Quantum Interferometry in the presence of losses

Konrad Banaszek <u>Rafał Demkowicz-Dobrzański</u> Marcin Kacprowicz

Institute of Physics Nicolaus Copernicus University Toruń, Poland

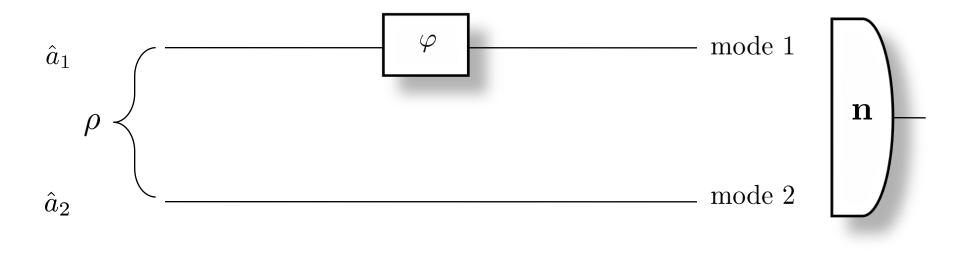
Wojciech Wasilewski

Department of Physics University of Warsaw Poland Uwe Dorner Brian Smith Jeff Lundeen Ian A. Walmsley

Institute of Physics Nicolaus Copernicus University Toruń, Poland

Interferometry

• Two optical modes, one delayed with respect to the other

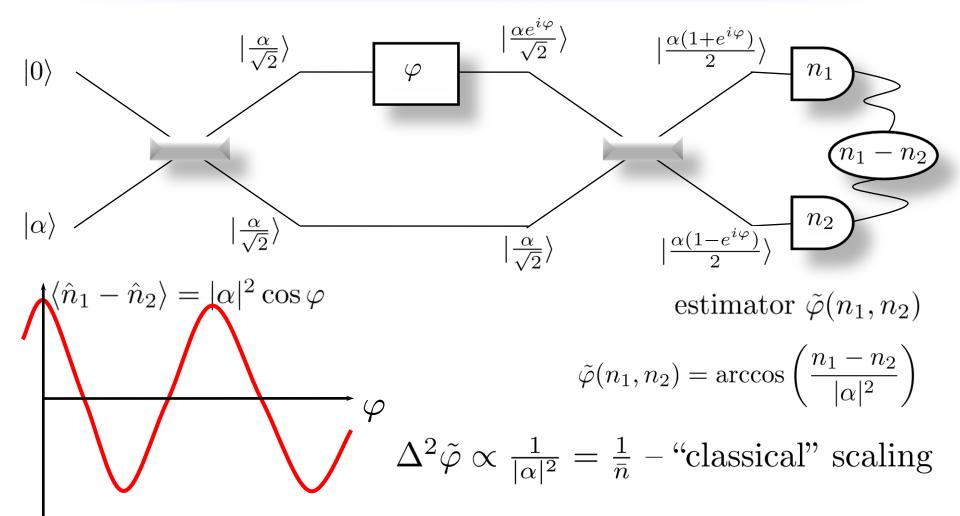


$$U = e^{-i\hat{a}_1^{\dagger}\hat{a}_1\varphi}$$

• We want to find the optimal state and the optimal measurement to estimate φ

First approach to interferometry

Coherent state as an input

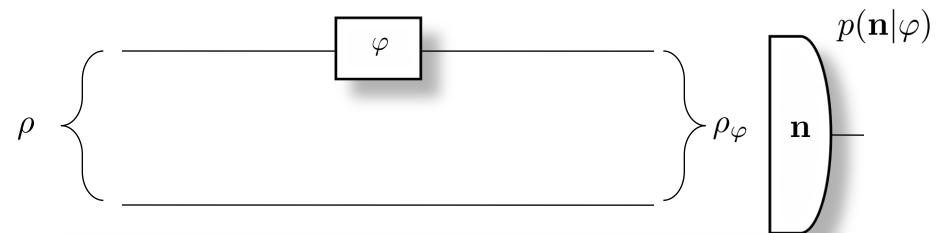


What quantum states are optimal for interferometry?

