
Problems in Quantum Field Theory of Fundamental Interactions. V

Problem V.1

A particle A can decay in several different ways: A → B1C1 . . ., A → B2C2 . . ., etc. The
respective decay widths are Γ1, Γ2, . . . In a typical experiment each individual particle A
comes from the accelerator and is brought to rest in a block of material. The moment of
putting it to rest is taken for t = 0. Then it decays after some time which is measured.
What is the time distribution dN1/dt of the registered decays A → B1C1 . . ., assuming
the products of the other decays (A→ B2C2 . . . and others) are not registered or, as was
the case in the ground breaking experiment with the θ+/τ+ particles,1 are incorrectly
attributed to decays of another particle A′ (A′ 6= A is assumed)? Can one determine from
it the lifetime τA of the particle A? And the branching fraction Br(A→ B1C1 . . .)?

Problem V.2

In the LAB frame a particle of massM moves with velocity V along the z-axis and decays
(in flight) into two other particles of masses m1 and m2. Find the correlation of the LAB
energy of the particle 1 with the angle ϑLAB

1 its LAB momentum forms with the zLAB-axis.
Show that if V is sufficiently large (V < 1, of course), the angle ϑLAB

1 cannot exceed a
certain value (determine it). What is the energy distribution of the particles of mass m1

measured in the Laboratory system, if the angular distribution (the distribution of the
variable cosϑCM) of the produced particles in the CM system follows the (1 + cosϑCM)2

law?

Problem V.3

What are the possible angles ψLAB in the LAB system between the momenta of two
particles which are produced in the decay of a massive particle having in the LAB system
the velocity V ? Write down the explicit formula for tanψLAB in the case of two identical
daughter particles.

Problem V.4

A neutral pion π0 decays in flight into two photons (see also Problems I.38 and V.34).
What is the angular distribution (w.r.t. the direction of the parent pion) of the photons
in the Laboratory system in which π0 has velocity V ? Find also the Laboratory frame
distribution of the angles between the two photons.

1In the historic experiment both θ+ and τ+ were in fact the positively charged kaon and the observed
decay channels were K+(θ+) → π0π+ and K+(τ+) → π0π0π+, π−π+π+. Since decays of the same
spinless particle into two and three pions would necessarily mean violation of parity which was believed
to be a good symmetry, it was taken for granted that two and three pion final states must correspond to
decays of two different particles.
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Problem V.5

Calculate the volume Φ2 of the two-particle phase space

Φ2 =

∫

dΓp1dΓp2 (2π)
4δ(4)(p1 + p2 − q) ,

where p21 = m2
1, p

2
2 = m2

2, assuming that - as in the case of computing the decay width
of a particle of mass M into two other particles of masses m1 and m2 in the decaying
particle rest frame - qµ = (M, 0). Recall that dΓp = d3p/(2π)32Ep.

Problem V.6

Calculate the volume of the phase space of three particles

Φ3 =

∫

dΓp1dΓp2dΓp3 (2π)
4δ(4)(p1 + p2 + p3 − q) ,

where p2i = m2
i . Keep the masses mi nonzero as long as possible and set them to zero

only at the end.
Hint: using the delta function integrate over dΓp3 and then express the remaining (one-
dimensional) delta function in the form δ(cos θ− f(E1, E2)) where θ is the angle between
p1 and p2. Reduce the remaining integral to a one over dE1dE2d(cos θ) and seek its
geometrical interpretation. Then set mi = 0 and evaluate the integral.

Problem V.7

Calculate the width of the decay of a fermion f (a) of mass ma into another fermion f (b)

of mass mb and a spinless particle (S or P ) of mass M (assuming that ma > M +mb).
Assume the interaction of the form

Hint(x) = hϕ(x) ψ̄(b)(x)Γψ(a)(x) + H.c.,

and consider two cases: Γ = I (S) and Γ = −iγ5 (P ). In both cases write down the
amplitudes of the decays into f (b) with definite spin projection onto the z-axis and the
amplitudes of the decays into f (b) with definite helicities, assuming that the spin projection
onto the z-axis of the initial fermion f (a) was +1/2. What is the relative orbital angular
momentum of the two final state particles? Compute also the helicity amplitudes corre-
sponding to a definite total angular momentum. Express the width Γ(f (a) → f (b)S(P ))
through these helicity amplitudes (and also through the amplitudes corresponding to
definite orbital angular momentum).

