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Chapter 1

Elements of classical information

1.1 Shannon entropy — Data compression

1.1.1 Motivation

Imagine you want to transmit a message where cach letter can be one of
4 symbols a, b, ¢, d via a binary channel — encoding the message as a sequence
01111010.... How to encode the symbols to encode the message using the
smallest number of bits?

If symbols a, b, c,d appear with equal frequency p(a) = p(b) = p(c) =
p(d) = 1/4 you will probably assign two digit encodings to them:

symbols a b ¢ d
probability || 1/4 | 1/4|1/4 | 1/4 (1.1)
encoding | 00 | 01 | 10 | 11

You need two bits per letter transmitted. Imagine now that in the message
symbols appear with not equal frequencies e.g. p(a) = 1/2, p(b) = 1/4,
p(c) = 1/8, p(d) = 1/8. What is the most economical way to encode the
symbols? You may try this:

symbols a b ¢ d
probability || 1/2 | 1/4 |1/8]1/8 (1.2)
encoding 0 |10 {110 ] 111

On average you use 1/2-1+4+1/4-2+41/8-3+1/8 -3 = 1.75bits per let-
ter transmitted!. The optimal transmission rate is quantified by Shannon
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entropy. Notice that these are instantaneous codes, we know when a given
codeword ends and can decode it without a reference to future codewords.

1.1.2 Definition

Let X be a random variable, with possible outcomes = € {0,1,2,...,}.
N ——

&
Let p(x) be a probability of outcome z. Shannon entropy is defined as:

== p()log, p(z). (1.3)

z€X

H(X) is given in bits. Notice that H(X) > 0. H(X) should intuitively be
understood as a measure of randomness of random variable X. Alternatively
one can regard it as an amount of information one gets once learning the
exact outcome of the variable. Some simple examples if we consider only
binary outcomes X = {0, 1}:

e p(0) =1/2, p(1) = 1/2 — complete randomness: H(X) =1
e p(0) =0, p(1) =1 — no randomness: H(X) = —0log,0 =0

o p(0)=p, p(1) =1—p, H(X) = —plogyp — (1 — p)logy(1 — p)

Let us calculate Shannon entropy for examples presented in previous subsec-
tion. In the case of equal frequencies we have H(X) = —4-1/4log,1/4 =2,
in the second example we have

H(X)=—1/2log,1/2 —1/4log1/4 —2-1/8log1/8 = 1.75. (1.4)

Let us denote h(p) = —plog, p. The function is plotted in Fig. 7?7 This
function is concave which means that for any weights w; > 0, which sum up
to one we have: » wih(p;)) < h(3_, wip;). Since H(X) = > . .y h(p(zi)),
and the sum of concave functions is concave we have:

%H(X)%;Zh@(m ( Zp ><h (1/%), (L)

T;EX

where X denotes the number of elements in the set X. Hence we have
H(X) <log, X.
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Figure 1.1: The function h(p) = —plog, p. It is visible it is concave

Given many variables X1, ..., Xy which joint probability distribution is
p(z1,...,xN) their entropy is defined:

H{Xy;00 5 Xp) = Z —p(x1,...,2Nn)logy p(21,. .., 2zN). (1.6)

Tl TN

Notice the inequality:

H(X) < H(Xy,..., Xy) < Y H(X)), (1.7)

which means that the entropy of the full system is larger then each of sub-
systems, and that correlations decrease the entropy.

In particular given N independent realization of random variable X, we
have:

H(XN) = NH(X). (1.8)

1.1.3 Relative entropy

For future use we introduce here the concept of relative entropy. The
relative entropy D(p || ¢) of probability distribution p with respect to ¢ is
defined: .

D(plla) =2 p l_og-z% (1.9)
i 1i
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It is a measure of distinguishability between two probability distributions.
Notice, however, that this is not a symmetric function and hence cannot be
regarded as a proper measure of a distance between probability distributions.
The relative entropy is always positive:

i qi
D(plla) =~ pilog, o < 1og; (Zp,—;) =10, (1.10)

2 1

where we have used concavity of —log, ¢ function.

1.1.4 Shannon source coding theorem

Given the random variable X with Shannon entropy H(X) the minimal
average length of a codeword L we need to use is bounded by:

H(X)<L<H(X)+1 (1.11)

Lemma. Kraft inequality We first proof the Kraft inequality. Suppose
we want to have a code with codewords of length [;. If the code is to be
instantaneous we have a constraint on the lengths of the codewords. Consider
a tree, where at each node a branch splits into two. . Let [, be the
maximum length of a codeword, which corresponds to the number of levels in
the tree. We have total 2™ leaves and hence this many different codewords.
If a given codewords has length /; which is shorter then /.., however, it
automatically exclude 2max—li codewords from being used (all leaves having
steming from this branch). Since the total number of codewords is 2t we
have an inequality: Zi Qlmax—li < 9lmax wwhich leads to:

2t (1.12)

called Kraft inequality. A codeword of given lengths exist iff the Kraft in-
equality is satisfied. .
Proof. Given probabilities p;, we construct codewords of length:

i ]
logo— < Il; < loga— + 1. (1.13)
Pi Pi

Note that the first inequality is equivalent to p; > 2%, and the Kraft in-
equality is satisfied. The average codeword length reads:

H(X) <) pili < H(X)+1. (1.14)
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What remains to be proven is that one can do no better then H(X). Let
us define probability distribution ¢; = 2”"/2,1.2*"7. Positivity of relative
entropy D(p || ¢) leads to:

—Y " pillogypi —logy i) = — > pi(logy pi — s —log, » 27) >0 (1.15)

> pili = H(X) + > pilog, (Z 2’1) (1.16)

Thanks to the Kraft inequality the second term on the right hand side above
is nonncgative. Finally we have

> pili > H(X). (1.17)

Which ends the proof B. Actually this inequality holds also for non-instantaneous
codes the proof is a bit more complicated then.

Instead of single letter encoding consider block encoding when we use
codewords encoding N letter words. If Ly denotes average codeword length
for N-letter block encoding, using Eqs (1.8,1.11) we have:

NH(X)<Ly<NH(X)+1 (1.18)
hence £ .
N ;
< = < H(X — )
H(X) < = ( )—I—N (1.19)

As a result asymptotically Ly /N limy .o, = H(X), so the rate of transmis-
sion given by Shannon entropy can be saturated in the limit of large V.

