
ar
X

iv
:q

ua
nt

-p
h/

00
11

01
3 

v1
   

2 
N

ov
 2

00
0

Basic concepts in quantum computation

Artur Ekert, Patrick Hayden and Hitoshi Inamori
Centre for Quantum Computation,

University of Oxford, Oxford OX1 3PU, United Kingdom

April 22, 2001

1 Qubits, gates and networks

Consider the two binary strings,

011, (1)

111. (2)

The first one can represent, for example, the number 3 (in binary) and the
second one the number 7. In general three physical bits can be prepared in
23 = 8 different configurations that can represent, for example, the integers
from 0 to 7. However, a register composed of three classical bits can store only
one number at a given moment of time. Enter qubits and quantum registers:

A qubit is a quantum system in which the Boolean states 0 and 1 are rep-
resented by a prescribed pair of normalised and mutually orthogonal quantum
states labeled as {|0〉, |1〉} [1]. The two states form a ‘computational basis’ and
any other (pure) state of the qubit can be written as a superposition α|0〉+β|1〉
for some α and β such that |α|2 + |β|2 = 1. A qubit is typically a microscopic
system, such as an atom, a nuclear spin, or a polarised photon. A collection of
n qubits is called a quantum register of size n.

We shall assume that information is stored in the registers in binary form.
For example, the number 6 is represented by a register in state |1〉 ⊗ |1〉 ⊗
|0〉. In more compact notation: |a〉 stands for the tensor product |an−1〉 ⊗
|an−2〉 . . . |a1〉 ⊗ |a0〉, where ai ∈ {0, 1}, and it represents a quantum register
prepared with the value a = 20a0 + 21a1 + . . .2n−1an−1. There are 2n states of
this kind, representing all binary strings of length n or numbers from 0 to 2n−1,
and they form a convenient computational basis. In the following a ∈ {0, 1}n
(a is a binary string of length n) implies that | a〉 belongs to the computational
basis.

Thus a quantum register of size three can store individual numbers such as
3 or 7,

|0〉 ⊗ |1〉 ⊗ |1〉 ≡ |011〉 ≡ |3〉, (3)

|1〉 ⊗ |1〉 ⊗ |1〉 ≡ |111〉 ≡ |7〉, (4)
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but, it can also store the two of them simultaneously. For if we take the
first qubit and instead of setting it to |0〉 or |1〉 we prepare a superposition
1/
√

2 (|0〉+ |1〉) then we obtain

1√
2

(|0〉+ |1〉)⊗ |1〉 ⊗ |1〉 ≡ 1√
2

(|011〉+ |111〉) , (5)

≡ 1√
2

(|3〉+ |7〉) . (6)

In fact we can prepare this register in a superposition of all eight numbers – it
is enough to put each qubit into the superposition 1/

√
2 (|0〉+ |1〉) . This gives

1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉) , (7)

which can also be written in binary as (ignoring the normalisation constant
2−3/2 ),

|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉. (8)

or in decimal notation as

|0〉+ |1〉+ |2〉+ |3〉+ |4〉+ |5〉+ |6〉+ |7〉, (9)

or simply as
7∑

x=0

|x〉 . (10)

These preparations, and any other manipulations on qubits, have to be per-
formed by unitary operations. A quantum logic gate is a device which performs
a fixed unitary operation on selected qubits in a fixed period of time and a
quantum network is a device consisting of quantum logic gates whose compu-
tational steps are synchronised in time [2]. The outputs of some of the gates
are connected by wires to the inputs of others. The size of the network is the
number of gates it contains.

The most common quantum gate is the Hadamard gate, a single qubit gate
H performing the unitary transformation known as the Hadamard transform.
It is defined as

H =
1√
2

(
1 1
1 −1

)
|x〉 H (−1)x |x〉+ |1− x〉

The matrix is written in the computational basis {| 0〉 , |1〉} and the diagram on
the right provides a schematic representation of the gate H acting on a qubit
in state |x〉, with x = 0, 1.