We would like to avoid looking for the optimal estimator and the optimal measurement

Fisher Information

do not care about the estimator



Cramer-Rao bound

 $\Delta^2 \tilde{\varphi} \geq \frac{1}{F} \Big|$

for any unbiased estimator $\tilde{\varphi}$

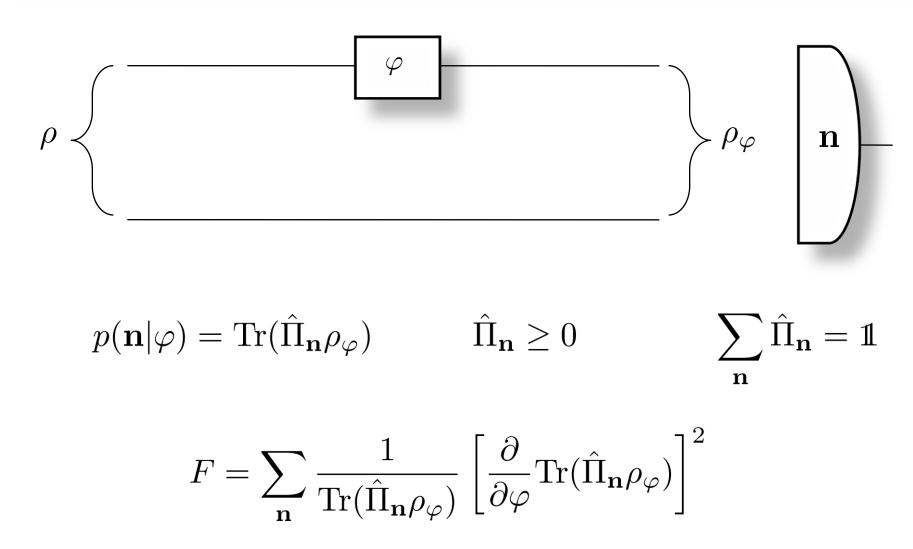
$$\sum_{\mathbf{n}} \tilde{\varphi}(\mathbf{n}) p(\mathbf{n} | \varphi) = \varphi$$

$$F = \sum_{\mathbf{n}} \frac{1}{p(\mathbf{n}|\varphi)} \left(\frac{\partial p(\mathbf{n}|\varphi)}{\partial \varphi} \right)^2$$

if an experiment is repeated k times: $\Delta^2 \tilde{\varphi} \geq \frac{1}{kF}$

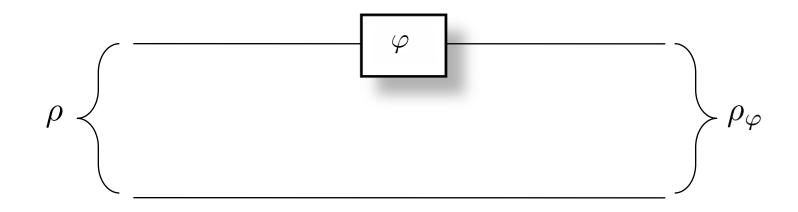
Quantum Fisher Information

do not care about the measurement



Quantum Fisher Information

do not care about the measurement



Quantum Cramer-Rao bound

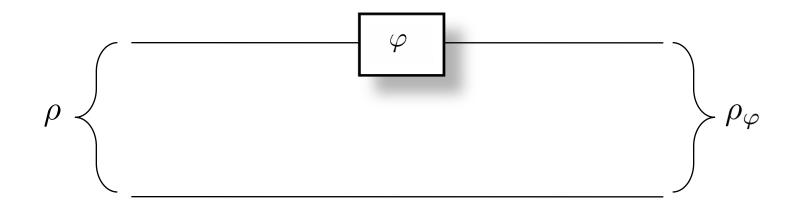
$$\Delta^2 \tilde{\varphi} \ge \frac{1}{F_Q}$$

$$(\hat{A})_{ij} = \frac{2}{p_i + p_j} \left(\frac{\partial \rho_{\varphi}}{\partial \varphi}\right)_{ij}$$
written in ρ_{φ} eigenbasis

