
Quantum Field Theory of Fundamental Interactions. Problems set VI.

Problem VI.1

Consider the scattering process A+B → C +D. Show that in the center of mass system
(CMS) the factor F = 4

√

(k1 ·k2)2 −m2
1m

2
2 can be written as

F = 4|ki|
√
s ,

where ki = kA = −kB and

s = (kA + kB)
2 = (EA + EB)

2 ,

whereas the final state phase space factor dQ = (2π)4δ(4)(kA + kB − pC − pD)dΓpC
dΓpD

in the expression dσ = (1/F )
∑

|A|2dQ can be integrated to give

dQ =
|pf |

16π2
√
s
dΩpf

,

where pf = pC = −pD and dΩf = dφCdθC sin θC (φC and θC specify the direction of pC

with respect to kA), so that the differential cross section reads

dσ(θ, φ) =
1

64π2s

|pf |
|ki|

|A|2 dΩpf
.

Express |ki| and |pf | in terms of s and the particle masses.

Problem VI.2

The pp → π+D cross section (D stands for Deuterium of mass MD = 1874.98 MeV)
measured in the Hydrogen fixed target experiment with the proton kinetic energy1 Tp =
340 MeV is σ(pp→ π+D) = 0.18 mb. In turn, the cross section σ(π+D → pp) measured
in the Deuterium fixed target experiment with Tπ = 25 MeV is about 3 mb. By appealing
to the T-invariance of the strong interactions show that these result imply that pion is a
spinless particle.

Problem VI.3

Using the weak interaction Hamiltonian

Hweak =
GF√
2
J†
λJ

λ where Jλ = Jλ
lept + Jλ

hadr ,

Jλ
lept = ψ̄(e)γ

λ(1− γ5)ψ(νe) + ψ̄(µ)γ
λ(1− γ5)ψ(νµ) + ψ̄(τ)γ

λ(1− γ5)ψ(ντ ) ,

compute the differential (with respect to the final charged lepton direction) and the total
cross sections of the processes νµe

− → νeµ
− and ν̄ee

− → ν̄ℓℓ
−. Perform calculations both

1By kinetic energy one means Tp ≡ Ep −mpc
2 =

√

k2
p
c2 +m2

p
c4 −mpc

2.

1



in the CMS and in the Laboratory system (electron initially at rest). Give the total
CMS cross sections in barns, (1b = 10−28 m2) for

√
s = 10 MeV and 100 GeV. What is

the minimal (threshold) energy of νµ capable to initiate the process νµe
− → νeµ

− in the
Laboratory system? Explain the angular dependence of these differential cross sections
in the limit in which lepton masses can be neglected by appealing to angular momentum
conservation. What is the cross section for the process ν̄µe

− → ν̄eµ
−?

Problem VI.4

Using the Hamiltonian given in Problem VI.3 find the partial wave amplitudes T (j)
λℓλνe ,λνℓ

λe
(s)

of the process νℓe
− → νeℓ

− and determine the energy at which the lowest order (in GF )
elastic scattering amplitude fails to satisfy the unitarity bound. Ignore the possible exis-
tence of the neutral currents interaction.

Problem VI.5

Assume that the (charged currents) weak interactions are mediated by the spin 1 particles
W± of mass MW ≫ me, so that the Hamiltonian of weak leptonic processes is

Hweak =
g2

2
√
2
JλW−

λ +
g2

2
√
2
(Jλ)†W+

λ .

Find the partial wave amplitudes of the process νℓe
− → νeℓ

− and reconsider the determi-
nation of the unitarity bound.

Problem VI.6

Consider a field theory of four real scalar fields πa, a = 1, 2, 3 and η with the Lagrangian

L =
1

2

3
∑

a=1

(

∂µπ
a∂µπa −M2

π π
aπa
)

+
1

2
∂µη∂

µη − 1

2
M2

η η
2

−κ
2

(

η2 +

3
∑

a=1

πaπa

)

η − λ

4

(

η2 +
∑

a

πaπa

)2

.

Find in the lowest order amplitudes of the processes π+π− → π0π0, π+π+ → π+π+,
π+π0 → π+π0 etc. where the one particle states of π+, π− and π0 are the common
eigenstates of H0, T̂

2 ≡ (T̂ 1)2+(T̂ 2)2+(T̂ 3)2 (the total isospin) and T̂ 3 (the isospin third
component) operators found in Problem III.10. Construct the S-matrix elements in the
isospin basis

SI′,I′
3
;I,I3 = 〈I ′, I ′3,p1,p2|T exp

(

i

∫

d4xLI

)

|I, I3,k1,k2〉 ,

where |I, I3,k1,k2〉 are the two-particle eigenstates of H0, T̂
2 and of T̂ 3. Check by direct

calculation that SI′,I′
3
;I,I3 = SIδI′,IδI′

3
,I3 that is, that the amplitudes do not depend on I3.