And here is a network, of size three, which affects the Hadamard transform
on three qubits. If they are initially in state |000〉 then the output is the super-
position of all eight numbers from 0 to 7.
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|0〉 H | 0〉+| 1〉√
2

|0〉 H | 0〉+| 1〉√
2

|0〉 H | 0〉+| 1〉√
2





IN BINARY

= 1

23/2

�
|000〉+ | 001〉+ | 010〉+ | 011〉+
+ |100〉+ | 101〉+ | 110〉+ |111〉

�

= 1

23/2

�
|0〉 + |1〉 + | 2〉+ | 3〉+
+ |4〉 + | 5〉+ | 6〉+ | 7〉

�

IN DECIMAL

If the three qubits are initially in some other state from the computational
basis then the result is a superposition of all numbers from 0 to 7 but exactly
half of them will appear in the superposition with the minus sign, for example,

|101〉 7→ 1

23/2

{
|000〉 − | 001〉+ | 010〉 − |011〉+
− | 100〉+ |101〉 − | 110〉+ |111〉

}
. (11)

In general, if we start with a register of size n in some state y ∈ {0, 1}n then

| y〉 7→ 2−n/2
∑

x∈{0,1}n
(−1)y·x |x〉 , (12)

where the product of y = (yn−1, . . . , y0) and x = (xn−1, . . . , x0) is taken bit by
bit:

y · x = (yn−1xn−1 + . . . y1x1 + y0x0). (13)

We will need another single qubit gate – the phase shift gate φ defined as
| 0〉 7→ | 0〉 and | 1〉 7→ eiφ | 1〉, or, in matrix notation,

φ =

(
1 0
0 eiφ

)
|x〉 �

φ
eixφ |x〉 (14)

The Hadamard gate and the phase gate can be combined to construct the
following network (of size four), which generates the most general pure state of
a single qubit (up to a global phase),

|0〉 H H
�
2θ

�

π
2 + φ

cos θ |0〉+ eiφ sin θ | 1〉 . (15)

Consequently, the Hadamard and phase gates are sufficient to construct any
unitary operation on a single qubit.

Thus the Hadamard gates and the phase gates can be used to transform the
input state |0〉|0〉...|0〉 of the n qubit register into any state of the type |Ψ1〉
|Ψ2〉... |Ψn〉, where |Ψi〉 is an arbitrary superposition of |0〉 and |1〉. These are
rather special n-qubit states, called the product states or the separable states.
In general, a quantum register of size n > 1 can be prepared in states which
are not separable – they are known as entangled states. For example, for two
qubits (n = 2), the state

α |00〉+ β |01〉 = |0〉 ⊗ (α |0〉+ β |1〉) (16)
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is separable, |Ψ1〉 = |0〉 and |Ψ2〉 = α |0〉+ β |1〉, whilst the state

α |00〉+ β |11〉 6= |Ψ1〉 ⊗ |Ψ2〉 (17)

is entangled (α, β 6= 0), because it cannot be written as a tensor product.
In order to entangle two (or more qubits) we have to extend our repertoire

of quantum gates to two-qubit gates. The most popular two-qubit gate is the
controlled-NOT (c-not), also known as the xor or the measurement gate. It
flips the second (target) qubit if the first (control) qubit is | 1〉 and does nothing
if the control qubit is |0〉. The gate is represented by the unitary matrix

C =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 | y〉

|x〉 �

�
|x⊕ y〉

|x〉
(18)

where x, y = 0 or 1 and ⊕ denotes XOR or addition modulo 2. If we apply
the c-not to Boolean data in which the target qubit is |0〉 and the control is
either |0〉 or |1〉 then the effect is to leave the control unchanged while the target
becomes a copy of the control, i.e.

|x〉|0〉 7→ |x〉|x〉 x = 0, 1. (19)

One might suppose that this gate could also be used to copy superpositions such
as |Ψ〉 = α |0〉+ β |1〉, so that

|Ψ〉|0〉 7→ |Ψ〉|Ψ〉 (20)

for any |Ψ〉. This is not so! The unitarity of the c-not requires that the gate
turns superpositions in the control qubit into entanglement of the control and
the target. If the control qubit is in a superposition state |Ψ〉 = α|0〉 + β|1〉,
(α, β 6= 0), and the target in |0〉 then the c-not generates the entangled state

(α|0〉+ β|1〉) |0〉 7→ α|00〉+ β|11〉. (21)

Let us notice in passing that it is impossible to construct a universal quan-
tum cloning machine effecting the transformation in Eq.(20), or even the more
general

|Ψ〉|0〉|W 〉 7→ |Ψ〉|Ψ〉|W ′〉 (22)

where |W 〉 refers to the state of the rest of the world and |Ψ〉 is any quantum
state [3]. To see this take any two normalised states |Ψ〉 and |Φ〉 which are non-
identical (|〈Φ|Ψ〉| 6= 1) and non-orthogonal (〈Φ|Ψ〉 6= 0 ), and run the cloning
machine,

|Ψ〉|0〉|W 〉 7→ |Ψ〉|Ψ〉|W ′〉 (23)

|Φ〉|0〉|W 〉 7→ |Φ〉|Φ〉|W ′′〉 (24)
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As this must be a unitary transformation which preserves the inner product
hence we must require