 $F_Q = \operatorname{Tr}(\rho_{\varphi} \hat{A}^2)$

Quantum Fisher Information

do not care about the measurement

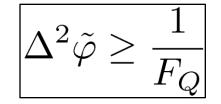


• Quantum Cramer-Rao bound for pure states

$$\rho_{\varphi} = |\psi_{\varphi}\rangle\langle\psi_{\varphi}| \quad \hat{A} = 2(|\psi_{\varphi}\rangle\langle\psi_{\varphi}'| + |\psi_{\varphi}'\rangle\langle\psi_{\varphi}|) \qquad |\psi_{\varphi}'\rangle = \frac{\partial}{\partial\varphi}|\psi_{\varphi}\rangle$$

 $F_Q = 4(\langle \psi_{\varphi}' | \psi_{\varphi}' \rangle - |\langle \psi_{\varphi} | \psi_{\varphi}' \rangle|^2)$

 \cap



NOON states

$$F_Q = 4(\langle \psi'_{\varphi} | \psi'_{\varphi} \rangle - |\langle \psi_{\varphi} | \psi'_{\varphi} \rangle|^2)$$

$$|\psi_{\varphi}'\rangle = \frac{\partial}{\partial\varphi}|\psi_{\varphi}\rangle$$

Single photon

$$rac{1}{\sqrt{2}}(\mathrm{e}^{\mathrm{i}arphi}|10
angle-|01
angle)$$

repeated N times:

$$F_Q = N$$

classical limit

NOON state: $\frac{1}{\sqrt{2}} (e^{iN\phi} |N0\rangle - |0N\rangle)$

gives:

$$F_Q = N^2$$

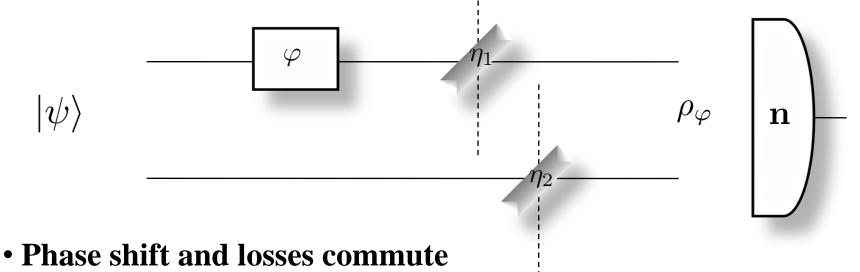
Heisenberg limit

What are the optimal states in the presence of losses?