Express the amplitudes A of all possible ππ scatterings in terms of the isospin amplitudes
AI .
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By considering transitions between all possible pairs of two-particle states (including
the η particle) show that in the limit

√
s ≫ Mη > Mπ, where s = (k1 + k2)

2, there
are only three independent nonzero amplitudes which correspond to diagonal transitions
within three different representations of the SO(4) group realizable on two-particle states
of spinless particles.

Problem VI.7

Realistic interactions of low energy pions (in the limit of vanishing their masses) are
described (to a good approximation) by the Lagrangian density

L =
f 2
π

4
tr
(

∂µU∂µU
−1
)

+ . . . ,

(the ellipses stand for terms with more derivatives) where U−1 = exp (iτaπa/fπ) with
τa the three Pauli matrices and fπ ≈ 93 MeV called the pion decay constant (its value
is determined in Problem VI.9). Using this Lagrangian find in the lowest order the
amplitudes of all possible binary scatterings (π+π+ → π+π+, π+π− → π+π−, π+π− →
π0π0, etc.) and show as in the preceding Problem that

A(I, I3,k1,k2 → I ′, I ′3,p1,p2) = δII′ δI3I′3A
I(k1,k2 → p1,p2) .

Find the isospin amplitudes AI ≡ A(I, I3,k1,k2 → I, I3,p1,p2).

Problem VI.8

The (fictitious) Hamiltonian of the three π mesons of massesMπ interacting with a neutral
spinless particle η of mass Mη has the form

Hint(x) =
κ

2

(

η2 +

3
∑

a=1

πaπa

)

η +
λ

4

(

η2 +

3
∑

a=1

πaπa

)2

.

Find the partial amplitudes T (l)(s) of the elastic π+π− scattering defined by the expansion
of the scattering amplitude A

A(s, cos θ) = 16π

∞
∑

l=0

(2l + 1)T (l)(s)Pl(cos θ) ,

where Pl(x) are the Legendre polynomials. Express the differential and total cross sections
in the CMS system through the amplitudes T (l)(s). What constraints on the coupling
constants λ and κ follow from the (asymptotic) unitarity bounds

N
∣

∣T (l)(s)
∣

∣ < 1 , N
∣

∣ReT (l)(s)
∣

∣ <
1

2
?

(N = 1 for different particles and N = 1
2
for identical final state particles). Optimize the

constraint on λ by considering amplitudes of all possible binary reactions (including also
those involving the η particle) for

√
s≫Mη, Mπ.
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Observe, that the partial wave amplitude T (l=0)(s) of the elastic π+π− scattering
computed in the lowest order has a simple pole at s = M2

η . Check that including the
width of the η particle in its tree level propagator by the substitution

i

q2 −M2
η

→ i

q2 −M2
η + iMηΓη

,

(with Γη computed in the lowest order) restores unitarity of the scattering amplitude
saturating (up to nonresonant terms) the basic unitarity relation (for l = 0).

Problem VI.9

Consider the interaction of the charged particles π of mass Mπ with a massive spin one
particle of mass MV

Lint = −igV µ (π∗∂µπ − ∂µπ
∗π)− λ(π∗π)2 .

Find the partial wave amplitudes T (l)(s) of the elastic π+π− scattering. As in the preced-
ing problem investigate the constraints imposed by unitarity on the partial amplitudes
T (l)(s).

Problem VI.10

Imposing the unitarity bounds on the pion scattering amplitudes determine the range of
energies for which the interaction (see Problem VI.7)

L =
f 2
π

4
tr
(

∂µU∂µU
−1
)

+ . . . ,

can be used in the tree level approximation.

Problem VI.11

Find the amplitudes of binary pion scatterings as in Problem VI.7 but taking into account
finite pion masses by using the Lagrangian

L =
f 2
π

4
tr
(

∂µU∂µU
−1
)

+
f 2
πM

2
π

4
tr
(

U + U−1
)

+ . . . ,

In the lowest order find the pion scattering phase shifts δ
(l)
I and the pion scattering lengths.

Problem VI.12

Using the interaction Hint(x) found in Problem III.11 write down the lowest order (in the
coupling constant) amplitudes of the pion-nucleon scattering. Check by direct calculation
that SI′,I′

3
;I,I3 = SIδI′,IδI′

3
,I3.

Problem VI.13

Do the same as in Problem VI.12 for the nucleon-antinucleon annihilation into two pions.
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Problem VI.14

Consider the Yukawa interaction Hint = h ψ̄ψϕ, where h is the coupling constant, of a
spinless neutral particle η with fermions f (and their antifermions f̄). Calculate in the
lowest order in h the differential cross section for elastic scattering ηf̄ → ηf̄ . Assume that
the initial antifermions are unpolarized and the final antifermion spin is not measured.

Problem VI.15

Let ψa and ψb be the field operators of fermions (antifermions) fa (f̄a) and fb (f̄b) with
masses ma and mb, respectively. Using the interaction Lint = −igaψ̄aγ

5ψaϕ− igbψ̄bγ
5ψbϕ

compute in the CMS the differential and total cross sections for processes: faf̄a → fbf̄b,
faf̄b → faf̄b and faf̄a → faf̄a. Assuming that ma, mb ≪ M , where M is the mass of the
neutral spinless particle described by ϕ write down in each case the effective Lagrangian
with contact interaction of fermions which reproduces the scattering amplitude for energies
of the colliding fermions much smaller than M .