〈Φ|Ψ〉 = 〈Φ|Ψ〉2〈W ′ |W ′′〉 (25)

and this can only be satisfied when |〈Φ|Ψ〉| = 0 or 1, which contradicts our
assumptions. Thus states of qubits, unlike states of classical bits, cannot be
faithfully cloned. This leads to interesting applications, quantum cryptography
being one such.

Another common two-qubit gate is the controlled phase shift gate B(φ)
defined as

B(φ) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ


 | y〉

|x〉 �

�




eixyφ |x〉 | y〉 . (26)

Again, the matrix is written in the computational basis {|00〉 , |01〉 , |10〉 , |11〉}
and the diagram on the right shows the structure of the gate.

More generally, these various 2-qubit controlled gates are all of the form
controlled-U , for some single-qubit unitary transformation U . The controlled-U
gate applies the identity transformation to the auxiliary (lower) qubit when the
control qubit is in state |0〉 and applies an arbitrary prescribed U when the
control qubit is in state |1〉. The gate maps | 0〉 | y〉 to | 0〉 | y〉 and |1〉 | y〉 to
| 1〉 (U | y〉), and is graphically represented as

�

U

The Hadamard gate, all phase gates, and the c-not, form an infinite uni-
versal set of gates i.e. if the c-not gate as well as the Hadamard and all phase
gates are available then any n-qubit unitary operation can be simulated exactly
with O(4nn) such gates [4]. (Here and in the following we use the asymptotic
notation – O(T (n)) means bounded above by c T (n) for some constant c > 0 for
sufficiently large n.) This is not the only universal set of gates. In fact, almost
any gate which can entangle two qubits can be used as a universal gate [6, 8].
Mathematically, an elegant choice is a pair of the Hadamard and the controlled-
V (c-V ) where V is described by the unitary matrix

V =

(
1 0
0 i

)
. (27)

The two gates form a finite universal set of gates – networks containing only
a finite number of these gates can approximate any unitary transformation on
two (and more) qubits. More precisely, if U is any two-qubit gate and ε > 0
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then there exists a quantum network of size O(logd(1/ε)) (where d is a constant)
consisting of only H and c-V gates which computes a unitary operation U ′ that
is within distance ε from U [49]. The metric is induced by the Euclidean norm
- we say that U ′ is within distance ε from U if there exists a unit complex
number λ (phase factor) such that ||U −λU ′|| ≤ ε. Thus if U ′ is substituted for
U in a quantum network then the final state

∑
x α
′
x |x〉 approximates the final

state of the original network
∑
x αx |x〉 as follows:

√∑
x |λα′x − αx|2 ≤ ε. The

probability of any specified measurement outcome on the final state is affected
by at most ε.

A quantum computer will be viewed here as a quantum network (or a family
of quantum networks)and quantum computation is defined as a unitary evolu-
tion of the network which takes its initial state “input” into some final state
“output”. We have chosen the network model of computation, rather than Tur-
ing machines, because it is relatively simple and easy to work with and because
it is much more relevant when it comes to physical implementation of quantum
computation.

2 Quantum arithmetic and function evaluations

Let us now describe how quantum computers actually compute, how they add
and multiply numbers, and how they evaluate Boolean functions by means of
unitary operations. Here and in the following we will often use the modular
arithmetic [9]. Recall that

a mod b (28)

denotes the remainder obtained by dividing integer b into integer a, which is
always a number less than b. Basically a = b mod n if a = b+kn for some integer
k. This is expressed by saying that a is congruent to b modulo n or that b is the
residue of a modulo n. For example, 1 mod 7 = 8 mod 7 = 15 mod 7 = 50 mod
7 = 1. Modular arithmetic is commutative, associative, and distributive.