Interferometry with losses in one mode

 η_i - transmision coefficients

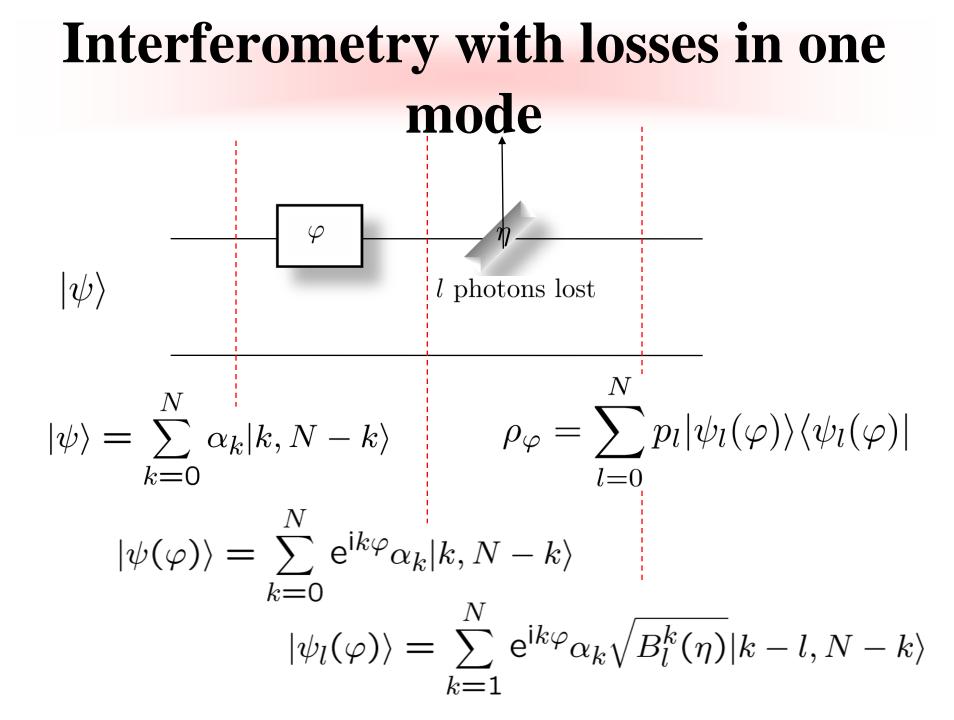
 $|\psi\rangle = \sum \alpha_k |k, N - k\rangle$

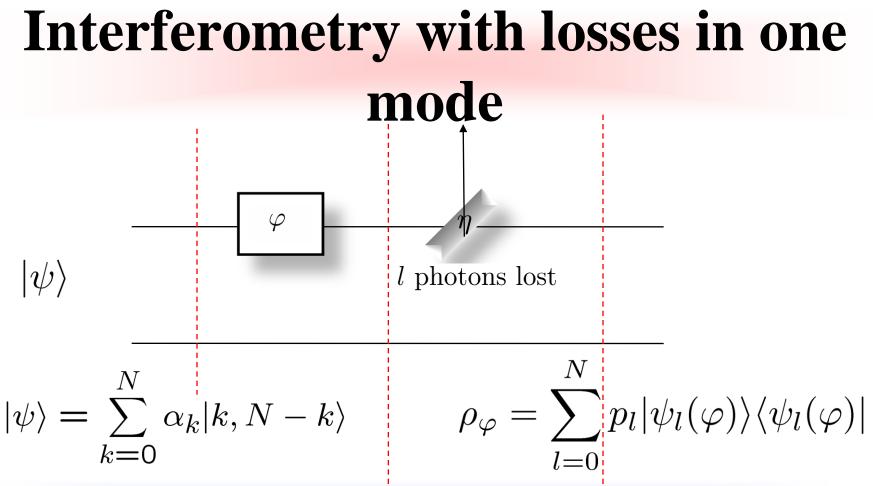


• NOON states are extremely vulnerable to losses

$$\hat{a}_1 \frac{1}{\sqrt{2}} (|N0\rangle + |0N\rangle) \propto e^{iN\phi} |N-1,0\rangle$$

• What is the optimal N photon state?





Subspaces with different *l* are orthogonal

$$F_Q = \sum_{l=0}^{N} p_l F_l \qquad \qquad F_l = 4(\langle \psi_l' | \psi_l' \rangle - |\langle \psi_l | \psi_l' \rangle|^2)$$

For losses in both modes this is not the case

Interferometry with losses in one mode

$$F_Q = 4 \left(\sum_{k=0}^{N} k^2 x_k - \sum_{l=0}^{N} \frac{\left(\sum_{k=l}^{N} k x_k B_l^k(\eta) \right)^2}{\sum_{k=l}^{N} x_k B_l^k(\eta)} \right)$$