1.1.5 Typical sequences

How intuitively understand that optimal data compression of N bits can
be done using N H(X) bits. Let X be binary random variable, taking value
0 with probability ¢ and 1 with probability 1 —¢. Let us take a long sequence
of N realizations of X. If sequence is long we will usually have sequence with
approximately g/N bits 0 and (1 —q)N bits 1. Probability of a given sequence
is

p(x1,...,zN8) = ¢V (1 — q) IV (1.20)
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Hence:

log, p(z1,...,xx) = — NH(X) (1.21)
p(zy,...,zy) =2~ VHX), (1.22)

Since these are approximately only sequences that happen , we have 2V#(X)
typical sequences. In compression when encoding large blocks in order to
transmit 2"V sequences we need only use 2V7(X) codewords. This is an intu-
itive understanding of the result from previous section.

1.2 Shannon mutual information — Communi-
cation over noisy channel

Consider a channel which is noisy and can flip transmitted bits with some
probability. Let X be input random variable and Y be a random variable de-
scribing the output of the channel. Conditional probability p(y;|z;) describes
the action of the channel. One would like to know how to protect transmitted
information against errors and what is maximal number of logical bits that
can be transmitted per one physical bit sent (channel capacity). We start by
quantify correlations between two random variables X and Y.

1.2.1 Conditional entropy

Let joint probability of X and Y be p(z;,y;). One quantifies the amount
of randomness of random variable Y provided one knows the value z; of
random variable X using conditional entropy:

H(Y |ai) = = 3 p(gsle:) logs plysla) (1.23)

On average the conditional entropy reads:

H(Y|X) = Zp p(y;l:) logy pysla:) = =Y p(wi, ;) logy ply;|:).
ij
_ (1.24)
This characterizes randomness of random variable Y provided variable X is
known.
7
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1.2.2 Mutual Information

Let us introduce the measure of correlation between random variables X
and Y which will represent: How much do we learn about variable Y once
we learn the value of variable X:

I(X:Y)=H(Y)-H(Y|X) (1.25]
and is called mutual information. It is symmetric in X, Y since:
IX:Y)=H(X)+H(Y)-H(X,Y). (1.26)

It is zero iff X and Y are uncorrelated. Notice that if p(z, y) is the joint prob-
ability distribution, and by p,(x), p,(y) we denote its marginal distributions
we have:

I(X :Y) = D(p(z,y) || p=(x)py(y)), (1.27)

which reflect the fact that mutual information measures in some sense the
distance between p(z,y) and uncorrelated probability distribution with the
same marginals.

1.2.3 Channel capacity

Let us consider a channel, which action is described by p(y;|z;). Let the
input random variable be X. Let us transmit N bits via the channel using
typical sequences. Transmitting a sequence of N bits, there are on average
2HYIX) typical error sequences (similar argument as in Sec. 1.1.5). . At the
output we have 2VH#() typical sequence. For reliable transmission we can
use at most 2VH(Y) /oNHIYIX) — oNI(X:Y) different inputs — we cannot use all
typical sequences. Hence we can transmit at most (X :Y) logical bits per
one physical bit transmitted. Moreover this rate can be achieved. .

Channel capacity is defined (Shannon noisy channel theorem):

C=maxI(X:Y). (1.28)

p(x)

Where we maximize over input probability distribution. For binary symmet-
ric channel optimal choice for input probability distribution is p(0) = p(1) =
1/2.
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Chapter 2

Quantum state estimation -
Quantum->Classical channel

2.1 State discrimination - two states

Imagine you are given one of two states |1;), [1)2). Your goal is to perform
a measurement in order to determine which state we received.

The task is simple provided states are orthogonal (1) |¢) = 0. One simply
performs projective measurement in {|i1), [¢»2)} basis. Distinguishability is
perfect. Let us now take nonorthogonal, nonidentical states 0 < |(11]|¢2)| <

1. Assume for simplicity that both states are equiprobable.

2.1.1 Minimizing probability of error

We want to minimize probability of error i discrimination. Let p(j|i) be
the probability that we guess the state j when the actual state is i. We
need to find the optimal measurement that will minimize the error. Since
this is a two outcome measurement we model our measurement with two
POVM: M,, M, (3, M; = 1). Probability distribution is given by p(j|i) =
Tr (M;|¢i) (Wi|) = (i| Mj]api). Error we want to minimize is given by

1 i
E= §<'¢’1|MQ|¢1> + 5 (V2| Ma[¢ha). (2.1)
We want to minimize E over {M;}. Substituting M, = 1 — M; we have:
1 I
E =5 + 5T [Mi([) (el — [92) ()] (2:2)
9
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Without loosing generality we may take:

.0 0 sin ¢ ey
[t) = sm§|0> + cos §|1> = < cos% ) (2.3)
0 ‘9 B —sing )
[tho) = — sin §|0> + cos §|1) = ( Cosg ) . (2.4)

Introducing

W = |aha) (Y| — |¢1) (¢| = ( (1) (1) > = |[+)(+]| = |-){(~], (2.5)

where |+) = (|0) + [1))/v/2, | =) = (|0) — |1))/v/2. We see that the problem
amounts to finding M, such that TrWW M, is maximal. Keeping constraints
M, > 0, and My > 0 (which means M; < 1 - has to have all eigenvalues no
bigger than 1). Notice that TrWM,; € [—1,1] since for every [¢) we have
TrM;|y)(¥] € [0,1]. Hence the optimal choice is to take: M; = |[+)(+| since
it gives TrW M, = 1. The optimal POVMs and minimal discrimination error
thus read:

B = S0+ a0 ~ |9 = L1 = sine) (2.6
Notice that the optimal measurement is an von Neumann projection measure-
ment (this is also true for discrimination of N linearly independent states).
Only for § = 7/2 we have F = 0, hence perfect discrimination is possible
only when states are orthogonal. This has profound consequences and leads
to Quantum Cryptography. Replacing sin 6 with a function of scalar product
between two states we get:

B=3 (1~ VI [iwaP) (27)

This formula can be used easily for arbitrary states.

Many copies Imagine that as above you are given with probability 1 /2
either [¢1), or [1),), but this time not a single copy but N copies. So in fact
you are given either [11)®V or [¢5)®N. Using Eq. 2.7 we get:

By = 5 (1= VI~ [{ilaPY) (2.8)
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Notice that if (¢|1)e) < 1, Eny1 < Ex so more copies we have the better is
distinguishability. I particular

lim Ey =0, (2.9)
N—o0

which means one can distinguish quantum states perfectly once one has an
arbitrary large number of copies.

