Decorrelation of quantum states

a first step towards the quantum cocktail party

Rafał Demkowicz-Dobrzański

Center for Theoretical Physics of the Polish Academy of Sciences, Warsaw, Poland

Decorrelation

how to remove correlations while preserving local properties?

Is decorrelation possible for a given set of states?

Personal motivation

cloning, estimation and the role of correlations

Universal cloning

Asymptotic cloning is state estimation

D. Bruss, A. Ekert, C. Macchiavello, PRL 81,2598 (1997) J. Bae, A. Acin, quant-ph/0603078 (2006)

$$\lim_{M \to \infty} F = \frac{N+1}{N+d}$$

Can clones be decorrelated?

M correlated approximate clones

Correlations influence estimation fidelitites *RDD*, PRÅ 71, 062321 (2005)

Constraints on decorrelation (not tight)

approximate clones

Official motivation

the quantum cocktail party

Classical cocktail party

arphi(t) - signal 1

 $\psi(t)$ signal 2

y(t)mixed signals

 $x(t) = C_{11}\varphi(t) + C_{12}\psi(t)$ $y(t) = C_{21}\varphi(t) + C_{22}\psi(t)$

How to decorrelate signals without knowing C_{ij} ? e.g. Independent component analysis (ICA)

What can be decorrelated?

No-decorrelation theorem

There is no operation that decorrelates all states

D. R. Terno PRA 59, 3320 (1999)

Let ρ'_{AB}, ρ''_{AB} be bipartite states such that:

 $\underbrace{\mathrm{Tr}_B \rho'_{AB}}_{\rho'_A} \neq \underbrace{\mathrm{Tr}_B \rho''_{AB}}_{\rho''_A}, \quad \underbrace{\mathrm{Tr}_A \rho'_{AB}}_{\rho'_B} \neq \underbrace{\mathrm{Tr}_A \rho''_{AB}}_{\rho''_B}.$

Let us assume that Λ decorrelates both states:

$$\Lambda(\rho'_{AB})=\rho'_A\otimes\rho'_B,\quad \Lambda(\rho''_{AB})=\rho''_A\otimes\rho''_B.$$

However, it will not decorrelate their convex combination

$$\rho_{AB} = p\rho'_{AB} + (1-p)\rho''_{AB},$$

since from linearity of Λ we get

$$\Lambda(\rho_{AB}) = p\Lambda(\rho'_{AB}) + (1-p)\Lambda(\rho''_{AB}) = p\rho'_A \otimes \rho'_B + (1-p)\rho''_A \otimes \rho''_B$$

This is not a product state!

Yes-decorrelation theorem

There is an operation that decorrelates a given state

$$\Lambda(\rho_{AB}) = \rho_A \otimes \rho_B$$

Discard the state ho_{AB} and prepare the state $ho_A \otimes
ho_B$

Interesting cases

sets of density matrices, where no element is a convex combination of the others, e.g. orbits of unitary representations

Different signals ("quantum cocktail party")

 $\Lambda(U_1 \otimes \cdots \otimes U_M \rho_M U_1^{\dagger} \otimes \cdots \otimes U_M^{\dagger}) = U_1 \rho U_1^{\dagger} \otimes \cdots \otimes U_M \rho U_M^{\dagger}$

signals encoded on correlated systems

decorrelated signals

Identical signals (decorrelating clones)

$$\Lambda(U^{\otimes M}\rho_M U^{\dagger \otimes M}) = (U\rho U^{\dagger})^{\otimes M}$$

a signal encoded on uncorrelated systems

a signal encoded on correlated systems

Covariance condition

 $\Lambda(U_1 \otimes \cdots \otimes U_M \rho_M U_1^{\dagger} \otimes \cdots \otimes U_M^{\dagger}) = U_1 \otimes \cdots \otimes U_M \Lambda(\rho_M) U_1^{\dagger} \otimes \cdots \otimes U_M^{\dagger}$

Covariant operations

Choi-Jamiołkowski isomorphism

$$\Lambda : \mathcal{L}(\mathcal{H}^{\mathrm{in}}) \mapsto \mathcal{L}(\mathcal{H}^{\mathrm{out}}) \text{ - arbitrary CP map}$$

$$\downarrow$$

$$R_{\Lambda} \in \mathcal{L}\left(\mathcal{H}^{\mathrm{out}} \otimes \mathcal{H}^{\mathrm{in}}\right) \text{ - positive operator}$$