Problem V.8

Compute the differential rate dΓ/d cos θ of the decay f (a) → f (b)S (taking for θ the angle
between the z-axis and the three-momentum of the final fermion f (b)) induced by the
same interaction as in Problem V.7 with Γ = I, assuming that the decaying fermion
f (a) has the spin projection +1/2 (−1/2) onto the z-axis and summing over possible spin
projections of the final fermion f (b). Do this in two ways: first by using the explicit form
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of the spinor corresponding to f (a) in the given spin projection and next by summing over
all f (a) spin projections σa after having written its spinor in the form

u(q, σa) = Σq(sq)u(q, σa) .

The spin projection operator

Σq(sq) =
1

2

(

1 + γ56sq
)

,

with sµq = (Lq)
µ
νs

ν
rest projects onto the spinor corresponding to the fermion state |q, σ〉

obtained with the help of the standard Lorentz transformation U(Lq) from the rest frame
eigenstate |0, σ〉 of the operator srest ·J.

Using the spin projector technique compute also the analogous differential rates of the
decays of f (a) polarized along the z-axis into f (b) in a concrete spin state: with definite
spin projection onto the z-axis (σb = ±1

2
) and with definite helicity (λb = ±1

2
).

Problem V.9

Consider the decay of a (fully) polarized fermion f (a) of mass ma into another fermion f (b)

of mass mb and a spinless particle of mass M (for ma > M +mb). Assume the interaction
of the form

Hint(x) = hϕ(x) ψ̄(b)(x)(1− iλγ5)ψ(a)(x) + H.c. ,

with complex λ. (This can be a model of the Λ0 → p π− decay induced by the weak
interactions). Combining the results of Problem V.7 compute rates of the decays into
final states with definite spin projection and definite helicity of f (b) and in both cases
discuss possible experimental signals of parity nonconservation in this decay. Recover the
same rates using the spin projectors of Problem V.8.

Problem V.10

Taking for the interaction

Hint(x) = h∂µϕ(x) ψ̄(b)(x)γ
µΓψ(a)(x) + H.c. ,

where Γ = I or Γ = −iγ5. Compute the same decay rates as in the Problem V.7.

Problem V.11

Calculate the decay width of a spinless particle of mass M into a fermion-antifermion (of
masses m < 1

2
M) pair: a) with definite spin projections onto the z-axis, b) with definite

helicities. Assume the interaction of the form

Hint(x) = h ψ̄(x)Γψ(x)ϕ(x) ,

and consider two cases: Γ = I and Γ = −iγ5. Explain the different forms of the widths
in these two cases by appealing to the orbital momentum of the final fermion-antifermion
pair and parity conservation. Check that the total angular momentum of the final state
particles is j = 0.
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Problem V.12

Using the spin projection technique (Problem V.8) calculate the rates of the decays of a
spinless particle into into a fermion-antifermion pair: with definite spin projections onto
the z-axis and with definite helicities assuming the interaction of the form

Hint(x) = h ψ̄(x)(1− iλγ5)ψ(x)φ(x) + H.c.

where λ can be complex. Discuss the possible signals of parity and CP nonconservation.
Notice that for complex λ necessarily φ 6= φ†, i.e. the spinless particle and its antiparticle
must be different in this case.

Problem V.13

The Hamiltonian of the effective theory of weak interactions at low energies has the form2

Hweak =
GF√
2
J†
λJ

λ , where Jλ = Jλ
lept + Jλ

hadr ,

Jλ
lept = ψ̄(e)γ

λ(1− γ5)ψ(νe) + ψ̄(µ)γ
λ(1− γ5)ψ(νµ) + ψ̄(τ)γ

λ(1− γ5)ψ(ντ ) .

