλ = ζ . Thus, finally

T |p, λ〉 = ζ e∓iπλ| −p, λ〉 .
24Were the rotation (6.51) defined with an extra factor eiφ̃pJ

z

on its right extreme, we would get

U(Rẑ(p̂))U
−1(Ry(π)) = U(Rẑ(−p̂)) e−2i(φ̃p±π)Jz

.
25Superficially (6.95) may look like no change of helicity, but one has to remember that λ acquires its

proper meaning only in the frame in which the four-momentum of the particle is standard. In that frame
−λ means that the helicity is reversed by the parity operation.

259



In Chapter 8 it will become clear, that to build particle interactions preserving some
quantum numbers, like e.g. the electric charge, each particle carrying such a charge should
be accompanied by its antiparticle of the same mass and spin but carrying the opposite
charge. In the Hilbert space constructed as a tensor product of one-particle state-vectors
(i.e. spanned by the |α0〉 states) one can then introduce a unitary charge conjugation
operator C the action of which is defined by

C|particle(p, σ)〉 = ξ|antiparticle(p, σ)〉 ,
C|antiparticle(p, σ)〉 = ξc|particle(p, σ)〉 , (6.97)

(similar formulae apply also to the helicity state-vectors |p, λ〉). The phase factors ξ and
ξc are the charge conjugation parities (denoted also C) of the particle and its antiparticle,
respectively. If a particle is its own antiparticle (does not carry any conserved charge),
ξ = ξc. In general, unitarity of C implies ξc = ξ∗. The problem whether charge conjugation
is a symmetry of the theory of interacting particles reduces to the question whether the
operator C commutes withH = H0+Vint. If it does, (6.97) applies also to state-vectors (the
full Hamiltonian eigenvectors) representing true particles predicted by the given theory.

While in various quantum (field) theories of interacting particles the separate discrete
transformations P, C and T may be broken by interactions (all of them are broken in
the real world - see Chapter 12), in which case the corresponding operators P, C and T
properly acting on the in and out states strictly speaking do not exist, the combined CPT
transformation always remains a good symmetry if the theory is covariant with respect
to the proper ortochronous part of the Poincaré group and local (this notion will become
more clear only later). Each one-particle state must have therefore its CPT counterpart.
This means that antiparticles can always be defined by the action of the CPT operator

CPT |particle(p, σ)〉 = ζηξ(−1)s−σ|antiparticle(p,−σ)〉 , (6.98)

There can also be CPT self-conjugate particles. A newly discovered (in the years 2012/13)
Higgs boson h0 is an example of such a particle of spin 0; existence of elementary CPT
self-conjugate spin 1

2
fermions, commonly called Majorana particles, has not been yet

established experimentally (perhaps neutrinos have this nature).

6.4 State vectors representing two particles

Here we briefly discuss two-particle state-vectors in the representation of the angular
momentum. This representation allows to analyze the angular momentum content of the
final states of various reactions with two particles in the initial and final states. It will also
be necessary to derive some consequences of unitarity of the scattering matrix (Section
7.6).
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State-vectors representing two noninteracting particles26 (i.e. state-vectors which are
two-particle generalized eigenvectors of a free Hamiltonian H0) are most simply character-
ized by two three-momenta p1 and p2 of these particles and their spin projections σ1 and
σ2 or, usually more conveniently, by their helicities λ1 and λ2. Helicities (as we have seen)
are the natural spin labels for states of massless particles. The helicity one-particle state-
vectors of massive particles, which are generalized eigenvectors of the operatorW 0 = J ·P̂
(6.23), are defined by the formula

|p, λ〉 = U(Rẑ(p̂))U(Bz(|p|))|0, λ〉 , (6.99)

in which Jz|0, λ〉 = λ|0, λ〉 (compare this formula with (6.71); note however, that the boost
in (6.99) is the one defined in (6.53), whereas the boost in (6.71) is the one given by (6.72)).
The two-particle state-vectors |p1, λ1,p2, λ2〉 constructed simply as |p1, λ1〉 ⊗ |p2, λ2〉 if
the two particles of spin s are distinct, and as (see Chapter 5)

|p1, λ1,p2, λ2〉 =
1√
2

(

|p1, λ1〉 ⊗ |p2, λ2〉+ (−1)2s|p2, λ2〉 ⊗ |p1, λ1〉
)