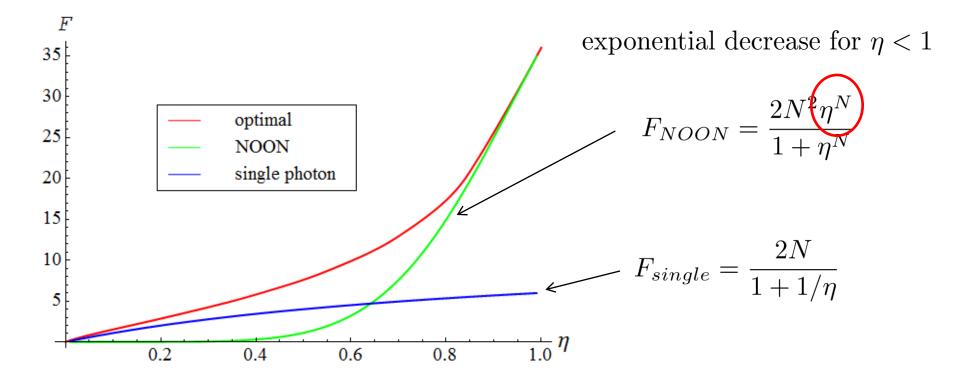
$$\begin{split} x_k &= |\alpha_k|^2, \qquad x_k \ge 0, \qquad \sum_k x_k = 1. \\ \bullet \ F_Q \ \text{ is a concave function in } \{x_k\} \\ H_{ij} &= \frac{\partial^2 F_Q}{\partial x_i \partial_j} \quad H \le 0 \end{split}$$

(0, 1,..., 0)

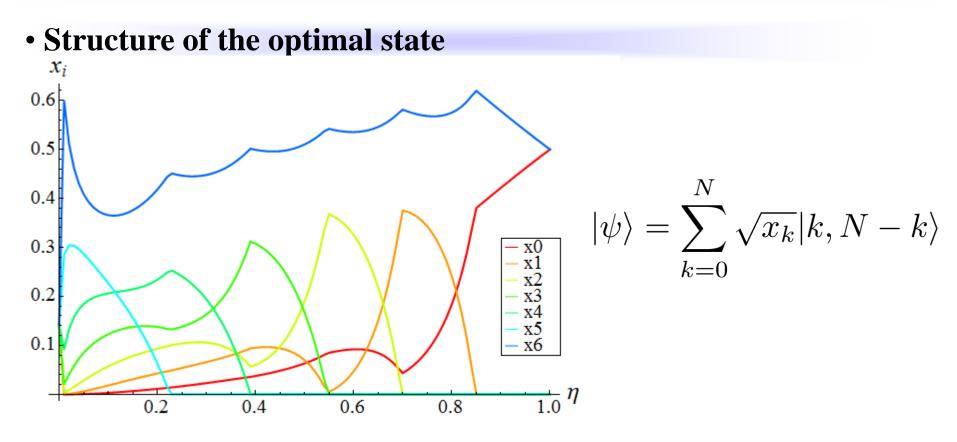
(1, 0, ..., 0)