Parametrize the most general form of the matrix element 〈Ωhadr|Jλ†
hadr(x)|π−(q)〉 by one

real constant fπ - the so-called pion decay constant - and calculate in the lowest order inGF

(treating neutrino as massless) the ratio of the decay widths Rπ = Γ(π± → e±νe)/Γ(π
± →

µ±νµ) and compare it with the corresponding ratio of the phase spaces available in these
two decays and with the experimental data. Compare also with the data the value of RK =
Γ(K± → e±νe)/Γ(K

± → µ±νµ) obtained in the similar way. What are the possible sources
of the small discrepancies (in both cases)? Using the value GF = 1.16639× 10−5 GeV−2

and the π− lifetime τπ− = 2.6 × 10−8 sec. determine the value of fπ. Correct the result
for the Cabibbo angle. Use also the appropriate experimental data to determine fK .

Problem V.14

Assume Hweak takes the form of a product of two scalar currents:

Hweak =
GF√
2
J†J ,

where J = ψ̄(e)(1− γ5)ψ(νe) + ψ̄(µ)(1− γ5)ψ(νµ) + Jhadr (instead of the product of two vec-
tor currents considered in Problem V.13), and parametrizing appropriately the hadronic
matrix element 〈Ωhadr|J†

hadr(x)|π−(q)〉 compute the same ratio of the decay widths as in
Problem V.13. Which of the two results matches the data?

Problem V.15

Analyse the decay π− → ℓ−ν̄ℓ mediated by the V −A weak interactions of Problem V.13
from the point of view of the relative angular momentum of the final fermions. Compute
the amplitudes of the π− decay into ℓ− and ν̄ℓ with definite helicities. Discuss the signal
of parity violation.

2In fact this is only the charged current part of the full effective Hamiltonian of weak interactions that
is derived from the Standard Model.
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Problem V.16

The τ lepton is heavy enough to decay into hadrons. Using the term

Hweak =
GF√
2
[ψ̄(ντ )γλ(1− γ5)ψ(τ)]J

λ
hadr ,

of the weak interaction Hamiltonian, the values of pion and Kaon decay constants fπ and
fK obtained in Problem V.13, and the τ lifetime ττ = 2.906 × 10−13 sec. compute the
branching fractions Br(τ− → ντπ

−) and Br(τ− → ντK
−) and compare the predictions

with the data.

Problem V.17

Analyse the decay of a fully polarized τ− mediated by the V − A weak interactions
into π−ντ from the point of view of the relative angular momentum of the final particles.
Assume that the τ− spin projection onto the z-axis is +1

2
. Write down also the amplitudes

of the decay of a polarized τ− into neutrinos of definite helicities.

Problem V.18

What would be the energy distribution of electrons in the decay µ− → e−ν̄eνµ if the
leptonic weak current Jλ

lept entering the weak interaction Hamiltonian of problem V.13
had the form

Jλ
lept = ψ̄(e)γ

λ(1− λ̃γ5)ψ(e) + ψ̄(µ)γ
λ(1− λγ5)ψ(νµ) + . . . ,

with arbitrary complex λ and λ̃ parametrizing possible departures from the pure V − A
structure?

Problem V.19

Determine the angular distribution of electrons produced in the decay µ− → e−ν̄eνµ of a
fully polarized muon.

Problem V.20

Find the energy distribution of electrons produced in the decay µ− → e−ν̄eνµ if the
weak interactions are mediated by massive spin 1 bosons as in the Standard Model. The
relevant term in the Hamiltonian is

Hweak =
g2

2
√
2
W+

λ ψ̄(νµ)γ
λ(1− γ5)ψ(µ) +

g2

2
√
2
W−

λ ψ̄(e)γ
λ(1− γ5)ψ(νe) + . . . ,

where W+
λ = (W−

λ )† is the (free) field operator if the spin 1 boson and g2 is the coupling
constant. For simplicity assume that electron and neutrinos are massless.