, (6.100)

if they are identical (indistinguishable), are normalized conventionally:

〈p′
1, λ

′
1,p

′
2, λ

′
2|p1, λ1,p2, λ2〉 = δ

(3)
Γ (p′

1 − p1)δ
(3)
Γ (p′

2 − p2)δλ′

1
λ1
δλ′

2
λ2

± perm. (6.101)

where the permutation term is present if the two particles are identical and the symbol
δ
(3)
Γ is defined in (6.34). In the case of massive particles it is of course also possible to
form the basis out of tensor products of the |p, σ〉 states defined by (6.29).

An alternative basis of the two-particle subspace of the Hilbert space is provided by
the vectors characterized by the total momentum P = p1 + p2 and the momentum p of,
say, the first of the two particles in their center of mass frame

|P,p, λ1, λ2〉 ≡ |P,√s, p̂, λ1, λ2〉 , (6.102)

where the Mandelstam variable
√
s ≡

√

p2 +m2
1 +

√

p2 +m2
2 is the total energy of the

two-particle system in its center of mass frame. In other words, it is the invariant mass
of the two particle system.27 The direction p̂ can of course be specified by giving the two
angles ϑp and ϕp (defined in the center of mass frame). The Mandelstam variable

√
s

can also be traded for the total energy P 0 =
√
s+P2 in the Laboratory frame (i.e. the

frame in which the total three-momentum is P). The state-vectors (6.102) are defined by
the prescription

|P,√s, p̂, λ1, λ2〉 = U(Rẑ(P̂))U(Bz(|P|))|0,√s, p̂, λ1, λ2〉 , (6.103)

26It will be seen in Chapter 7 that properties of state-vectors representing two (or more) interact-
ing particles with respect to the Poincaré group transformations are the same as the properties of the
corresponding state-vectors of free particles. Hence the results of this section carry over also to this case.

27Since these are states of free particles there is no question about their interaction energy (the so
called mass defect).
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i.e. by a specific Lorentz transformation of the center of mass states |0,√s, p̂, λ1, λ2〉 ≡
|0,p, λ1, λ2〉, which in turn are constructed as the tensor product28 (symmetrized or an-
tisymmetrized as in (6.100), if the two particles are identical) of the two helicity state-
vectors: |p, λ1〉 = U(Rẑ(p̂))|ẑ|p|, λ1〉 and the state-vector29 e−iπs2U(Rẑ(p̂))| − ẑ|p|, λ2〉.
In this way the helicity labels λ1, λ2 are defined in the center of mass frame. For this
reason the state-vectors |P,p, λ1, λ2〉 ≡ |P,√s, p̂, λ1, λ2〉 are related to the state-vectors
|p1, λ1,p2, λ2〉 (which have their helicity labels defined in the Laboratory frame) by

|P,p, λ1, λ2〉 = e−iπs2
∑

λ′

1

∑

λ′

2

|p1, λ
′
1,p2, λ

′
2〉D(s1)

λ′

1
λ1
(O1)D

(s2)
λ′

2
λ2
(O2) , (6.104)

where the respective little group rotations O1 and O2 result from the action as in (6.36) of
the Lorentz transformation U(Λ) = U(Rẑ(P̂))U(Bz(|P|)) on the one-particle states |p, λ1〉
and U(Rẑ(p̂))|−̂z|p|, λ2〉 ∝ |−p, λ2〉; if the particle i is massive, the corresponding rotation
is Ri = R−1

ẑ
(p̂Λ) ·W (Λ, pi) · Rẑ(p̂) where W (Λ, pi) is given by the composition (6.31); if

the particle i is massless, the corresponding matrix D
(si)
λ′

i
λi
(Oi) is just equal δλ′

i
λi
eiλiθi with

θi determined from (6.70).