Optimal *N***=6 photon state**

• Dependence of Fisher information on transmissivity



Optimal *N***=6 photon state**

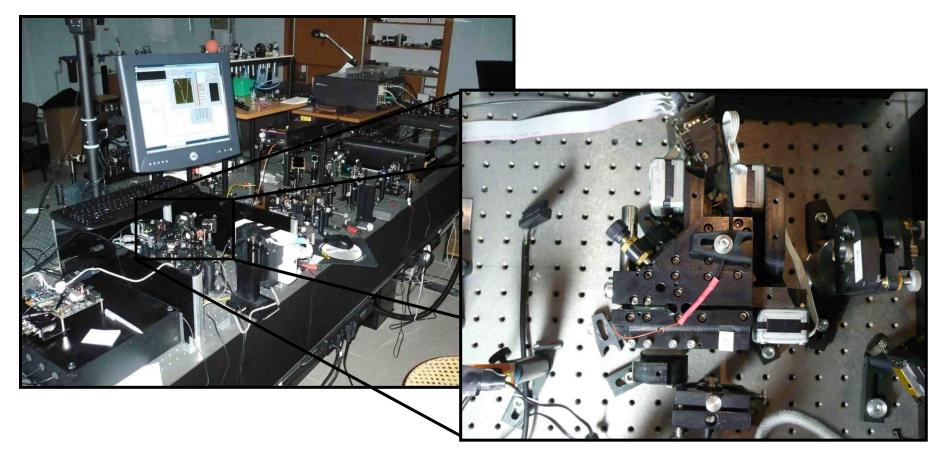


• A pretty good state

$$|\psi\rangle = \sqrt{x_k}|k, N - k\rangle + \sqrt{x_N}|N, 0\rangle$$

Experiment is under way...

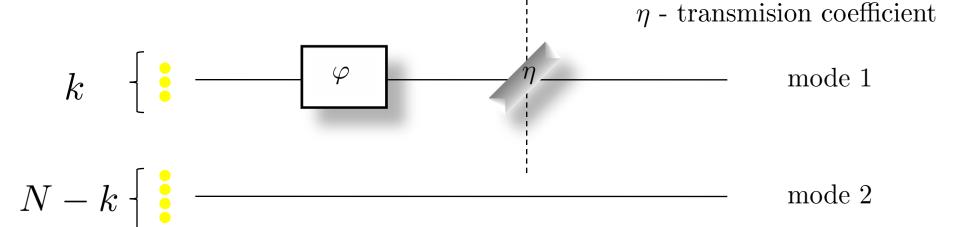
Wojciech Wasilewski, Marcin Kacprowicz



 $|\psi\rangle = \alpha_0 |02\rangle + \alpha_1 |11\rangle + \alpha_2 |20\rangle$

Does using separate time bins help?

• Instead of using N photons in common modes



$$|\psi\rangle = \sum_{k=0}^{N} \alpha_k |k, N - k\rangle$$

Does using separate time bins help?

• We could send them in different times bins

 η - transmision coefficient φ • • • ____ mode 1 mode 2 $|1222112\rangle$ $|\psi\rangle = \sum \alpha_{i_1,\dots,i_N} |i_1,\dots,i_N\rangle$ $i_1 \dots i_N = 1$

The optimal state is permutationally invariant – distinguishability of photons does not help!

 $F \propto N$, classical scaling $F \propto N^2$, Heisenberg scaling

Using optimally unbalanced NOON state

$$|\psi\rangle = \sqrt{x_0}|0,N\rangle + \sqrt{x_N}|N,0\rangle$$

$$F = \frac{4N^2\eta^N}{(1+\eta^{N/2})^2} \xrightarrow{N \to \infty} \begin{cases} N^2 & \eta = 1\\ 4N^2\eta^N \to 0 & \eta < 1 \end{cases}$$