Problem V.21

The most general (consistent with invariance of the strong interactions with respect to
parity and time reversal transformations) form of the matrix element of the hadronic weak
current (appearing in the effective Hamiltonian of weak interactions, given in Problem
V.13) Jµ

hadr = V µ − Aµ relevant for the free neutron decay is (see Problem II.32)

〈p(kp)|Jµ†
hadr(x)|n(q)〉 = e−ix·Q ū(kp) [f

µ
V (Q

2)− fµ
A(Q

2) γ5]u(q) .
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Here Q ≡ q − p and fµ
V,A = γµgV,A(Q

2) + iσµκQκrV,A(Q
2) + QµhV,A(Q

2) with a priori
arbitrary functions gV,A, rV,A and hV,A of the Lorentz invariant Q2. Arguing that in
computing the amplitude of the free neutron decay n → p e−ν̄e the terms other than
gV (0) and gA(0) can be neglected, and using the fact that gV (0) ≈ 1 (in agreement
with the CVC hypothesis of Feynman and Gell-Mann) determine the differential energy
distribution of the electrons produced in this decay. Use the neutron lifetime to find the
value of gA(0). Prove (analytically) that only |gA(0)| can be obtained in this way.

Problem V.22

Find the angular distribution of electrons produced in the decay n → p e−νe of a fully
polarized neutron. Derive the analytic expression for dΓ/d(cos θ)dEe and integrate it
numerically to find the coefficient a in the formula

1

Γ

dΓ

d(cos θ)
=

1

2
(1 + a cos θ) ,

for both possible signs of gA(0) and the value of |gA(0)| obtained in Problem V.21.

Problem V.23

Using the effective Hamiltonian of the weak interactions given in Problem V.13 compute
the partial width Γ(π− → π0e−ν̄e). Use the parametrization

〈π0(p)|Jλ†
hadr(x)|π−(q)〉 = e−ix·Q[(q + p)λf+(Q

2) + (q − p)λf−(Q
2)],

with two formfactors (see Problem II.32) f+(Q
2) and f−(Q

2), where Q = q − p, of the
the relevant hadronic matrix element. Argue then that the formfactor f−(Q

2) does not
contribute in the limit me → 0 (therefore can be neglected) and that f+(Q

2) can be
approximated by f+(0).

Next, write the hadronic current as the difference Jλ
hadr = V λ − Aλ of the vector and

axial vector currents and argue that the matrix element 〈π0(p)|A†
λ(x)|π−(q)〉 vanishes.

Making the assumption that the strangeness conserving part of the vector current V ∆S=0
λ is

the combination V 1
λ −iV 2

λ of the conserved Noether currents V a
λ , a = 1, 2, 3, associated with

the isospin symmetry of the strong interactions, justify neglecting f−(Q
2) in a different

way and predict the value of f+(0). Check if the prediction agrees with the experimental
data. Correct the prediction taking into account the Cabibbo angle θC by writing V ∆S=0

λ =
cos θC(V

1
λ − iV 2

λ ).
Finally, assuming that the strangeness changing part of Vλ has the form V ∆S=−1

λ =
sin θC(V

4
λ − iV 5

λ ), where V
a
λ , a = 1, . . . , 8, are now the Noether currents of the (approx-

imate) Eightfold Way SU(3) symmetry, find (still approximating f+(Q
2) by f+(0) and

neglecting f−(Q
2)) the rate of the decay K− → π0e−ν̄e and compare the prediction with

the data. Plot the doubly differential rate dΓ(K− → π0e−ν̄e)/dEπ0dEe as a function of
the electron energy Ee for representative values of the π0 energy3 Eπ0 . Check that in-

3The shape of the electron energy distribution for fixed π0 energy does not depend on the value of
f+(Q

2) which enters as a multiplicative factor and is therefore a good test of the theory being insensitive
to the approximation f+(Q

2) ≈ f+(0).
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tegrating numerically dΓ/dEπ0dEe over the appropriate domain, one recovers the decay
width Γ(K− → π0e−ν̄e).