It can be shown that the scalar product of the two vectors |P,p, λ1, λ2〉 (6.102) rep-
resenting two distinct particles is given by

〈P′,p′, λ′1, λ
′
2|P,p, λ1, λ2〉 = δ

(3)
Γ (p′

1 − p1) δ
(3)
Γ (p′

2 − p2) δλ′

1
λ1
δλ′

2
λ2

= (2π)4δ(4)(P ′ − P ) 16π2

√
s

|p| δ
(2)(Ωp̂′ − Ωp̂) δλ′

1
λ1
δλ′

2
λ2
. (6.105)

If the two particles are identical, one has to add to the right hand side in the first line the
term (−1)2sδ

(3)
Γ (p′

1 − p2)δ
(3)
Γ (p′

2 − p1) δλ′

1
λ2
δλ′

2
λ1

and replace δ(2)(Ωp̂′ − Ωp̂) δλ′

1
λ1
δλ′

2
λ2

by

δ(2)(Ωp̂′ − Ωp̂) δλ′

1
λ1
δλ′

2
λ2

+ δ(2)(Ωp̂′ − Ω−p̂) δλ′

1
λ2
δλ′

2
λ1
,

(without any (−1)2s factor!) in the second line.

One next introduces state-vectors of two particles with fixed total angular momentum
j in their center of mass frame. They are given (for distinct and identical particles alike)
by the formula

|P,√s, λ1, λ2, j,mj〉 =
√

2j + 1

4π

∫

dΩp̂ |P,
√
s, p̂, λ1, λ2〉D(j)∗

mj ,λ1−λ2
(Ωp̂) . (6.106)

28The action of the symmetry operators like U(Rẑ(P̂)) or U(Bz(|P|)) on such tensor products of
state-vectors of single particles follows the rule (5.53).

29Due to the extra phase factor the state-vector e−iπs2U(Rẑ(p̂))| − ẑ|p|, λ2〉 is, if the particles are
massive, identical with the state-vector U(B−z(|p|))|0,−λ2〉; in this way the two particles represented by
the state-vector |0,√s, p̂, λ1, λ2〉 are treated symmetrically, what in turn leads to a simple time reversal
transformation rule for these state-vectors. Notice also that in the case of half-integer spin particles
U(Rẑ(p̂))| −ẑ|p|, λ2〉 differs, when ϕp > π, from U(Rẑ(−p̂))| ẑ|p|, λ2〉.
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The matrices D
(j)
mj ,λ1−λ2

(Ωp̂) ≡ D
(j)
mj ,λ1−λ2

(ϕp, ϑp, 0) defined by the formulae (4.92) and

(4.93) are explicitly given in Appendix B. It can be shown that if the two particles are
identical,

|P,√s, λ2, λ1, j,mj〉 = (−1)j|P,√s, λ1, λ2, j,mj〉 , (6.107)

so that for j odd such state-vectors vanish if λ1 = λ2. This is a reflection of the usual rule
(following from the requirements imposed by the Bose-Einstein or Fermi-Dirac statistics)
that two identical bosons in the symmetric spin state cannot be in P , F ,... waves whereas
two fermions in the symmetric spin state cannot be in S, D,... waves.

The generalized vectors (6.106) are eigenvectors of P µPµ with the eigenvalue s and of
W µWµ with the eigenvalues −s j(j + 1) so that j is the total angular momentum of the
two-particle system and

√
s its “mass”. When P = 0 (i.e. when the laboratory frame

coincides with the two-particle system’s center of mass frame), they are eigenvectors of
W 3 with the eigenvalue

√
smj , (mj is therefore the total angular momentum projection

onto the z axis) while for P 6= 0 - of W 0 with the eigenvalue |P|mj . When P 6= 0, the
state-vectors |P,√s, λ1, λ2, j,mj〉 are therefore the analogs of the helicity state-vectors
(6.99) of a massive particle (of mass

√
s); the quantum number j is then called the total

spin S of the two-particle system and mj acquires the interpretation of the system’s total
helicity (it is denoted by Λ).

The scalar product of two such vectors representing a state of two distinct particles is
given by

〈P′,
√
s′, λ′1, λ

′
2, j

′, m′
j |P,

√
s, λ1, λ2, j,mj〉

= (2π)4δ(4)(P ′ − P ) 16π2

√
s

|p| δj′j δm′

j
mj
δλ′

1
λ1
δλ′

2
λ2
, (6.108)

where the relation
∫

dΩp̂D
(j′)
m′

j
,λ
(Ωp̂)D

(j)∗
mj ,λ

(Ωp̂) =
4π

2j + 1
δj′j δm′

j
,mj

, (6.109)

has been used. If the two particles are identical, the helicity Kronecker deltas in (6.108)
have to be replaced by