2.1.2 Unambiguous discrimination

We again face the problem of discriminating between [¢1), [15), but this
time we only tell which state we received when we are sure. Otherwise we
say we do not know. The goal is to find a measurement strategy that will
minimize the probability of cases when we do not know.

The measurement will be described by three POVMs (it is clear that von
Neuman measurement cannot descirbe this): M, My, Mo, corresponding to
the result that leads us to guess correctly that the state was |¢;), result that
leads us to guess correctly that the state was [1);), and the result when we
say we do not know.

Unambiguity conditions read:

(a|Milth2) =0 (1| Ma|th) =0, (2.10)

since My > 0, My > 0, this leads to My = & [¢3 ) (3|, Mz = &|vi) (]
Symmetry between [¢1), [¢) allows us to take & = & =: €. Positivity of
M; requires § > 0. However, we have additional constraint, namely M, =
I — M, — My > 0. Using parametrization of states given in Eq. 2.3 this
condition can be written as:

V= 1-eudet raubi = (TS0 0 )

(2.11)

This means that £ is limited by £ < 1/(1 + cos#). Taking &€ = 1/(1 + cos6)
we find that the optimal probability of successful discrimination reads:

L= STE M) (Wl + o)) = 1 = (k). (212)
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2.1.3 Mutual information in ambiguous and unambigu-
ous discrimination

What is better strategy ambiguous or unambiguous strategy if one aims
at optimizing mutual information between classical values X = 0,1 encoded
in states |1), |¢2) and values Y obtained in the measurement.

For optimal ambiguous discrimination we have random variables X =

0,1}, Y = {0, 1}:

p(1]1) = p(0]0) = p, (2.13)
p(1]0) = p(0|]1) =1 — p,, where (2.14)
P = % (1 +4/1— |(1/)1\'z/)2>|2) = —;—(1 + sin 0) (2.15)

Thus mutual information I,(X : Y') reads:
I(X :Y) =1+ p,log, pe + (1 — pa) logy(1 — pa) (2.16)
In unambiguous discrimination we have X = {0,1}, Y = {0,1,7}

p(1[1) = p(0]0) = p (2.17)
p(?[0) =p(?|1) =1—p, where (2.18)

Py =1 = [{1]1he)] =1 — /| cosb| (2.19)
And the mutual information reads:
LAX : Y )= py (2.20)

Fig. 2.1 presents mutual information in both ambiguous and unambiguous
discrimination.

12

j‘:‘ . Nabrodowe
“4s |aboratorium
444/ Technologii
444 Kwantowych



INNOWACYJNA UNIA EUROPEJSKA
GOSPODARKA 2O RESONAUNEES

NARODOWA STRATEGIA SPOJNOSCI

0.8}
0.6¢

0.4

Figure 2.1: Comparison of mutual information obtained in the optimal am-
biguous I, and unambiguous [, discrimination of two states
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Chapter 3

Quantum cloning -
Quantum->Quantum channel

3.1 No-cloning theorems

(Classical information in its digital form can be copied perfectly. Can you
copy a unknown quantum state that is given to you. First of all you may
grow suspicious since you have learned before that one can not discriminate
nonorthogonal quantum states perfectly and hence one can not just measure
and then reprepare more copies of the state, as this will induce unavoidable
errors. But can you just copy an unknown state without measuring it? The
answer is again no!

The general framework for cloning is the following. Consider the Hilbert
space H = H; ® Hy ® Hy, where H; is the space supporting the state of
a system to be copied, Hy supports the states of the system which is our
“blank page”, and Hx supports all other degrees of freedom including the
copying machine and the rest of the universe. We say that the operation U
(according to quantum theory should be unitary) performs cloning of a state
[y iff:

UlY) ®10) ® | Xo) = [¥) @ [¢) ® | Xy)- (3.1)

In other words should produce a state [¢)) in both systems 1 and 2 while
the remaining degrees of freedom can change depending on the cloned state.
Notice that the output state is a product state — there is no entanglement
between subsystems. It has to be so, otherwise clones when inspected inde-
pendently would be in mixed states.

14
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3.1.1 Linearity — No-cloning of linearly dependent states

Theorem. If there is a quantum machine that can copy two quantum
states [¢1), |[t2) perfectly, then it cannot copy the state which is their linear
superposition |¢) = alyy) + b|vg).

Proof. If an operation U clones two states [¢1), |¢2) we have:

Ultn) ®10) ®1X0) = 1) ® [n) @ |Xi) (32
Ult) ©10) ® X} = 1) © 2) @ |Xs). (53

Thanks to linearity of Quantum Mechanics:

Ulg) ® |0) ® | Xo) = aUlth1) ® |0) ® [Xo) + bU[¢p2) ® |0) ® [ Xo) =
alth)) ® |[P1) ® | Xy, ) + [Pa2) ® |h2) ® | Xy,) (3.4)

whereas for cloning of |¢) we would like to have at the output:
|8) ® ) ® | Xo) = (althr) + blun)) ® (alghr) + blaa)) ® | Xo) (3.5)

Clearly cloning of |¢) is impossible.

The above proof only made use of linearity of transformation and not
unitarity. In particular the above proof does not forbids cloning of two
nonorthogonal states. But this will come... Nevertheless the proof basing
on linearity is useful since it also forbids probabilistic cloning of linearly de-
pendent states — probabilistic transformation need not be unitary bur are
always linear.

3.1.2 Unitarity — No-cloning of non-orthogonal states

Theorem There is no deterministic cloning transformation (unitary) per-
forming cloning for two nonorthogonal state

Proof. Let [y, |42) be two different nonorthogonal states: 0 < [(¢1[2)| <
1. Assume the cloning is possible:

Ul) ® 0) ® [Xo) = 1) ® [¥1) ® | Xy,) (3.6)
Ulthe) ® [0) ® | Xo) = [th2) ® |h2) ® | Xy,)- (3.7)

Thanks to unitarity scalar product of input states should be equal to scalar
product of output states:

(1 [12)(0[0) (Xo| Xo) = (r[2) (¥h1]¢h2) (X, | Xy (3.8)
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this leads to:

<’d)1|l¢2>(1 - <1/)1lll/)2><XdJ1 \X‘1/1-2>) - 0 (39)
which is only possible for (1)) = 0 or (¥1|yy) = 0, hence we arrive at
contradiction and conclude that cloning of nonorthogonal states is impossible.