(a± b) mod n = ((a mod n) ± (b mod n)) mod n (29)

(a× b) mod n = ((a mod n) × (b mod n)) mod n (30)

(a× (b+ c)) mod n = (((ab) mod n+ ((ac) mod n)) mod n (31)

Thus, if you need to calculate, say, 38 mod 7 do not use the naive approach
and perform seven multiplications and one huge modular reduction. Instead,
perform three smaller multiplications and three smaller reductions,

((32 mod 7)2 mod 7)2 mod 7 = (22 mod 7)2 mod 7 = 16 mod 7 = 2. (32)

This kind of arithmetic is ideal for computers as it restricts the range of all inter-
mediate results. For l-bit modulus n, the intermediate results of any addition,
subtraction or multiplication will not be more than 2l bits long. In quantum
registers of size n, addition modulo 2n is one of the most common operations;
for all x ∈ {0, 1}n and for any a ∈ {0, 1}n,

|x〉 7→ | (x+ a) mod 2n〉 (33)
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is a well defined unitary transformation.
The tricky bit in the modular arithmetic is the inverse operation, and here

we need some basic number theory. An integer a ≥ 2 is said to be prime if
it is divisible only by 1 and a (we consider only positive divisors). Otherwise,
a is called composite. The greatest common divisor of two integers a and b is
the greatest positive integer d denoted d = gcd(a, b) that divides both a and b.
Two integers a and b are said to be coprime or relatively prime if gcd(a, b) = 1.
Given two integers a and n that are coprime, it can be shown that there exists
an unique integer d ∈ {0, . . . , n− 1} such that ad = 1 mod n [9]. The integer d
is called inverse modulo n of a, and denoted a−1. For example, modulo 7 we
find that 3−1 = 5 mod n, since 3× 5 = 15 = 2 × 7 + 1 = 1 mod 7. This bizarre
arithmetic and the notation is due to Karl Friedrich Gauss (1777-1855). It was
first introduced in his Disquistiones Arithmeticae in 1801.

In quantum computers addition, multiplication, and any other arithmetic
operation have to be embedded in unitary evolution. We will stick to the
Hadamard and the controlled-V (c-V ), and use them as building blocks for
all other gates and eventually for quantum adders and multipliers.

If we apply c-V four times we get identity, so any three subsequent applica-
tions of c-V give the inverse of c-V , which will be called c-V †. Now, if we have
a couple of the c-V gates and a couple of the Hadamard gates we can build the
c-not as follows

H V V H

� �

≡

�

�

A single qubit operation not can be performed via a c-not gate if the con-
trol qubit is set to |1〉 and viewed as an auxiliary qubit. This is not to say
that we want to do it in practice. The c-not gate is much more difficult to
build than a single qubit not. Right now we are looking into the mathematical
structure of quantum Boolean networks and do not care about practicalities.
Our two elementary gates also allow us to construct a very useful gate called
the controlled-controlled-not gate (c2-not) or the Toffoli gate [10]. The con-
struction is given by the following network,

� �� �

� � �

H V V † V H

≡ �

�

�
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This gate has two control qubits (the top two wires on the diagram) and one
target qubit which is negated only when the two controls are in the state |1〉|1〉.
The c2-not gate gives us the logical connectives we need for arithmetic. If the
target is initially set to |0〉 the gate acts as a reversible and gate - after the gate
operation the target becomes the logical and of the two control qubits.

|x1, x2〉 |0〉 7→ |x1, x2〉 |x1 ∧ x2〉 (34)

Once we have in our repertoire operations such as not, and, and c-not, all of
them implemented as unitary operations, we can, at least in principle, evaluate
any Boolean function {0, 1}n → {0, 1}m which map n bits of input into m
bits of output. A simple concatenation of the Toffoli gate and the c-not gives
a simplified quantum adder, shown below, which is a good starting point for
constructing full adders, multipliers and more elaborate networks.

|x1〉

|x2〉

| y〉

�

�

�

|x1〉

|x2〉

|x1x2 ⊕ y〉

|x1〉

|x2〉

|0〉

|x1〉

SUM = |x1 ⊕ x2〉

CARRY = |x1x2〉

�

�

�

�

�

TOFFOLI GATE QUANTUM ADDER

We can view the Toffoli gate and the evolution given by Eq. (34) as a quantum
implementation of a Boolean function f : {0, 1}2→ {0, 1} defined by f(x1, x2) =
x1 ∧ x2. The operation and is not reversible, so we had to embed it in the
reversible operation c2-not. If the third bit is initially set to 1 rather than 0
then the value of x1∧x2 is negated. In general we write the action of the Toffoli
gate as the function evaluation,

|x1, x2〉 | y〉 7→ |x1, x2〉 | (y + (x1 ∧ x2)) mod 2〉 . (35)

This is how we compute any Boolean function {0, 1}n→ {0, 1}m on a quan-
tum computer. We require at least two quantum registers; the first one, of size
n, to store the arguments of f and the second one, of size n, to store the values
of f . The function evaluation is then a unitary evolution of the two registers,

|x, y〉 7→ |x, (y+ f(x)) mod 2m〉. (36)

for any y ∈ {0, 1}m. (In the following, if there is no danger of confusion, we
may simplify the notation and omit the mod suffix.)