δλ′

1
λ1
δλ′

2
λ2

+ (−1)j δλ′

1
λ2
δλ′

2
λ1
,

(so that one gets zero for j odd and λ1 = λ2). The relation inverse to (6.106), valid for
distinct and identical particles alike, reads

|P,√s, p̂, λ1, λ2〉 =
∞
∑

j

+j
∑

mj=−j

√

2j + 1

4π
|P,√s, λ1, λ2, j,mj〉D(j)

mj ,λ1−λ2
(Ωp̂) , (6.110)

with the sum over j running over all integer (including zero) or all half-integer values.
The formula (6.110) will be used in Section 7.6 to explore consequences of the unitarity
of the scattering matrix.
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6.5 Summary

We have investigated the transformation properties of one-particle state-vectors which fol-
low from the postulate that the Poincaré group is the group of symmetry transformations.
Starting from the one-particle state-vectors constructed in Section 6.2 the big Hilbert
space H = ⊕∞

N=0H(N) spanned by the (appropriately symmetrized/antisymmetrized) ten-
sor products of one-particle state-vectors can be constructed along the lines outlined in
Chapter 5 and assuming that the vector |void〉 is invariant with respect to all transfor-
matios forming the Poicaré group: U(Λ, a)|void〉 = |void〉. The corresponding creation
and annihilation operators can be then introduced and share the Poincaré transformation
properties of the corresponding one-particle states:

U(Λ, a) a†σ(p)U
−1(Λ, a) = eip

µ

Λ
aµ
∑

σ′

a†σ′(pΛ)Dσ′σ(W (Λ, p)) ,

U(Λ, a) aσ(p)U
−1(Λ, a) = e−ip

µ

Λ
aµ

∑

σ′

aσ′(pΛ) [Dσ′σ(W (Λ, p))]∗ . (6.111)

In the relativistic normalization of the state-vectors, the operators a†σ(p) and aσ(p) are
normalized so that

[aσ(p), a
†
σ′(p

′)]∓ = (2π)32E(p) δσσ′ δ(3)(p′ − p) , (6.112)

where [ , ]∓ denotes the commutator if these are operators creating/annihilated bosons
and anticommutator if fermions. Out of these creation and annihilation operators the
generators of the Poincaré group acting in H can be constructed as their bilinear combi-
nations, provided the Hamiltonian has the form

H0 =

∫

d3p

(2π)32E(p)

∑

σ

E(p) a†σ(p)aσ(p) , (6.113)

with E(p) =
√

p2 +m2, i.e. if it is the Hamiltonian of massive free relativistic parti-
cles. In this case all many-particle state-vectors obtained by the action on |void〉 of the
creation operators are automatically generalized (non-normalizable) eigenvectors of the
Hamiltonian H0. The generators P i and J i have the same form as in the nonrelativistic
theory. The generators Ki acting in the entire Hilbert space H = ⊕∞

N=0H(N) can also
easily be constructed. Similar construction of the Poincaré group generators K and of
the operators U(Λ, a) is more complicated in the case of massless, i.e. when in (6.113)
E(p) = |p|, particles but can also be done. In this way a relativistic theory of free parti-
cles can be constructed. However the explicit recipe for constructing the Poincaré group
generators for a given type of particles is provided only within a different approach based
on the canonical quantization of classical free relativistic fields30 corresponding to these
particles; in the formalism presented here the form of the Poincaré group generators can

30Lagrangian densities of free relativistic fields are bilinear in field variables. In this case the corre-
spondence of a field and a particle type is unique.
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only be postulated and validated by checking their commutation rules. This alternative
approach will be discussed in Chapter 11. It will be shown there that the Poincaré group
generators are obtained as integrals of the Noether currents associated with space-time
symmetries. Moreover, it is precisely the transformation properties of eigenvectors of
Hamiltonians of quantized field that allow to give them the particle interpretation.