1 to 1 relation

$$R_{\Lambda} = \Lambda \otimes \mathcal{I}\left(|\Psi\rangle\langle\Psi|\right), \text{where } |\Psi\rangle = \frac{1}{\sqrt{\dim\mathcal{H}^{\text{in}}}} \sum_{i} |i\rangle \otimes |i\rangle$$
$$\Lambda(\rho) = \operatorname{Tr}_{\mathcal{H}^{\text{in}}}\left(\mathbb{1}_{\mathcal{H}^{\text{out}}} \otimes \rho^{T} R_{\Lambda}\right)$$

Trace preservation condition

$$\operatorname{Tr}_{\mathcal{H}^{\operatorname{out}}}(R_{\Lambda}) = \mathbb{1}_{\mathcal{H}^{\operatorname{in}}}.$$

Covariance condition

 $\forall_{g\in G}\Lambda\left(V_g\rho V_g^\dagger\right) = W_g\Lambda(\rho)W_g^\dagger \quad \longleftarrow \quad \forall_{g\in G}[R_\Lambda, W_g\otimes V_g^*] = 0$

Two qubits

Permutational invariant state of two qubits

singlet subspace
$$\rho_{AB} = \begin{pmatrix} \rho_{00} & 0 & 0 & 0 \\ 0 & \rho_{11} & \rho_{12}^* & \rho_{13}^* \\ 0 & \rho_{12} & \rho_{22} & \rho_{23}^* \\ 0 & \rho_{13} & \rho_{23} & \rho_{33} \end{pmatrix}$$
 triplet subspace

Two qubits

Permutational invariant state of two qubits

$$\begin{aligned} \mathbf{singlet subspace} & \overbrace{\rho_{AB} = \left(\begin{array}{ccc} \rho_{00} & 0 & 0 & 0 \\ 0 & \rho_{11} & 0 & 0 \\ 0 & 0 & \rho_{22} & 0 \\ 0 & 0 & 0 & \rho_{33} \end{array}\right)} & \mathsf{triplet subspace} \\ \rho_A &= \rho_B = \frac{1}{2} \left(\mathbbm{1} + r \sigma_z \right), \quad r = \rho_{33} - \rho_{11} \\ \mathbf{Decorrelation \ condition}} \\ \mathbf{A}(\rho_{AB}) &= \frac{1}{2} \left(\mathbbm{1} + \check{r} \sigma_z \right) \otimes \frac{1}{2} \left(\mathbbm{1} + \check{r} \sigma_z \right) = & \mathsf{allow \ additional \ noise \ after \ decorrelation} \\ &= \left(\begin{array}{ccc} 1/4(1 - \check{r}^2) & 0 & 0 & 0 \\ 0 & 1/4(1 - \check{r}^2) & 0 & 0 \\ 0 & 0 & 1/4(1 - \check{r}^2) & 0 \\ 0 & 0 & 0 & 1/4(1 + \check{r})^2 \end{array} \right). \end{aligned}$$

Covariance condition

 $\Lambda(U_A \otimes U_B \rho_{AB} U_A^{\dagger} \otimes U_B^{\dagger}) = U_A \otimes U_B \Lambda(\rho_{AB}) U_A^{\dagger} \otimes U_B^{\dagger}$

 $\Lambda: \mathcal{L}(\mathcal{H}^{\mathrm{in}}_A \otimes H^{\mathrm{in}}_B) \mapsto \mathcal{L}(\mathcal{H}^{\mathrm{out}}_A \otimes H^{\mathrm{out}}_B)$

 $\begin{bmatrix} R_{\Lambda}, \underbrace{U_A \otimes U_B}_{\mathcal{H}_A^{\text{out}} \otimes \mathcal{H}_B^{\text{out}}} \otimes \underbrace{U_A^* \otimes U_B^*}_{\mathcal{H}_A^{\text{in}} \otimes \mathcal{H}_B^{\text{in}}} \end{bmatrix} = 0 \qquad \qquad R_{\Lambda} \in \mathcal{L}(\mathcal{H}_A^{\text{out}} \otimes \mathcal{H}_B^{\text{out}} \otimes \mathcal{H}_A^{\text{in}} \otimes \mathcal{H}_B^{\text{in}})$

Thanks to the equivalence of conjugated representation of SU(2)

$$\tilde{R}_{\Lambda} = \mathbb{1}_{\mathcal{H}^{\text{out}}} \otimes C \ R_{\Lambda} \ \mathbb{1}_{\mathcal{H}^{\text{out}}} \otimes C^{\dagger}, \text{ where } C = (i\sigma_y)^{\otimes 2}$$