Use the same approximations to compute also the rate of the decay K− → π0µ−ν̄µ
and compare the prediction with the data.

Predict also in this way (neglecting small effects of CP violation) the rates of the KL

and KS decays into π±ℓ∓νℓ as well as into K
±e∓νe and check how well these predictions

compare with the data.

Problem V.24

The Hamiltonian of the electromagnetic interactions has the form HEM
int = eJλ

EMAλ, where
Aµ is the photon field operator and the electromagnetic current is

Jλ
EM = −ψ̄(e)γ

λψ(e) − ψ̄(µ)γ
λψ(µ) − ψ̄(τ)γ

λψ(τ) + Jλ
EM hadr ,

(the minus signs arise because Qe = Qµ = Qτ = −1). Parametrize the hadronic matrix
element 〈Ωhadr|Jλ

EM hadr(x)|ρ0(q, σ)〉 respecting the electromagnetic current conservation
and compute (in the lowest order in e) the width of the ρ0 → ℓ−ℓ+ decay (for ℓ = e,
µ, or τ). Use the experimental data for Γ(ρ0 → e+e−) to fix the single constant in the
parametrization of the hadronic matrix element.

Next, using the relation

QEM = I3 +
1

2
B ,

(where QEM is the electromagnetic charge, I3 the third isospin component and B - the
baryon number operator) which holds true for all nonstrange (S = 0) hadrons, relate
the matrix elements 〈Ωhadr|Jλ

EM hadr|ρ0(q, σ)〉 and 〈Ωhadr|(Jλ
hadr)

†|ρ−(q, σ)〉 and predict the
width Γ(ρ− → ℓ−ν̄ℓ) for ℓ = e or µ. Why there are no data to which this result could be
compared? Predict also the rate of the decay τ− → ρ−ντ and compare with the data.

Problem V.25

Write down a renormalizable (i.e. a dimension [M]4 operator) interaction of a massive
vector (spin 1) boson with two scalars (i.e. two spinless particles). Consider all possibili-
ties: i) a neutral vector boson and a scalar and its anti-scalar, ii) a neutral vector boson
and two different neutral scalars, iii) a neutral vector boson and two different charged
scalars (of the same charge) iv) a charged vector boson and two different scalars (at least
one scalar must be charged).

Calculate the decay widths (assuming appropriate mass hierarchies): A) of a neutral
vector boson into scalar and its anti-scalar, B) of a charged vector boson into two different
scalars C) of a scalar into a vector boson and another scalar

Problem V.26

Using the appropriate interactions derived in Problem V.25 compute the differential decay
rates: A) of a polarized massive vector boson into two scalars having nonequal masses
(consider all possible projections of the initial particle spin onto the z-axis), B) of a scalar
into another scalar and a massive vector boson of helicity λ = 0 and λ = ±1. Analyze
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these decays from the point of view of the orbital angular momentum of the final state
pair and from the point ov view of the angular momentum conservation, using the partial
wave expansion of the final state.

Problem V.27

Compute the decay width of a neutral massive spin 1 particle into two photons induced
by the interaction

Hint = κ (∂µVν + ∂νVµ) f
µλf ν

λ ,

where Vµ is the field operator of the spin 1 particle and fµλ = ∂µAλ − ∂λAµ is the field
strength tensor operator of the photon. Does the result agree with the general Landau-
Yang theorem (Problem I.38)?

Problem V.28

In the Standard Theory the interaction of the W± massive charged vector bosons with
leptons has the form

Lint = − g2

2
√
2
W−

µ ψ̄(ℓ)γ
µ(1− γ5)ψ(νℓ) −

g2

2
√
2
W+

µ ψ̄(νℓ)γ
µ(1− γ5)ψ(ℓ) ,

where g2 = e/sW is the coupling constant (e > 0 is the electric charge and sW ≈
√
0.23

- sine of the Weinbeg angle). Compute in the lowest order in g2 the differential and
total decay widths of W− into the lepton-antineutrino pair for the spin projection of W−

onto the z-axis equal 0, 1 and −1. Assume that the spins of the final fermions are not
measured. Explain vanishing of the differential decay rates for some specific ℓ− emission
angles. Discuss the possible signals of parity violation.