 $F \propto N$, classical scaling $F \propto N^2$, Heisenberg scaling

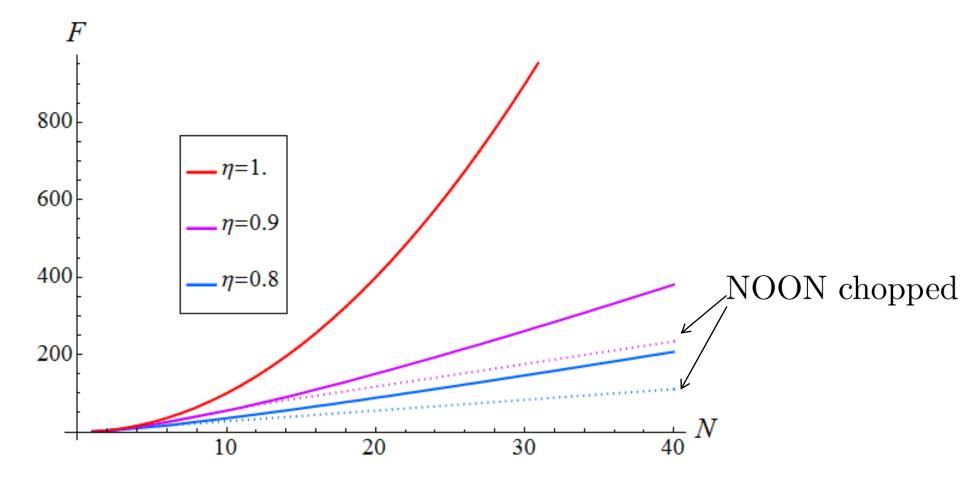
Using optimally chopped NOON state

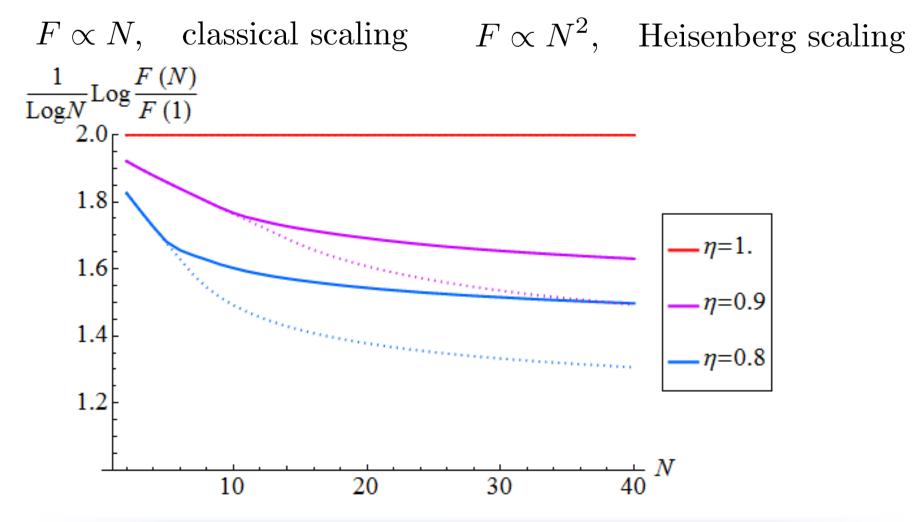
$$|\psi\rangle = (\sqrt{x_0}|0,n\rangle + \sqrt{x_n}|n,0\rangle)^{\otimes N/n}$$

$$F = \begin{cases} \frac{4N^2\eta^N}{(1+\eta^{N/2})^2} & \eta \ge \eta_0^{1/N} \\ \frac{4N\eta_0}{\ln(1/\eta)(1+\sqrt{\eta_0})} & \eta_0 \le \eta \le \eta_0^{1/N} \xrightarrow{N \to \infty} \begin{cases} N^2 & \eta = 1 \\ \propto N & \eta < 1 \end{cases} \\ \frac{4N\eta}{(1+\sqrt{\eta})^2} & \eta \le \eta_0 \end{cases}$$

 $\eta_0 = 0.228169$, solution of $1 + \sqrt{\eta_0} + \ln \eta_0 = 0$

 $F \propto N$, classical scaling $F \propto N^2$, Heisenberg scaling





• Open problem: do we have the classical scaling for any $\eta < 1$?

Summary

- NOON states are very vulnerable in the presence of losses
- Optimal states for interferometry with losses in one mode are well approximated by two component states of the form:

$$|\psi\rangle = \sqrt{x_k}|k, N - k\rangle + \sqrt{x_N}|N, 0\rangle$$

• Using multimode approach – each photon sent in a separate time bin can only lower Fisher Information

For $\eta < 1$, in the limit $N \rightarrow \infty$ do we always get the classical scaling $F \propto N$