If the theory is to be a theory of interacting particles, its Hamiltonian must have
a more complicated form than the sum of several terms (6.113) corresponding to dif-
ferent types of particles. The algebra of the Poincaré group generators corresponding
to the free part of the Hamiltonian (i.e. of the generators satisfying the rules (6.21)
with H0) is then still naturally realized in the Hilbert space built as (appropriately sym-
metrized/antisymmetrized) tensor products of one-particle states which are generalized
eigenvectors of a free Hamiltonian H0, but if the theory is to be a relativistic quantum the-
ory of interacting particles in the same Hilbert space must also act generators P i, J i and
Ki satisfying the algebra (6.21) with the full Hamiltonian31 H = H0+Vint. If such theory
obtained afer adding to the sum of terms like (6.113) an interaction operator Vint and
constructing the appropriate Poincaré group generators is still a theory of (interacting)
particles, one-particle states, which are generalized eigenvectors of the full Hamiltonian
H with the same Poincaré transformation properties as discussed in Sections 6.2 and 6.3
exist in the Hilbert space and are complicated superpositions of one- and many-particle
eigenvectors of H0. The sense in which in a theory with interactions included two-particle
states like (6.101) and, more generally, multi-particle states can be defined and ascribed
the Poincaré transformation properties is discussed in the next Chapter.

Summarizing, a second-quantized version of the relativistic mechanics of noninter-
acting particles can be constructed in the momentum space representation without any
reference to wave equations. The momentum space is singled out because the assumed re-
alization of the Poincaré group in the Hilbert space provides us with the set of observables
which naturally pertain to the momentum variables. The position space representation,
commonly used in nonrelativistic quantum mechanics, in the relativistic case can be at
best of only a limited validity.

31As will be seen in Section 7.5, the generators Ki cannot then be bilinear in the creation and anni-
hilation operators. Again the explicit recipe for constructing the Poincaré group generators is obtained
only within the approach based on quantization of classical relativistic fields.
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Appendix D Poincaré transformations

Here we establish how the parameters ωµν and aµ are related to the familiar parameters of
boosts, rotations and translations. We take here the active view, i.e. we consider the same
events occurring in the original and transformed systems. The space-time coordinates of
these events xµ and x′µ are related by x′µ = Λµ

νx
ν + aµ, or, if the transformation is

infinitesimal, by

x′µ ≈ (δµν + ωµ
ν)x

ν + aµ . (D.1)

This can be also represented in the form

x′µ ≈ xµ − i

2
ωλκ

(

J λκ
vec

)µ

ν
xν + aµ , (D.2)

in which J λκ
vec are the matrix Lorentz group generators in the vectorial representation1

(

J λκ
vec

)µ

ν
= i

(

gλµgκν − gκµgλν
)

. (D.3)

The matrices J λν
vec satisfy the basic commutation rule (6.19)

[

J λκ
vec, J µν

vec

]

= i
(

J λν
vec g

κµ − J λµ
vec g

κν − J κν
vec g

λµ + J κµ
vec g

λν
)

.

Translations

It readily follows from (D.2) that if xµ, µ = 0, 1, 2, 3 are the coordinates of an event
occurring in the original system, the same event in the transformed system occurs later
by τ = a0 and at the place shifted by a.

Rotations

If the transformed system is rotated with respect to the original one by an angle φ coun-
terclockwise around the z-axis, then the space coordinates x′ and y′ of a point in it are
related to the coordinates x and y of corresponding point in the original system by

(

x′

y′

)

=

(

cos φ − sinφ
sinφ cosφ

)(

x
y

)

≈
(

x
y

)

− iφ

(

0 −i
i 0

)(

x
y

)

+ . . . (D.4)

Comparing (D.1) with (D.4) one infers that ω2
1(φ) = −ω1

2(φ) ≈ φ. The generator
J 12

vec ≡ J z
vec given by (D.3) is the matrix

(

J 12
vec

)µ

ν
=









0
0 −i
i 0

0









, (D.5)

1It is easy to see that (D.3) inserted in (D.2) leads to (D.1).
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The matrix Λµ
ν = Oµ

ν which realizes a finite active transformation (rotation by the angle
φ around ez), is obtained by exponentiation of the matrix −iω12J 12

vec with J 12
vec ≡ J z

vec

given by (D.5). The comparison of the result

O(φ, ez) ≡ e−iω12J
12
vec = e−iω12J

z
vec =









1 0 0 0
0 cosω12 − sinω12 0
0 sinω12 cosω12 0
0 0 0 1









. (D.6)

with (D.4) leads to

ω2
1(φ) = −ω21(φ) = ω12(φ) = −ω1

2(φ) = φ . (D.7)