Problem V.29

Analyze the decays of a W− with spin projection 0 and +1 onto the z-axis into the
lepton-antineutrino pair with definite spin projections from the point of view of the orbital
angular momentum. Compute also the rates of polarized W− decays into ℓ− and ν̄ℓ with
definite helicities.

Problem V.30

The Standard Theory predicts the interaction of the massive charged vector bosons W±

with the top (t) and bottom (b) quarks in the form

Lint = − g2

2
√
2
V ∗
tbW

−
µ ψ̄(b)γ

µ(1− γ5)ψ(t) −
g2

2
√
2
VtbW

+
µ ψ̄(t)γ

µ(1− γ5)ψ(b) ,

where g2 is the same coupling constant as in Problem V.28 and Vtb modifies the coupling
compared to the interaction of W± with leptons. Compute (in the lowest order in g2)
the differential and total decay widths of the fully polarized top quark into W+ and b.
Assume that the spins of the final state particles are not measured.
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Problem V.31

Compute the rates of decay of polarized top quark into W+ and b with definite helicities.
Decompose the amplitudes of the top quark decay into W+ and b with definite spin
projections onto the z-axis into the amplitudes corresponding to definite orbital angular
momentum and spin of the final W+b pair.

Problem V.32

The interaction

Hint = ψ̄sσ
µν(aLPL + aRPR)ψbfµν +H.c. ,

in which fµν is the photon field strength operator fµν = ∂µAν − ∂νAµ and σµν =
(i/2)[γµ, γν ] effectively describes (for aL ≈ 0) the flavour changing b-quark decay into
photon and s-quark.4 What is the physical dimension of the couplings aL,R? Write the
“H.c.” part of the interaction explicitly. Compute the b → sγ decay width assuming
that the initial b quark is unpolarized (average over possible projections of its spin) and
the spin and polarization of the final s quark and the photon are not measured (sum
over projections of the s quark spin and photon polarizations). To sum over the photon
polarizations use the Feynman prescription

∑

σ

ǫµ(k, σ) ǫ
∗
ν(k, σ) → −gµν .

Problem V.33

Using the interaction Hamiltonian

Hint = κ ψ̄sσ
µνPRψbfµν +H.c. ,

compute the width of the decays b → sγL and b → sγR where γL and γR are the left-
and right-polarized photons (i.e. of helicity −1 and +1, respectively) assuming that the
initial b is unpolarized and the spin of the final s is not measured. Check that the full
width Γ(b→ sγ) = Γ(b→ sγL)+Γ(b→ sγR) coincides with the one obtained in Problem
V.32 for aL = 0 and aR = κ.

Problem V.34

Write down the most general, compatible with the gauge invariance and parity conser-
vation in electromagnetic interactions, form of the decay amplitude of a neutral spinless
particle into two photons. Consider the cases of a scalar and of a pseudoscalar (in the
latter case this is the amplitude of π0 → γγ decay). Construct the corresponding effective
interaction Hamiltonian (Lagrangian). In both cases compute the decay widths.

Problem V.35

Using the effective Hamiltonian (Lagrangian) describing the π0 (having negative intrinsic
parity) decay into two photons derived in Problem V.34 to generate the Feynman rule

4In the standard theory of electroweak interactions this interaction is generated by loops of W bosons
and u, c and t quarks.
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Figure 1: Decay of a spinless particle S(a) into three other spinless particles S(b)SS of
which two are identical, with the intermediate state of a massive spinless particle.

also for off-shell photons compute the branching ratio of the decay π0 → γ e−e+ assuming
that the branching fraction BR(π0 → e−e+e−e+) is negligible. Compare the result with
the data.