Problem VI.16

In quantum electrodynamics compute (in the lowest order in e) the CMS differential and
total cross sections for production of a µ−µ+ pair in the e−e+ collision. Compare the
angular distribution of the produced µ− with the distribution of (hypotetical) spinless µ̃
particles produced in the e−e+ collision.

Problem VI.17

Explain the dependence on the scattering angle of the cross sections computed in Prob-
lem 16 by studing in the high energy limit (negligible particle masses) annihilation and
production of particles of definite helicities.

Problem VI.18

In quantum electrodynamics of electrons and photons write down the lowest order ampli-
tude for elastic γ e− scattering (the Compton process) and check that it is gauge invariant,
that is, it vanishes when any of the two photon polarization vectors ǫµ(ki, λi) is replaced
by the four-momentum kµi of the corresponding photon. Compute the differential (in the
laboratory frame) and total cross sections.

Problem VI.19

Supersymmetric theories predict the existence of a spin 0 partner for each fermion (e.g.
the supersymmetric partners of e± are the selectrons ẽ±) and of neutral fermions N0

called neutralinos (which are supersymmetric partners of the Higgs boson and gauge
bosons). Calculate the differential cross section for the process γN0 → e−ẽ+. Assume the
most general (not necessarily parity conserving) form of the neutralino-electron-selectron
vertex (photon interaction vertices are standard). Fix the relative sign between the two
amplitudes contributing in the lowest order by appealing to the gauge invariance.

Problem VI.20

Consider scattering of photons on charged (charge Q in units e > 0) spinless particles of
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mass M in the Laboratory frame. The interaction is

L = ieQAµ(∂µφ
†φ− φ†∂µφ) + e2Q2AµAµφ

†φ .

Compute the differential cross section for finding the scattered photon at an angle θ (with
respect to the direction of the initial photon) with polarization λ2, if the initial photon
has momentum k1 and polarization λ1. Find also the differential cross section averaged
over polarizations of the initial photon in the case the polarization of the final photon is
not measured. To compute the latter cross section, construct explicitly the polarization
vectors of the photons choosing them to be purely spatial (this eliminates two of the
three terms in the amplitude) and perform the necessary sumation over polarizations
using these vectors. To appreciate, how more efficient this approach is, recover the same
result using the Feynman trick

∑

λ ǫµ(k, λ)ǫ
∗
ν(k, λ) → −gµν .

Problem VI.21

Consider the production process S1(k1)+S2(k2) → S̃1(p1)+ S̃2(p2)+ S̃3(p3) where all Si

and S̃i are spinless particles. The proces occurs (in the tree Feynman diagram) through
the s-channel annihilation of S1S2 into a (virtual) spinless particle of mass m which
goes into S̃3 and another spinless particle S∗ of mass M and width Γtot which decays
producing S̃2 and S̃1 (there may also be other Feynman diagrams contributing to the
total amplitude A[S1(k1) + S2(k2) → S̃1(p1) + S̃2(p2) + S̃3(p3)]). Show that if Γtot ≪M
(S∗ is a narrow width resonance) then for

√
s > M the cross section σ(S1S2 → S̃1S̃2S̃3)

can be approximated by

σ(S1S2 → S̃1S̃2S̃3) ≈ σ(S1S2 → S̃3S
∗)× Br(S∗ → S̃1S̃2) .

Compare this approximation with the full σ(S1S2 → S̃1S̃2S̃3) cross section numerically by
taking the initial and final particles to be massless (so that the results of the Problem V.2
for the final phase space can be used). Take e.g. m = 100 GeV, M = 10 GeV (so that the
peak associated with the s-channel resonanse of mass m does not distort the cross section
appreciably) and plot both cross sections as a function of

√
s for 1 GeV <

√
s < 30 GeV

and several values of Γtot.

Problem VI.22

Let the interaction of a massive gauge boson Z0 with electrons be Lint = −gZ0
µψ̄eγ

µψe.
Show that at the tree level the following relation holds

σ(e−e+ → Z) =
12π2

MZ

Γ(Z0 → e−e+) δ(s−M2
Z) ,

where
√
s is the energy in the e−e+ center of mass system and MZ is the Z mass. Show

also that the sum over the three polarizations of the Z boson can be done using −gµν
instead of −gµν + qµqν/M

2
V .
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Problem VI.23

Assume the coupling of the massive spin 1 boson Z0 to leptons ℓ of the following general
form

Lint = −ψ̄ℓγ
κ(cLPL + cRPR)ψℓZ

0
κ .

Compute in the lowest order the forward-backward asymmetry of the e+e− scattering into
µ+µ− defined in the center of mass system:

AFB =
σ+ − σ−
σ+ + σ−

,

where

σ+ =

∫ +1

0

d(cos θ)
dσ

d(cos θ)
, σ− =

∫ 0

−1

d(cos θ)
dσ

d(cos θ)
,

Express AFB through cℓL,R.
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