3.2 Optimal cloning

Since the perfect cloning is impossible except for very limited cases, we
would like to investigate what is the best quality of copies that can be ob-
tained. Let us consider a general problem of producing M imperfect copies
out of N perfect originals [¢)®N. Let us consider unitary transformation U
acting on the Hilbert space H®M ® Hy, where Hy represents the space of
the cloning machine:

U: |[9)eN @ |0)°M N @ | X) — |¥)p x- (3.10)

The output |¥), x is in general an entangled states of all M copies and the
cloning machine. Tracing out the space X we obtain the state of M copies:

pyv = Tex (|¥)(¥]) (3.11)

It should be remembered that this state typically will contain correlations
between copies. Comparing the obtained state with the perfect M copies
state |¢)® can be done using global fidelily figure of merit:

g = (1/)\®M/)M|'¢>®A’I- (3.12)

If instead we are only interested in single copy fidelity, we can calculate single
copy fidelity for the i-th copy:

Fi = (@lpil), (3.13)

where
pi =Tr1, i 1441,...m(PM) (3.14)

is obtained after tracing out all the copies instead of the i-th one. Provided all
F, are equal we call the cloning symmelric, otherwise we call it asymmetric.
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3.2.1 Optimal 1 — 2 qubit asymmetric cloning cloning

We present below an intuitive construction of optimal 1 — 2 universal
asymmetric cloning, without the proof for its optimality. Consider the fol-
lowing unitary operation acting on three qubits, denoted A, B, and X:

Vilida®ip®lkix = [i@j@ka®i®j)p® i ®k)x (3.15)

Notice the following properties of operation V. If the system A is prepared
in an unknown state [1)4, while subsystems BX are prepared in |®F) =

(100) + [11))/v/2) we get:
Vi) a® @ )px — [¥)a® |27 )5x, (3.16)

and hence the state |¢)4 remains where it was. On the other hand if at
the input we take subsystems BX in the state |0)p ® %(|0) + |1))x the
transformation read:

Vi) a®|2 ) px = [¥)p®|®1)ax, (3.17)

and as a result the state is “teleported” to subsystem B.

Since we want to have imperfect copies in both A and B subsystems it is
natural to consider the transformation where initially we prepare systems BX
in a superposition of [®")px and [0)p ® %(l()) + [1))x. The transformation
then reads:

v \'$>A®(a|¢*>3x +00)p ® %(I()) + \D)x) = alih) a®|2 ") px+IY) 5O ) ax-

(3.18)
Calculating the output single copy reduced density matrices we get:
a+b)? a* b? .
pa = S | il + o (3.19)
a—+ b 2 b2 0,2
oo = | Tyl + Ll (3.20)
2 2 2
where |1 ) is the orthogonal state to [¢). The corresponding fidelities read:
b2
Fqp = 1-— = (3.21)
a?
Fg = 1—— (3.22)
2
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The symmetric cloning corresponds to the choice a = b, which together with
normalization constraint implies @ = b = 1/4/3 and leads to the optimal
cloning fidelity F' = 5/6.
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Chapter 4

UNIA EUROPEJSKA
EUROPEJSKI FUNDUSZ
ROZWOJU REGIONALNEGO

Quantum eavesdropping -
Quantum->Quantum->Classical

channel

4.1 Cryptography

The science of cryptography is about transmitting a messages in the way
that no illegitimate party can learn its meaning. One of the earliest crypto-
graphic method was Ceasar cipher in which a letter in a message was replaced
by a letter k places further in the alphabet. If we took k = 3 then CEASAR
would be encoded as FADVDU. Such a code can be broken easily once one
knows that the message was encoded using Ceasar cipher. One simply has to
check all possible values of &, which is the number of letters in the alphabet
— 26, which is not a great amount of work.

The general scheme in cryptography can be depicted as follows:

key
}

message

cipher

encoding

key
}

message

decoding

In case of the Ceasar cipher the message is CEASAR, the cipher is FADVDU

and the key is k = 3.

A more general cipher is the substitution cipher, where each letter in
mapped onto another letter. The Ceasar cipher is an example of substitution
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cipher. In a general substitution cipher we have 26! possibilities. Hence, such
a cipher can not be broken by checking all possible letter substitutions, and
thus is more secure than the Ceasar cipher. Nevertheless, it can be broken
by letter frequency analysis, since cach language has its particular letter
frequency pattern, and one can quickly find out which letter was substituted
to which one by investigating frequencies in which they appear.

Actually almost all used ciphers can theoretically be broken, and they
strength stems from the practical difficulties.of doing so. Nevertheless, if one
really want to use a cipher which is proven to be secure then there is such a
cipher: the one time pad. Write your message in the binary form, take the
key which is the a completely random sequence of 0 and 1 of the same length
as the message and perform bitwise XOR operations to obtain the cipher

message 01 10110
key 0001011
cipher = message @ key |0 1 1 1 1 0 1

Notice that since the key is completely random so is the message. More
formally let K be the random variable associated with the key. Let the key
have length n. Complete randomness means that all binary sequences are
equally probable: p(K) = 1/2". The cipher is obtained as C = M ® K,
where M is the message. What means perfect security? It means that the
cipher carries no information about the message for someone who does not
know the key. This corresponds to the statement that mutual information
between M and C'is zero: I(M : C) = 0.

Proof security of one time pad. Let p(M) be probability distribution of
messages transmitted. The conditional probability p(C|M) that a cipher C
is obtained from message M reads:

p(CIM) = " p(K)dcmar = 1/2" (4.1)
K

Hence obviously we have p(C') = 1/2". This means the cipher is completely
random. The mutual information 7(M : C) reads:

I(M:C)=H(C)— H(C|M) =n-">_ p(C|M)p(M)log, p(C|M) = 0.
c.M
(1.2)
Hence the one time pad is secure.
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The one time pad has one drawback which makes it impractical for real
life communication: it must be the same length as the transmitted message,
otherwise the mutual information I(M : C) is not zero and the cipher could
in principle be broken. The main obstacle is thus the cffective distribution of
the random key to legitimate parties. One of the most promising techniques
for doing this is quantum key distribution (QKD).

4.2 Quantum key distribution

We have observed in previous chapters that nonorthogonal quantum states
cannot be distinguished nor cloned perfectly. This inaccessibility of quantum
states which seems only a nuisance at a first glance proves to be the key to
secure information transmission.