Problem V.36

Using the effective Hamiltonian (Lagrangian) describing the decay into two photons of
a neutral mass M spin 0 particle S0 of positive intrinsic parity (derived in Problem
V.34) to generate the Feynman rule also for off-shell photons compute the branching
ratio of the decay S0 → γ e−e+ assuming that only decays S0 → 2γ, S0 → γ e−e+

and, perhaps, S0 → e−e+e−e+ but with a negligible branching fraction are kinematically
allowed. Compare the numerical value of BR(S0 → γ e−e+) with BR(π0 → γ e−e+) for
M =Mπ0 .

Problem V.37

Using the electromagnetic interaction Hamiltonian HEM
int = eJλ

EMAλ, where

Jλ
EM = −ψ̄(e)γ

λψ(e) − ψ̄(µ)γ
λψ(µ) − ψ̄(τ)γ

λψ(τ) + Jλ
EM hadr ,

compute the rate of the decay Σ0 → Λ0γ. To this end argue that the most general form
of the matrix element

〈Λ0(p)|Jλ
EM hadr(x)|Σ0(q)〉 ,

can, in the limit of exact SU(3) Eightfold Way symmetry (in which limit Λ0 and Σ0

belong to the same octet), be approximated by a single magnetic dipole term and the
formfactor F2(Q

2), Q = q − p, multiplying this term can be approximated by its value
at Q2 = 0 which is called the magnetic dipole transition moment µΛΣ. From the Σ0

lifetime τΣ0 = 7.4× 10−20 sec. find the numerical value of F2(0) and compare it with the
one given by PDG. Using the same approximations compute also the branching fraction
of the decay Σ0 → Λ0e−e+. Compare the result with the number quoted by PDG. Try
to apply the similar approach to the decay Σ+ → pγ. Why is the numerical value of
the constant parametrizing the hadronic matrix element 〈p(p)|Jλ

EM hadr(x)|Σ+(q)〉 much
smaller in this case? Can the relevant hadronic matrix element be parametrized by a
single constant only?
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f (a)

q

k2

S2

k1

S1

p
f (b)

p+ k1
f

Figure 2: Decay of a spin 1
2
fermion f (a) into another spin 1

2
fermion f (b) and two (distinct)

spinless particles S2 and S1 with the intermediate state of a massive spin 1
2
fermon f .

Problem V.38

By appealing to the “∆I = 1
2
” rule explain the ratio of the lifetimes of the Ξ− and Ξ0

baryons: τΞ− = 1.639× 10−10 sec., τΞ0 = 2.90× 10−10 sec. Ξ− decays with the branching
fraction of 99.887% into Λ0π− and Ξ0 into Λ0π0 with branching fraction of 99.525%.

Predict also the ratios of the branching fractions Br(Λ0 → p π−)/Br(Λ0 → n π0) and
Br(KS → π+π−)/Br(KS → 2π0) and compare these predictions with the data.

Problem V.39

Consider the decay of a spinless particle S(a) of mass M into two spinless particles: mass-
less S and massive S̃ (of mass m < M) which decays into another massless particle S and
yet another massless one, S(b) (distinct from S), see figure 1. Assuming that the relevant
interactions are given by

Lint = −g ϕ(a)ϕϕ̃− hϕ(b)ϕϕ̃ ,

and including in the S̃ propagator (by means of the subsitution m2 → m2 − imΓtot) the
total S̃ width Γtot show that for Γtot ≪ m (i.e. if the particle S̃ is a narrow resonance) the
decay rate can be approximated by Γ(S(a) → S̃S)× Br(S̃ → S(b)S). Compute the decay
rate Γ(S(a) → S(b)SS) numerically and study the role of the Bose-Einstein correlation
(i.e. of the interference of the two diagrans shown in figure 1) as a function of the ratio
m/Γtot.