 $[\tilde{R}_{\Lambda}, U_A \otimes U_B \otimes U_A \otimes U_B] = 0$

 $\Lambda(\rho_{AB}) = \operatorname{Tr}_{\mathcal{H}^{\operatorname{in}}}(\mathbb{1}_{\mathcal{H}^{\operatorname{out}}} \otimes (C\rho_{AB}^T C^{\dagger}) \ \tilde{R}_{\Lambda})$

Structure of the decorrelating operation

 $[\tilde{R}_{\Lambda}, U_A \otimes U_B \otimes U_A \otimes U_B] = 0$

after changing the order of subspaces

 $\mathcal{H}^{\mathrm{out}}_A\otimes\mathcal{H}^{\mathrm{out}}_B\otimes\mathcal{H}^{\mathrm{in}}_A\otimes\mathcal{H}^{\mathrm{out}}_B\mapsto\mathcal{H}^{\mathrm{out}}_A\otimes\mathcal{H}^{\mathrm{in}}_A\otimes\mathcal{H}^{\mathrm{out}}_B\otimes\mathcal{H}^{\mathrm{in}}_B.$

Solution for the decorrelation problem

$$\Lambda(\rho_{AB}) = \frac{1}{2}(\mathbb{1} + \check{r}\sigma_z) \otimes \frac{1}{2}(\mathbb{1} + \check{r}\sigma_z)$$

trivial solution (complete mixing) always exists $\check{r}=0$

non-trivial solutions exists only for states with $ho_{00}=
ho_{22}$

$$\rho_{AB} = \frac{1}{4} \left(\mathbb{1} \otimes \mathbb{1} + r(\sigma_z \otimes \mathbb{1} + \mathbb{1} \otimes \sigma_z) - \lambda \sigma_z \otimes \sigma_z \right)$$

condition that $a_{ij} \geq 0$, puts constraint on maximall achievable \check{r}

Decorrelable states of two qubits

different signals

$$\rho_{AB} = \frac{1}{4} \left(\mathbb{1} \otimes \mathbb{1} + r(\sigma_z \otimes \mathbb{1} + \mathbb{1} \otimes \sigma_z) - \lambda \sigma_z \otimes \sigma_z \right)$$

Two qubits identical signals

Covariance condition (weaker)

 $\Lambda(U \otimes U \rho_{AB} U^{\dagger} \otimes U^{\dagger}) = U \otimes U \Lambda(\rho_{AB}) U^{\dagger} \otimes U^{\dagger}$

 $\begin{bmatrix} \tilde{R}_{\Lambda}, & \underbrace{U \otimes U}_{\mathcal{H}_{A}^{\text{out}} \otimes \mathcal{H}_{B}^{\text{out}}} \otimes \underbrace{U \otimes U}_{\mathcal{H}_{A}^{\text{in}} \otimes \mathcal{H}_{B}^{\text{in}}} \end{bmatrix} = 0$

additionally permutation covariance

$$\begin{split} \mathcal{H}_{A}^{\mathrm{out}}\otimes\mathcal{H}_{B}^{\mathrm{out}}\otimes\mathcal{H}_{A}^{\mathrm{in}}\otimes\mathcal{H}_{B}^{\mathrm{out}} = \begin{pmatrix} 1\\ \bigoplus \\ j=0 \end{pmatrix} \mathcal{H}_{j}^{\mathrm{out}} \end{pmatrix} \otimes \begin{pmatrix} 1\\ \bigoplus \\ l=0 \end{pmatrix} \mathcal{H}_{l}^{\mathrm{in}} \end{pmatrix} = \sum_{j,l=0}^{1} \bigoplus_{J=|j-l|}^{j+l} \mathcal{H}_{j,l}^{J} \\ \tilde{R}_{\Lambda} = \sum_{j,l=0}^{1} \bigoplus_{J=|j-l|}^{j+l} s_{j,l}^{J} P_{j,l}^{J} \\ \mathbf{positive coefficients}} \mathbf{projection on } \mathcal{H}_{j,l}^{J} \end{split}$$

trace preservation condition

 $\sum_{j=0}^{1} \sum_{J=|j-l|}^{j+l} s_{j,l}^{J} \frac{2J+1}{2l+1} = 1, \quad \text{for} \quad l = 0, 1$

