
Quantum Field Theory of Fundamental Interactions. Problems set 7.

Problem 1. Find the expression for the time derivative of the chronological product:

∂x0T [A(x)B(y)C(z)] ,

of three arbitrary bosonic (i.e. transforming under rotations as a sum of integer spin
terms) operators A(x), B(y) and C(z).

Problem 2. Consider the ϕ4 theory. Justify the operator relation

(∂2
(x) +M2

B)T {ϕB(x)ϕB(y1) . . . ϕB(yn)} +
λB

3!
T
{

ϕ3
B(x)ϕB(y1) . . . ϕB(yn)

}

= −i
n
∑

k=1

δ(4)(x− yk)T {ϕB(y1) . . . [without ϕB(yk)] . . . ϕB(yn)} ,

where ϕB ≡ ϕH is the bare canonical Heisenberg picture) field operator. Check this
relation through order λB in the perturbative expansion for n = 1 computing its
matrix element between two one-particle states.
Hint: Computation of the matrix elements is most straightforward using the phys-
ically renormalized field operator ϕph = Z−1/2ϕB ≡ Z

−1/2
(OS) ϕB.

Problem 3. Assuming validity of the perturbative expansion investigate the op-
erator ϕ3

B(x) as the interpolating field in the ϕ4 theory. Reduce first the matrix
element

〈(p1,p2)−|ϕ
3
B(x)|(k1)+〉 ,

computed to order λ2
B and show that the S matrix element 〈(p1,p2)−|(k1,k2)+〉 can

be obtained from it with the help of the LSZ prescription. Try to generalize the proof
to the case of more ϕ3

B operators used as the interpolating fields for the remaining
final/initial state particles. Can the operator ϕ2

B(x) be used in the perturbation
expansion as the interpolating field?

Problem 4. Check (extending the analysis to the one loop order) that the equation
of motion of the ϕ4 theory

(∂2
x +M2

ph)ϕB(x) = −
λ

3!
ϕ3

B(x) − (M2
B −M2

ph)ϕB(x) ,

applied to the operator ϕB(x) in the LSZ formula

iZ−1/2
ϕ lim

k2
2→M2

ph

∫

d4x e−ik2·x (∂2
x +M2

ph) 〈(p1,p2)−|ϕB(x)|(k1)+〉 ,
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leads to the same (connected part of the) S matrix element 〈(p1,p2)−|(k1,k2)+〉 as
the standard LSZ prescription.

Try to apply the equation of motion once and then twice to transform the formula

(i)2Z−1
ϕ lim

k2
2→M2

ph

lim
k2
1→M2

ph

∫

d4x

∫

d4y e−ik1·x e−ik2·y (∂2
x +M2

ph)(∂
2
y +M2

ph)

×〈(p1,p2)−|T [ϕB(x)ϕB(y)]|Ω+〉 .

In both cases study to the one-loop order how the known form of the S matrix
element 〈(p1,p2)−|(k2,k1)+〉 is recovered.

Problem 5. Suppose in a theory there are two scalar fields (complex or real) ϕ1 and
ϕ2 which can mix, i.e. the two-point Green’s function 〈Ω|T [ϕ1B(x1)ϕ2B(x2)]|Ω〉 6= 0.
Formulate the prescription for calculating S matrix elements with particles crated
from the vacuum by the operators ϕ1rmB and ϕ2B in the initial and/or final state.

Problem 6. Consider the lowest order amplitude of the Compton scattering on
spin 0 particles of electric charge Q. Using the appropriate equation of motion of
the photon field operator in the LSZ reduction formula show that the amplitude can
be obtained also from the vacuum Green’s function

〈Ω|T ∗[Jν
EM(x2)J

µ
EM(x1)φB(y2)φ

†
B(y1)]|Ω〉 ,

where Jµ
EM(x) = Q iφ

†
B(x)

↔

∂
µ

xφB(x) is the electromagnetic current (Heisenberg pic-
ture) operator and T ∗ is the covariant chronological product resulting from adding
to the standard chronological product of the so-called “sea-gull” operator term
Sνµ(x2, x1):

T ∗[Jν
EM(x2)J

µ
EM(x1) . . .] ≡ T [Jν

EM(x2)J
µ
EM(x1) . . .] + T [Sνµ(x2, x1) . . .] .

Find the explicit form of Sνµ(x2, x1) in this case.

Problem 7. In the ϕ4 theory in d = 4 dimensions construct (up to one-loop order)

a renormalized operator
[

1
3!
ϕ3
]

R
which has finite matrix elements between the in

and out states. Show that if the counterterms to this operator are specified either
by the MS (or MS) scheme or the by the requirement that for q = 0 (where q is the
momentum transfered through this operator) the Green’s function

G
(4)
ϕ3 (p1, p1, p3, q) =

∫

d4q

(2π)4
e−iq·y

3
∏

i=1

(

∫

d4pi

(2π)4
eipi·xi

)

×〈Ω−|T
{

ϕR(x1)ϕR(x2)ϕR(x3)
[

1

3!
ϕ3(y)

]

R

}

|Ω+〉 ,
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takes on the tree-level form, the renormalized equation of motion

(

∂2
x +M2

R

)

ϕR(x) = −λR

[

1

3!
ϕ3(x)

]

R
,

in which λR is defined either in the MS (or MS) scheme (in which case M2
R = M̂2

and λR = λ̂µ−2ǫ) or in the OS scheme with the zero momentum subtraction in the
four-point 1PI vertex function (λR = λph), is equivalent to the equation of motion
for the bare canonical operator ϕB

(

∂2
x +M2

B

)

ϕB(x) = −
λB

3!
ϕ3(x)B .

Problem 8. Working in the MS scheme with the ϕ3 theory in d = 6 dimensions
construct (up to one-loop order) renormalized operator

[

1
2
ϕ2
]

R
. As in Problem 7

show that the renormalized operator equation of motion

(

∂2
x + M̂2

)

ϕR(x) = −µ−ǫĝ

[

1

2
ϕ2(x)

]

R
,

is equivalent to the equation of motion for the bare operator ϕB.

Problem 9. For the theory defined by the Lagrangian

L =
1

2
∂µϕ∂µϕ−

1

2
M2ϕ2 + iψ̄ 6∂ψ −mψ̄ψ − igψ̄γ5ψϕ−

λ

4!
ϕ4

in d = 4 dimensions construct (up to one-loop order) renormalized operators
[

1
3!
ϕ3
]

R
,

[ϕψ]R,
[

ψ̄γ5ψ
]

R
and

[

ψ̄ψ
]

R
which have finite matrix elements between the in and

out states. As in the preceding Problems show that if the operator counterterms
are fixed in the MS scheme similarly as the counterterms in the interaction Vint, the
operator equations

(

∂2
x + M̂2

)

ϕR(x) = −λ̂µ−2ǫ
[

1

3!
ϕ3

R

]

R
(x) − iĝµ−ǫ

[

ψ̄γ5ψ
]

R
(x) ,

( 6∂ − m̂)ψR(x) = iĝµ−ǫ [ϕψ]R (x) ,

are equivalent to the equations sitisfied by the bare operators ϕB(x) and ψB(x).

Problem 10. In ϕ4 theory construct all possible renormalized operators of dimen-
sion 4 in the MS (or MS) renormalization scheme.
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