Similarly, if the transformed system is rotated with respect to the original one by an
angle θ counterclockwise around the y-axis, the space coordinates x′ and z′ of a point in
it are related to the coordinates x and z of the corresponding point in the original system
by

(

x′

z′

)

=

(

cos θ sin θ
− sin θ cos θ

)(

x
z

)

≈
(

x
z

)

− iθ

(

0 i
−i 0

)(

x
z

)

+ . . . (D.8)

Comparing (D.1) with (D.8) one infers that ω1
3(θ) = −ω3

1(θ) ≈ θ. The generator J 31
vec ≡

J y
vec given by (D.3) is the matrix

(

J 31
vec

)µ

ν
=









0
0 i

0
−i 0









. (D.9)

Exponentiating the matrix −iω31J 31
vec with J 31

vec ≡ J y
vec as in (D.9), one finds

O(θ, ey) ≡ e−iω31J
31
vec = e−iω31J

y
vec =









1 0 0 0
0 cosω31 0 sinω31

0 0 1 0
0 − sinω31 0 cosω31









, (D.10)

and comparing with (D.8) one concludes that

ω31(θ) = −ω13(θ) = ω1
3(θ) = −ω3

1(θ) = θ . (D.11)

The matrix O(α, ex) can be found similarly by exponentiation of the matrix −iω23(α)J 23
vec

with J 23
vec ≡ J x

vec given by (D.3). One then finds

ω23(α) = −ω32(α) = −ω2
3(α) = ω3

2(α) = α . (D.12)
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The matrix representing the active rotation Oẑ(p̂) which produces the unit length
vector p̂ = (sin θp cosφp, sin θp sinφp, cos θp) out of ez unit base vector pointing in the
z-direction and which enters the standard transformations Lp (6.49) and (6.71) reads

Oẑ(p̂) = e−iφpJ
z
vec · e−iθpJ

y
vec = O(φp, ez) ·O(θp, ey)

=









1 0 0 0
0 cosφp − sin φp 0
0 sinφp cosφp 0
0 0 0 1

















1 0 0 0
0 cos θp 0 sin θp
0 0 1 0
0 − sin θp 0 cos θp









. (D.13)

Using the formula (4.86) the rotation Oẑ(p̂) can be equivalently represented in the form

Oẑ(p̂) = O(θp,n) ·O(φp, ez) , (D.14)

where the second rotation (by θp) is performed around the axis n = −ex sin φp+ey cosφp.
The first rotation (by φp around the z axis) is ineffective in acting on the three-momentum
vector directed along the z-axis (and it is for this reason that in many textbooks as Oẑ(p̂)
one takes not (D.13) but (D.13) multiplied from the right by exp(+iφpJ z

vec), so that this
ineffective rotation is absent), while the second rotation makes p̂ out of ez directly, in one
move.

Boosts

If the transformed system is boosted with respect to the original one in the x axis direction
with the velocity V , the space-time coordinates x′µ of an event occurring in it, and the
coordinates xµ of the same event occurring at in the original system (both, x′µ and xµ are
ascribed in some inertial frame O), are related by

t′ = γ(V ) (t+ V x) ≈ t+ V x+ . . .

x′ = γ(V ) (x+ V t) ≈ x+ V t + . . . (D.15)

with γ(V ) = 1/
√
1− V 2. Comparing (D.15) with (D.1) one infers that ω0

1(V ) = ω01(V ) =
−ω10(V ) = ω1

0(V ) ≈ V . The generator J 01
vec ≡ Kx

vec is the matrix

(

J 01
vec

)µ

ν
=









0 i
i 0

0 0
0 0









. (D.16)

Finite (active) boosts along the x-axis are realized by the matrix

Λµ
ν = e−iω01J

01
vec = e−iω01K

x
vec =









coshω01 sinhω01 0 0
sinhω01 coshω01 0 0

0 0 1 0
0 0 0 1









, (D.17)
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obtained by exponentiation of the matrix −iω01J 01
vec, so that the finite boost takes the

form

t′ = coshω01 (t + tanhω01 x) ,

x′ = coshω01 (x+ tanhω01 t) , (D.18)

from which it follows that

tanhω01(V ) = V , coshω01(V ) =
1√

1− V 2
. (D.19)