4 parameters

almost all states are decorelable

e.g. State from symetric subspace

$$\rho_{AB}^{\text{sym}} = \frac{1}{4} \left(\mathbb{1} \otimes \mathbb{1} + r(\sigma_z \otimes \mathbb{1} + \mathbb{1} \otimes \sigma_z) + \frac{1+\lambda}{2} (\sigma_x \otimes \sigma_x + \sigma_y \otimes \sigma_y) - \lambda \sigma_z \otimes \sigma_z \right)$$

arbitrary state: $\rho_{AB} = p |\psi^-\rangle \langle \psi^-| + (1-p) \rho_{AB}^{\text{sym}}$

Nqubits

efficient numerical procedure

$$\Lambda(\rho_{AB}) = \frac{1}{2}(\mathbb{1} + \check{r}\sigma_z) \otimes \frac{1}{2}(\mathbb{1} + \check{r}\sigma_z)$$

Different signals

For given \check{r} : linear equations for O(N) positive parameters

Identical signals

For given \check{r} : linear equations for O(N^3) positive parameters

Linear programming

Two-mode gaussian states

Zero mean gaussian states

$$\rho_{AB} = \frac{1}{\pi^4} \int d^4 x e^{-\frac{1}{2}x^T M x} D(x), \quad D(x) = D_A(x_1 + ix_2) \otimes D_B(x_3 + ix_4)$$

correlation matrix

displacement operators

Signals = displacements

$$D_A(\alpha) \otimes D_B(\beta) \rho_{AB} D_A^{\dagger}(\alpha) \otimes D_B^{\dagger}(\beta),$$

Covariance condition

$$\begin{split} \Lambda \left[D_A(\alpha) \otimes D_B(\beta) \rho_{AB} D_A^{\dagger}(\alpha) \otimes D_B^{\dagger}(\beta) \right] = \\ = D_A(\alpha) \otimes D_B(\beta) \Lambda(\rho_{AB}) D_A^{\dagger}(\alpha) \otimes D_B^{\dagger}(\beta) \end{split}$$

in short

$$\Lambda \left[D(y)\rho_{AB}D^{\dagger}(y) \right] = D(y)\Lambda(\rho_{AB})D^{\dagger}(y)$$

Decorrelation is easy

Covariant gaussian channel

$$\mathcal{G}(\rho_{AB}) = \frac{\sqrt{\det G}}{(2\pi)^2} \int \mathrm{d}^4 z \, e^{-\frac{1}{2}z^T G z} D(z) \rho D^{\dagger}(z)$$

postive definite matrix

Output state is a gaussian

Decorrelation is easy

Covariant gaussian channel

$$\mathcal{G}(\rho_{AB}) = \frac{\sqrt{\det G}}{(2\pi)^2} \int \mathrm{d}^4 z \, e^{-\frac{1}{2}z^T G z} D(z) \rho D^{\dagger}(z)$$

postive definite matrix

Output state is a gaussian

$$M' = M + \Sigma G^{-1} \Sigma$$

$$\begin{pmatrix} A' & 0 \\ 0 & B' \end{pmatrix} \begin{pmatrix} A & C \\ C^T & B \end{pmatrix} \begin{pmatrix} W & V \\ V^T & Z \end{pmatrix}$$

to decorrelate, take $~V=-\sigma_y C \sigma_y$, and W,Z high enough to make $G^{-1}>0$

Decorrelation easy - orbits of covariance group small

Example: Mixed EPR states

$$M' = M + \Sigma G^{-1} \Sigma$$

 $M = \begin{pmatrix} 1+2n & 0 & 2m & 0 \\ 0 & 1+2n & 0 & -2m \\ 2m & 0 & 1+2n & 0 \\ 0 & -2m & 0 & 1+2n \end{pmatrix}$ Single mode states are termal states with n photons

$$G^{-1} = \begin{pmatrix} 2m + \epsilon & 0 & 2m & 0 \\ 0 & 2m + \epsilon & 0 & -2m \\ 2m & 0 & 2m + \epsilon & 0 \\ 0 & -2m & 0 & 2m + \epsilon \end{pmatrix}$$
$$\downarrow$$
$$M' = (1 + 2n + 2m + \epsilon)\mathbf{1}$$

Single mode states are termal states with n+m photons

Decorrelation vs. Cocktail party

signals are encoded on correlated state $U_A \otimes U_B \rho_{AB} U_A^{\dagger} \otimes U_B^{\dagger}$ signals get correlated via unknown interaction $\mathcal{E}\left(U_A|0\rangle\langle 0|U_A^{\dagger}\otimes U_B|0\rangle\langle 0|U_B^{\dagger}\right)$

obtain uncorrelated signals

Reference: G. M. D'Ariano, RDD, P. Perinotti, M. Sacchi, quant-ph/0609020 (2006)