4.2.1 BB84 protocol

Let us describe here the most famous protocol proposed by Bennet and
Brassard in 1984 (BB84). Consider two parties A, B, which are connected
by a quantum channel allowing for transmission od qubits (e.g. an optical
fiber in through which single photons are sent), and a classical channel (e.g.
telephone). We assume that noth channels are insecure and can be subjected
to eavesdropping. We only assume that classical channel is authenticated i.e.
A and B know that they talk to each other and their classical messages
although potentially tapped cannot be altered.

A and B will use photon polarization for qubits transmitted via the quan-
tum channel. A will send to B one of four states: | <),| [),[./), |\, ran-
domly with equal probabilities. We will say that the first two states form
basis 1, and the last two basis 2. A and B assign logical values to this states

as follows:
basis 1 basis 2
| =) LD LN (4.3)
0 1 0 [ 1

B measures the polarization state of an incoming photon randomly in one of
two basis. If he measures in the correct basis his results should be perfectly
correlated with bits sent, whereas when he measures in the incorrect basis his
results will be completely uncorrelated with that of A. After the transmission
took place B communicates to A via the classical channel in which basis he
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performed the measurement in a given run. He does not reveal, however,
the actual results obtained. After this communication A i B keep only bits
measured in compatible basis (approximately half). We call this a sifting
stage. In ideal situation A and B should have perfectly correlated bits.

A ad Pl Pl RN DA ECD P

B + X |+ |+ |+ X|X]|X
compatible? | v/ | V' v v
key 010 1 0

Now the quantum features enter the game. How A and B can be sure that
they share bits that nobody else know about —i.e. that they have a one time
pad. Put in one sentence this can be stated as follows:

You can not distinguish perfectly between 4 states used in BB84,
and moreover you cannot learn anything about their identity
without introducing disturbance.

Hence, A and B can make themselves sure that nobody have eavesdropped
on their communication, by revealing part of their bits on classical channel
(e.g. 100 bits), and checking whether they all agree. If there are no errors
they can be sure with high degree of confidence (the higher the more bits they
have revealed) that nobody had eavesdropped. If all bits agree, the revealed
bits are of course discarded, while the remaining ones are kept and constitute
the one time pad. If there are errors in bits reveled, however, A and B it
suggest a presence of an eavesdropper and hence they abort communication
and try again.

The above scenario is oversimplified, and also impractical. In reality there
will always be errors in communication even if there is no eavesdropped, but
which result from noise in the channel, imperfect detectors etc. Thus we need
a more sophisticated approach: What is the tolerable error rate below which
we can in some way distill a one time pad that will have no errors and will
be secure i.e. no third party will have any information on it. This can be
done using classical methods of error correction and privacy amplification.
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4.3 Classical tools

4.3.1 Error correction

Asymptotic considerations. Imagine A and B share correlated bit strings
of length n, where p(A, B) is the probability distribution of the strings. We
assume that p(A, B) = p(ay,by)-- - --p(ay, b,), which means each pair of bits is
independently identically distributed. From chapter 1 we know that the mu-
tual information I(A : B) = nl(a : b) where by I(a : b) we mean the mutual
information corresponding to single bit random variables. Error correction is
the process in which we allow A and B to exchange additional m bits of infor-
mation in order to correct all errors and have perfectly correlated strings i.e.
I'(A: B) = n. If strings are long we can addapt Shannon typical sequences
technique for proving capacity of noisy channels. If I(A : B) = nl(a : ) it
means there is approximately 27(1-1(@) typical sequences of B that could
in principle have been created from a given sequence od A and vice versa.
Hence in order to identify uniquely a sequence in B with a sequence in A one
needs to send

m=mn(l—1I(a:Db)). (4.4)

In other words one needs n(1 — I(a : b)) additional bits in order to correct
all errors. This is of course a theoretical bound. Real schemes will perform
usually worse, yet the longer is the sequence the closer they can achieve the
bound. More explicitly, if ¢ is the probability of single bit error, then I(a :
b) = 1—(—qlog, ¢q) and hence the number of bits needed to be communicated
is:

I

m = —ngqlog, q. (4.5)

Error correction in practice. One grasp the intuition of error correction
by considering the simplest example when n = 2. Let p be the probability
that a given bit of A is the same as the bit of B. Let A take her two bits,
calculate XOR function on them and communicate the result to B. B checks
whether the XOR function of A bits agrees with XOR function of his bits.
If this is true they keep their bits unchanged and if not A send the value of
the first bit to B — hence she effectively has sent all two bits. Notice that the
only possibility that bits of A and B disagree is that they were error on both
bits. Hence Hence after this error correction probability that A and B bits
agrec is p' =1 — (1 —p)? = p(2 — p) > p (for p € [0,1]). In this operations
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A has to send to B on average: m = 1+ 2p(1 — p) bits. This is usually than
the theoretical bound. '

For larger n one could also use a strategy using pairs of bits but this
strategy is not very efficient — usually to many bits have to be communicated
(at least n/2). The following strategy is more efficient. Let us denote by
¢ the approximate fraction of errors between strings of A and B. In QKD
e is estimated from the revealed part of shared bits. Usually before error
correction A and B apply a common random permutation of their bits in
order not to distinguish any of them. After that they choose a block length
k such that kg < 1i.e. such that it will be a very rare case that there is more
than one error in the block, and divide their sequences in blocks of length
k. A transmits the XOR function of bits in each block and communicate
this to B. If XOR values of a given block agrees in A and B sequences
they keep them intact. If they differ, they divide the block by half and A
transmits XOR value calculated on subblocks. The subblock in which XOR
values agree they leave it intact and divide by half the subblock in which XOR
values differ, and continue this procedure until errors are localized. Doing so,
sending approximately (n/k)log, k bits they can correct all errors provided
there were no more than one error in a block of length k. Notice that when
kq = 1 the number of bits communicated in this phase equals the theoretical
bound in Eq. 4.5. However, there still may be errors remaining,due to the
fact that there could have been more than one error in each block. Hence
one has to repeat the procedure but this time with larger blocks &', since now
the probability of an error is smaller ¢ < ¢. A few repetitions and checking
XOR functions should eliminate most errors. When only a few errors are
left dividing into blocks is not particulary effective we simply, take a random
subset and calculate its XOR, if for e.g. 20 random subsets XOR values agree
we have 2( — 20) probability that an error is still there.