Problem V.40

Consider the decay of a spin 1
2
fermion f (a) of mass M into another spin 1

2
fermion f (b)

and two (distinct) spinless particles S2 and S1 (see Figure 2) due to the interaction

Hint = ψ̄f(b)h(1− λγ5)ψfS1 + ψ̄f (cLPL + cRPR)ψf(a)S2 +H.c. ,

taking for simplicity all the final state particles to be massless. Include the total width
Γtot of the intermediate fermion f replacing m2 by m2 − imΓtot in the denominator of its
propagator and analyse the problem of applying the narrow width approximation, that
is the problem of approximating Γ(f (a) → f (b)S1S2) by the appropriate characteristics of
the two consecutive two-body decays: first of f (a) and then of f , assuming that the mass
m of the fermion f is smaller than the mass of the decaying fermion M and Γtot ≪ m (f
is a narrow resonance). In particular, show that for λ = 0, when the spin of f (b) is not
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measured, the width of the decay of unpolarized f (a) into f (b)S1S2 can be approximated
by

Γ(f (a) → f (b)S1S2) ≈ Γ(f (a) → fS2)× Br(f → f (b)S1) .

Study also the quality of this approximation by comparing this formula with the exact
decay width Γ(f (a) → f (b)S1S2) computed numerically.

Problem V.41 (Numerical exercise.)
Write a Monte Carlo numerical programme computing the distribution of the invariant
mass (p + k1)

2 of the particles f (b) and S1 originating from the decay f (a) → f (b)S1S2

considered in Problem V.40.
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Appendix. The Monte Carlo method

A very convenient method of numerical evaluation of complicated (multidimensional)
integrals is the Monte Carlo method. Suppose we want to evaluate the integral

I∆ =

∫

∆

dnx f(x) ,

where ∆ is some n-dimensional domain of (known) volume V∆. The estimate of I∆ is
provided by

Iest∆ =
1

N

N
∑

i=1

V∆ f(xi) ≡ 〈V∆ f〉 ,

where xi are N uniformly generated random points belonging to ∆. The error of the
estimate is given by

∣

∣I∆ − Iest∆

∣

∣ ∼ 1√
N
σN (∆) ,

where

σ2
N(∆) = 〈V 2

∆ f
2〉 − 〈V∆ f〉2 .

Thus the error of the estimate decreases always like 1/
√
N , independently of the number

of dimensions.
This method is particularily well suited for evaluation of integrals over complicated

domains (usually determined by some conditions that are hard to solve). To illustrate
this point suppose we need to find

I∆′ =

∫

∆′

dnx f(x) ,

where ∆′ is a domain whose boundaries are determined by some conditions ha(x) = 0,
a = 1, . . . , m. If these conditions are complicated the volume V∆′ of ∆′ may be not easy
to find, so that it is impossible to use directly the original Monte Carlo formula given
above. However if we chose a larger domain ∆ of known volume V∆ and such that ∆′ ⊂ ∆
, the estimate of I∆′ can be obtained by generating uniformly random points in the whole
domain ∆: it is simply given by

Iest∆′ =
1

N

N
∑

i=1

V∆ f(xi)Θ(xi) ≡ 〈V∆ f Θ〉 ,

with

Θ(xi) =

{

1 if xi ∈ ∆′

0 if xi /∈ ∆′ ,
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(if the boundaries of ∆′ are determined by a set of conditions ha(x) = 0, it is straightfor-
ward to reject points xi /∈ ∆′). Indeed, the formula can be rewritten as

Iest∆′ =
1

N ′

N ′

∑

i=1

(

N ′

N
V∆

)

f(xi)Θ(xi) ,

where N ′ is the number of generated points which belong to ∆′ and (N ′/N)V∆ is just the
estimate of the volume V∆′ (and can be replaced by it, if it is known). The error of the
estimate is then given by

∣

∣I∆′ − Iest∆′

∣

∣ ∼ 1√
N ′

σN(∆
′) ,

with

σ2
N (∆

′) = 〈V 2
∆ f

2Θ〉 − 〈V∆ f Θ〉2 .
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