Similarly, J 03
vec ≡ Kz

vec is the matrix

(

J 03
vec

)µ

κ
=









0 i
0 0

0 0
i 0









, (D.20)

The active boost Λµ
ν = [Bz(|p|)]µν appearing in the standard transformations Lp (6.49)

which acting on the standard four-momentum of a particle of mass M (M 6= 0) produces
a particle moving with the momentum |p| in the positive direction of the z axis has
therefore the explicit form

Bz(ω03) = e−iω03J
03
vec = e−iω03K

z
vec = coshω03









1 0 0 tanhω03

0 1 0 0
0 0 1 0

tanhω03 0 0 1









, (D.21)

in which sinh ω03 = |p|/M , cosh ω03 = E(p)/M . In turn Bz entering Lp (6.71), the
standard transformations of massless particles has a similar form with ω03 = ln u =
ln(|p|/κ) (so that coshω03 = (u2 + 1)/2u, sinhω03 = (u2 − 1)/2u).

It is important to realize that the meaning of the parameters ωµν and aµ is always the
same, irrespectively of the specific representation of the Poincaré group generators. One
can check the formulae given above by considering e.g. the ordinary quantum mechanical
scalar wave function ψ(t,x). If the physical system is shifted by the vector a with respect
to the original one, then its wave function ψ′ to the wave function ψ of the original system
(both given in the same inertial reference frame O) is related by

ψ′(t,x′) = ψ′(t,x+ a) = ψ(t,x) ,

(i.e. the shape ψ′(t, ·) is the same as the shape of ψ(t, ·), but its maxima, minima etc.
occur at shifted values of its argument). For infinitesimal a one therefore has

ψ′(t,x) = ψ(t,x− a) = ψ(t,x)− ai
∂ψ(t,x)

∂xi
+ . . . (D.22)
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which can be written in the form (~ = 1 here)

ψ′(t,x) = ψ(t,x)− i aiP̂ iψ(t,x) + . . . (D.23)

with P̂ i the momentum operator

P̂ i = −i ∂
∂xi

≡ +i
∂

∂xi
. (D.24)

Hence, the wave function ψ′ of the shifted system is related to the wave function ψ of the
original system by

ψ′(t,x) = e−iaiP̂ i

ψ(t,x) = e+iaiP̂
i

ψ(t,x) . (D.25)

Similarly, if the physical system is translated in time forward by τ , i.e. all events occur
in it later by τ than in the original system (the time instants being ascribed to the events
in both system in an inertial frame O), the time dependence of the wave functions of the
translated and the original systems are related by

ψ′(t′) ≡ ψ′(t + τ) = ψ(t) , or ψ′(t) = ψ(t− τ) . (D.26)

For infinitesimal τ this implies (using the Schrödinger equation) that

ψ′(t) = ψ(t) + iτ i
∂

∂t
ψ(t) + . . . = ψ(t) + iτ Hψ(t) + . . . (D.27)

Thus, active translations of the physical system by aµ = (τ, a) are in Hilbert spaces
realized by the unitary operators (in the notation of Chapter 6; compare also Section 4.3)

U(I, a) = eiaµP̂
µ

. (D.28)

If a physical system is actively rotated by an infinitesimal angle θ counterclockwise
around the z-axis, the wave functions of the rotated and the original systems are related,
using (D.4), by

ψ′(t, x′, y′, z′) ≡ ψ′(t, x− θy, y + θx, z) = ψ(t, x, y, z) , or

ψ′(t, x, y, z) = ψ(t, x+ θy, y − θx, z) . (D.29)

For infinitesimal θ this is

ψ′(t, x, y, z) = ψ(t, x, y, z)− θ

(

x
∂

∂y
− y

∂

∂x

)

ψ(t, x, y, z) + . . . (D.30)

(where x, y, z are the contravariant coordinates). This can be written in the form

ψ′(t, x, y, z) = ψ(t, x, y, z)− iθ
(

xP̂ y − yP̂ x
)

ψ(t, x, y, z) + . . .

= ψ(t, x, y, z)− iθJzψ(t, x, y, z) + . . . (D.31)

Hence,

U(O(θ, ez), 0) = e−iθJz

= e−
i
2
ωµνJ

µν

= e−iω12J
z

. (D.32)
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