4.3.2 Privacy amplification

In cryptography what we really need to consider is the three party prob-
ability distribution p(A, B, V), where £ represents the data acquired by an
eavesdropper. After the error correction procedure A and B have the same
sequences i.e. I(A : B) = n, but most probably E also share some knowl-
edge on them. If, however, E knowledge is not perfect i.e. I(A : E) < n,
and I(B : E) < n then A and B can perform so called privacy amplifica-
tion procedure reducing their number of bits from n to n’ but making them
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completely unknown for F.

Let us start with the simplest example when n = 2. A and B have two
identical bit sequences of length 2. Let ¢ be the probability of making an
error for E when trying to deduce the value of a bit of A or B. A and B can
perform XOR operation on their bits and keep its value, but unlike in error
correction procedure they do not announce it. In effect they have shortened
their sequence to one bit. What is the error probability ¢, E' will make when
guessing this value. She will not make an error only if she knew correct
values of both bits or made errors in predicting value of both of them, hence:
¢ =1—¢>—(1—q)*=2q(1—q) > g (for g € [0,1/2]). Hence her knowledge
about bits of A and B will decrease.

In practice when n is large the above strategy will be applied to large
blocks. Namely after assessing g, we take k such that ?777k(1 —e)?77 ~ 1,
and apply a hashing function f : {0,1}" + {0,1}* (the hashing function
takes a binary sequence of length n and returns a binary sequence of length
k. where a bit in the output sequence is a XOR function of a random subset
of input sequence) to bits of A and B. In this way their sequences will be
shortened from n to k bits but the sequences will become completely unknown
to E. The important question is how large k one can take and still be sure
that F has no information on sequences of A and B. Intuitively of course
the larger is the E information on A and B the smaller has to be k. This
intuition is formalized in the Csiszar-Korner theorem, which combines both
privacy amplification and error correction considerations.

4.3.3 (Csiszar-Korner theorem

Using onc way error-correction and privacy amplification, the number of
secret bits k, A and B can distill is bounded:

k<max{I(A:B)—I(A: E),I(A:B)-I(B:E)} (4.6)

hence provided that E is less correlated with either A or B than they are
with each other distillation of secret key is possible.

4.4 Attacks on the QKD

In order to apply error correction and privacy amplification we need to
know how much E could have possibly learned about bits of A and B. Judg-

25

24 Narodowe

> “41; Lab'?ratlorium
Technologii

444 Kwantowych



INNOWACYJNA UNIA EUROPEJSKA

EUROPEJSKI FUNDUSZ
GOSPO DARKA " ROZWOJU REGIONALNEGO
NARODOWA STRATEGIA SPOJNOSCI

ing by the qubit error rate estimated from the revealed part of the bits A
and B should find out what is the optimal attack E could have performed
which allowed her to gain largest possible amount of information.

At the moment we will restrict ourselves to a simple class of attacks called
intercept and resend attacks, which are not optimal, and hence considering
only them does not guarantee full security, but are often considered since
they are the only realistic attacks under present technology.

4.4.1 Intercept and resend attacks on BB84

In general, in intercept and resend attacks (IRA), E first measures in-
coming qubit in some basis and after learning result of the measurement
and prepares a corresponding state which she sends to B. Ideally (for E of
course) she would like to learn what state was sent and resend exactly the
same state to B in order not to be detected.

In BB84, two basis arc used for communication, basis 1:| «),| 1), and
basis 2: |),|\,). During transmission F does not know which basis she
should measure in since this is revealed only after all qubits has been sent.
Consider two strategies she may choose:

1. Measurement in a randomly chosen basis — with probability 1/2, £
measures either in | «<»),| [) or in a |),|\,) basis

2. Measurement in an intermediate basis — every time FE measures in
|22.5°),1112.5°), which is an basis “in between” two basis used in BB84

Let us calculate what is the information gained by E in each of this attacks
and what disturbance this attacks cause in the data of A and B.

Random basis In half of the cases £ will measure in correct basis, hence
will learn the state and transmit the state without any disturbance. In the
second half, she will measure in the wrong basis. Since |(« [/)? = [(«
ING? = 1/2 and [{] |2 = [{(J |IN)? = 1/2, she will obtain a correct
measurement result with probability 1/2. She will resend, a state in the
wrong basis, however, and consequently B has 1/2 probability of registering
an error in communication even though his basis is set according with that
of A. Summarizing B on average will observe qubit error rate (QBER)
QBER = 1/4. Probability that E will measure an incorrect bit sent by A is
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1/2-1/2 = 1/4, hence errors will be the same as between A and B (Notice
also that E also with probability 1/4 has an error on bit of B). Summarizing:

I(A:B)=1—h[1/4] ~ 0.189 (4.7)

where h[z) = —xlogy z — (1 — x)logy(1 — ) is binary Shannon entropy, and
the identical equation should hold for I(A : E) and I(B : F). However,
in the above considerations we have neglected an important fact, namely
after A and B announce basis they have used, F knows the cases when she
measured in the correct basis. When she measured in the correct basis she
has full knowledge on the bit, while when she measured on the wrong basis
she learns nothing, consequently the true mutual information reads:

I(A:E)=I(B:E)=1/2. (4.8)

Obviously if A and B measure QBER = 1/4 they should abort their com-
munication since F in principle could have gained more information than
they. Let us now consider a more general situation in which £ intercept only
r fraction of incoming qubits. In this case, QBER = r/4, and consequently:

I(A:B) = 1-—h|r/4] (4.9)
A By=Jd(B:8) = =r/2 (4.10)

For r ~ 0.6821 which I(A : B) = I(A : E), this corresponds to QBER =
0.171. This tells us that if QBER > 0.171, we cannot distill any secret key
since an eavesdropper could have obtained the same amount of information
as we have using IRA in random basis. Taking a positive approach, if we
assume an eavesdropper was restricted to perform IRA in random basis and
we detect QBER < 0.171 we can distill some secret key which maximal
length is given by Ciszar-Korner criterion and reads:

k<1-—h[r/4 —r/2=1-h|QBER] - 2QBER. (4.11)
Intermediate basis attack Using intermediate basis, probability that £
measures a wrong bit value is

q=1(22.5°| I)|> = 1/4(2 — V2) ~ 0.146. (4.12)

Notice that this error is smaller than average error in random basis attack.
Such an attack induces QBER = 2q(1 — q) = 1/4:

I(A: B) =1— h[1/4] ~ 0.189 (4.13)
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Unlike in random basis attack, learning what basis was used in a given run
does not provide F with any additional information, hence

I(A:E)=I(B:E)=1— hlg] ~ 0.399, (4.14)

which is smaller than in random basis attack. Even though average probabil-
ity of error is smaller for F in intermediate basis attack the mutual informa-
tion is smaller due to lack of certainty in which cases bits were correct and
in which they were useless. Assume again that F intercept only a fraction r
of incoming qubits, we get:

I(A:B) = 1-h[r/4 (4.15)
I(A:E)=I(B:E) = 1-hl[gr+(1—-r)/2], (4.16)

When r = 1/3(4 — v/2) ~ 0.8619, I(A : B) = I(A: E) = I(B : E). This
corresponds to QBER = 0.215, so considering intermediate basis attacks we
get a bit higher QBER rate thresholds above which we cannot distill secret
key. This is due to the fact that intermediate attacks are less efficient from
the point of view of an eavesdropper than random basis attacks.

4.4.2 Optimal individual attack on BB84

Let us denote the four states used in BB84 protocols |+z),|—2), |+x),|—
z), where | & z), | £ z) are the eigenstates of o, and o,. A &,enerdl individual
attack on BB&4 is a unitary operation U acting on the space which decribes
states of the qubit send by A to B and the eavesdropper space:

| £ k)5 ®[0)p — VF| £ k) ® 95" E + VD| F k) @ [¥i%)p (4.17)

where k = x, z represents the basis chosen, D is equal to the QBER, and
F =1—D. Since we just have four different input states to consider, we can
without loosing generality limit the £ space to 4 dimensions. Let us write
the transformation when acting on the states from the z basis:

+2)5®[0r — VF|+2)58 ¥ s+ VD] - 2)p ® | V*[418)
|- 25 ®|0r — VF|—2)5® ¥ e+ VD] + 2)p ® |V °}4.19)
Unitarity implies the following constraint:

(W "y %) + (¥17 ¥ %) = 0 (4.20)
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We assume the attack is symmetric which means that the output reduced
density matrix has a Bloch vector which is shrinked but not rotated com-
pared with the input one. Notice that this is not a limitation, since such
rotation is useless as it increases the QBER while not providing any addi-
tional information for E, and can always be canceled by the eavesdropper.
This implies that

(UE=| U= = 0. (4.21)
Now we look how the transformation acts on the state from the z basis.
Recall that |+ ) = (] + z) + | — 2))/V/2, hence the transformation reads:

. [D . .
. |+, 0) H\/ (2, Ug7)+|=2, Wo )+ 5 (I=2, U *)++2,9,%) =
D

= VEI+2)© 30w +\ 2w+ 2ty + g

1)
&
+@|—x>®%(\ﬁ|w>+w — U [w

= VF|+2)® |¥") + VD| - 2) ® [}7) (4.22)

and analogously for | — x). If the attack must treat the z basis in the same
way as the z basis, we must have
(B0 = (4.23)

This implies:

Re(Wy?| W, %) — Re(¥*|¥,%) = 0 (4.24)

}41 —Z -z D z —z2 ¢
\/BImOIJO”[\I/a )—}-\/th(\llf [T1% = 0 (4.25)

Without loosing generality, we can always redefine: |¥*) — ¢ 1), such

that Im(W|?|¥;*) = 0. From Eq. (4.25) it follows that Im (W *|¥,?) = 0.
Finally taking into account Eq. (4.24) together with Eq. (4.20) we arrive at:

(Ug W1 7) = (I77|¥, %) = 0. (4.26)
As a result without losing generality we can parameterize the states as:
[¥g%) = [1,0,0,0] (4.27)
|w{%) [0,1,0,0] (4.28)
[¥y*) = [cosa,0,sina, ) (4.29)
U, %) = [0,cos80,0,sing] (4.30)
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Moreover, if the quality of the attack is to be the same in the z basis as in

the z basis states |¥F"), [WF) need to be normalized:
W) = (e =1 (4.31)
(W3o10") = (E7|9;7) =1 (4.32)
(4.33)
This implies
D
1+cosa+F(cosL3+l) = g (4.34)
And finally recalling that D =1 — F, the fidelity £ reads:
1 a
. + cos 3 (4.35)

B 2+ cos 3 — cos

The attack is thus parameterized with two real parameters «, (3.

Let us assume that the z basis was used in a given run of the protocol. The
goal of the eavesdropper is to infer the value of the bit. Notice that the space
spanned by |W,*) |W*) is orthogonal to the one spanned by [W %), [, ?).
This means that by projecting on one of these subspaces E knows for surc
whether he inflicted an error in the transmission or not. After projecting
on the subspaces £ has to distinguish between |¥]?) and |¥;*) or between
|Wd#) and |W, ). For this purpose £ uses the optimal discrimination of two
non-orthogonal states strategy from Sec.2.1.1. The information she gains can
therefore be written in the form

I(A: E) = F(l—h [LT%D D (1—h [”—;’m@]) (4.36)

Fixing F (i.e. fixing the QBER) the above information is maximal for o = 3.
Finally we get that depending on « the QBER reads:

QBER = 1_% (4.37)

while the mutual informations:
I(A:B) = 1-h[QBER) (4.38)
I(A:E)=I(B:E) = 1—h [”%] (4.39)
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Notice that I(A : E) = I(B : E) this follows simply from the fact that F
always knows whether he inflicted an error in communication from A to B.

Looking for the QBER for which I(A : B) = I(A : E) we obtain the QBER

threshold:

1-1/v2
2
If the QBER is above this threshold the BB84 protocol is not safe. If it is
below, the protocol is safe against individual attacks.

QBERy, = =~ 14.6%. (4.40)

4.5 Other QKD protocols

4.5.1 Six state protocol

A natural generalization of BB84 is to use also circularly polarized basis
| O),] ©). A send with probability 1/6 one of six states | <), | T}, |\), [/,
| ©),| ©), while B measures randomly in one of three basis. On average
2/3 of the bits will be discarded in the sifting phase. This protocol scems
more secure than BB84, since it uses 3 different basis instead of 2, and hence
make it harder for an eavesdropper it gain information under a given QBER.
Nevertheless the fact that only 1/3 of bits is kept make this protocol less
useful when one what to achieve higher transmission rates.

Intercept and resend attack on on 6S protocol

If the eavesdropper attack r fraction of the qubits, measures them ran-
domly in one of three basis and resends the measured state the QBER he
inflicts reads: @QBER = r/3. The mutual informations read:

I(A:B) = 1-h|QBER] (4.41)
I{A: E} = r/3 (4.42)

The QBER threshold corresponding to the situation when (A : B) = I(A:
E) reads: QBER = 22.7%.

Individual attack on 6S using the optimal universal asymmetric
cloning

The 6S protocol is easier to investigate in terms of security thanks it its
higher symmetry, than that of BB84. Apart from “measurement” attacks
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in which the eavesdropper measure qubits on-the-fly, a more sophisticated
attack appear to be more powerful. Instead of measuring the qubit the
eavesdropper can perfrom optimal 1 — 2 cloning operation send one copy
to B and keep one for himself. After basis reconciliation process has taken
place the eavesdropper can measure his clone in order to gain information on
transmitted bits.

Let the eavesdropper perform the optimal universal asymmetric cloning
described in Sec. 3.2.1, parameterized by two real parameters a, b subject to
normalization constraint a? +b%+ab =1 (b = (—a+v4 — 3a?)/2). He keeps
the first clone for himself and send the second one to B. Given that A had
sent the state [1)), B and E obtain the following reduced states:

a 2 CLZ 2

oo =[S o[+ Shen.l (1.43)
a 2 2 2

o =[S 5| wwt+ S (.44

This implies that the QBER equals a?/2. The eavesdropped wait until basis
are announced and measures his copy in the correct basis. His probability of
error equals b?/2. The mutual informations I(A : B), I(A : E) read:

I(A: E) = 1- hl[a?/2] (4.45)
I(A:B) = 1-h[bt*/2] (4.46)

where h[z] = —zlog, x. The QBER threshold corresponds to the symmetric
case a = b = 1/+/3, which yields QBER = 1/6 = 16.7%, and I(A : B) =
I(A: E) = 0.35. One can sce that this attack is much more powerful than
prepare and resend strategy.

There is a subtle issue to be mentioned. In what was said above we have
concentrated only on I(A : B), I(A : E) quantities, ignoring completely
I(B : F), which according to the Csiszar-Korner theorem plays equivalent
role to I(A : E). As a result of the optimal asymmetric cloning attack the
two clones are in the state:

1
e = 5 [(a+ 81, ) {0 91+ (abp, 1) + s, ¥ el ] + bl )]
(4.47)
After measuring in the correct basis (i.e., [1), [, )) the mutual information
I(B : E) reads:
I(B:E)=1-h[(a+b)*/2] (4.48)
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One can check that this information is always less then I(A : E), hence
strictly speaking the attack is not that powerful as it might had seemed.
Nevertheless it is possible to modify the cloning procedure in such a way to
make it “symmetric” (do not confuse with symmetric cloning) with respect
to [(A: E) and I(B : F), without compromising clones quality.

4.5.2 Optimal individual attack on 6S protocol

We can repeat the derivation of the optimal individual attack on BB84
protocol from Sec. 4.4.2. The only difference is the higher symmetry of the
problem which requires that we need to consider also the attack on | £ y)
states. This additional constraint leads to setting the parameter g = /2.
Hence the QBER as a function of « reads:

QBER — 1% (4.49)
2 —cos«
And the mutual informations:
I(A:B) = 1-h|QBER)] (4.50)
1 1+ sin«
I(A:EY=I(B:FE) = 1-— h 4.51
( ) ( ) 2 —cosa [ 2 ] ( )

Notice that because 3 = /2 then if F learned that he inflicted a mistake in
the transmission he knows for sure what is the bit value (|¥{?) is orthogonal
to |¥;%)). Otherwise he performs the optimal two state discrimination. The
QBER threshold corresponding to o« = 0.618686, equals

QBERy, = 15.6% (4.52)

Obviously it is larger that the one for BB84, since the 6 state protocol is
more difficult to eavesdrop due to more states present.

Relation to the optimal asymmetric cloning

Notice that the result scems to indicate that the previously consider op-
timal universal symmetric cloning attack is not optimal, as it yielded higher
QBER threshold. The reason for this is that we chose the symmetric cloning
as the one where we expect the mutual information /(A : £) and I(A : B)
to be equal. However, we only equalized probabilities of errors i.e. clones
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qualities. From the present analysis we see that comparing error probabilities
and informations is not equivalent, since there are two cases, either error was
inflicted in A to B transmission and £ knows the bit perfectly, or E has to
perform discrimination.

Let us take the optimal asymmetric universal cloning machine parame-
terized with a, b (b = (—a + V4 — 3a?)/2). Using such a cloning we can
obtain the following mutual informations

I(A:E) = %2+<1—b—22> (1—/2{1_{12_/2[)2_/2[’2/2}) (4.53)
I(A:B) = 1-h[t*/2] (4.54)

where % is the probability of E inflicting an error in A to B transmission

(QBER), in which case E learns the bit perfectly otherwise with probability
2 2
i
erage the success probability of guessing the value of the bit is 1 —a?/2 which
is in agreement with the cloning fidelity. Looking for the QBER threshold
when I(A : B) = I(A : E) we get: a = 0.595275, b = 0.559238. Notice
that this is asymmetric cloning — we need to give B a copy of a bit higher
quality, in order that out informations are equal. The corresponding QBER

b2

(1—10?/2) he learns the correct bit only with probability — on av-

Which proves that using the optimal universal cloning in a proper way is
equivalent to the optimal eavesdropping.

4.5.3 B92

A natural question arises, if two nonorthogonal states cannot be perfectly
distinguished, then maybe one can construct a QKD protocol using only two
states instead of four as used in BB84. Amazingly this is indeed possible.
A sends either | <), or |/). B measures either in | <), [ ) orin [/),[\)
basis. Unlike in BB84 he does not communicate the basis he used, but
rather informs A about the cases in which he measured | ) or [N\) (without
specifying which of them). This is an information that tells A that in this run
B had a basis incompatible with the one she used. Hence if she denotes by
0 and 1 the cases when she sends | <) and |”) respectively, and B denotes
by 0 and 1 the cases when he used basis |/),|N\,) and | <), | [), they will
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have perfectly correlated bits at this positions. Notice also that there was no
information revealed to an eavesdropper when B informed A about positions
at which he measured | [) or [\,). Moreover non perfect distinguishability of
nonorthogonal states forces E to induce errors whenever she wants to learn
something and thus makes the protocol secure.
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