For example, a network computing f : {0, 1}2→ {0, 1}3 such that f(x) = x2

acts as follows

|00〉|000〉 7→ |00〉|000〉, |10〉|000〉 7→ |10〉|100〉 (37)

|01〉|000〉 7→ |01〉|001〉, |11〉|000〉 7→ |11〉|001〉 (38)

which can be written as

|x, 0〉 7→ |x, x2 mod 8〉, (39)
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e.g. 32 mod 23 = 1 which explains why |11〉|000〉 7→ |11〉|001〉.
In fact, for these kind of operations we also need a third register with the

so-called working bits which are set to zero at the input and return to zero at
the output but which can take non-zero values during the computation.

What makes quantum function evaluation really interesting is its action on
a superposition of different inputs x, for example,

∑

x

|x, 0〉 7→
∑

x

|x, f(x)〉 (40)

produces f(x) for all x in a single run. The snag is that we cannot get them
all from the entangled state

∑
x |x, f(x)〉 because any bit by bit measurement

on the first register will yield one particular value x′ ∈ {0, 1}n and the second
register will then be found with the value f(x′) ∈ {0, 1}m.

3 Algorithms and their complexity

In order to solve a particular problem, computers, be it classical or quantum,
follow a precise set of instructions that can be mechanically applied to yield
the solution to any given instance of the problem. A specification of this set
of instructions is called an algorithm. Examples of algorithms are the proce-
dures taught in elementary schools for adding and multiplying whole numbers;
when these procedures are mechanically applied, they always yield the correct
result for any pair of whole numbers. Any algorithm can be represented by a
family of Boolean networks (N1, N2, N3, ...), where the network Nn acts on all
possible input instances of size n bits. Any useful algorithm should have such
a family specified by an example network Nn and a simple rule explaining how
to construct the network Nn+1 from the network Nn. These are called uniform
families of networks [11].1

The quantum Hadamard transform defined by Eq.(12) has a uniform family
of networks whose size is growing as n with the number of input qubits. Another
good example of a uniform family of networks is the quantum Fourier transform
(QFT) [12] defined in the computational basis as the unitary operation

| y〉 7→ 2−n/2
∑

x

ei
2π
2n yx |x〉 , (41)

Suppose we want to construct such a unitary evolution of n qubits using our
repertoire of quantum logic gates. We can start with a single qubit and notice
that in this case the QFT is reduced to applying a Hadamard gate. Then we
can take two qubits and notice that the QFT can be implemented with two
Hadamard gates and the controlled phase shift B(π)in between. Progressing
this way we can construct the three qubit QFT and the four qubit QFT, whose
network looks like this:

1This means that the network model is not a self-contained model of computation. We
need an algorithm, a Turing machine, which maps each n into an explicit description of Nn.
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|x3〉

|x2〉

|x1〉

|x0〉

|0〉+ e2πix/24 |1〉

|0〉+ e2πix/23 |1〉

|0〉+ e2πix/22 |1〉

|0〉 + e2πix/2 |1〉

H B(π) H B(π/2)B(π) H B(π/4)B(π/2)B(π) H

H

H

H

H
�

�

�

�

�

�

� � �

�

�

�

(N.B. there are three different types of the B(φ) gate in the network above:
B(π), B(π/2) and B(π/4).)

The general case of n qubits requires a trivial extension of the network
following the same sequence pattern of gates H and B. The QFT network
operating on n qubits contains n Hadamard gates H and n(n − 1)/2 phase
shifts B, in total n(n+ 1)/2 elementary gates.

The big issue in designing algorithms or their corresponding families of net-
works is the optimal use of physical resources required to solve a problem.
Complexity theory is concerned with the inherent cost of computation in terms
of some designated elementary operations, memory usage, or network size. An
algorithm is said to be fast or efficient if the number of elementary operations
taken to execute it increases no faster than a polynomial function of the size
of the input. We generally take the input size to be the total number of bits
needed to specify the input (for example, a number N requires log2N bits of
binary storage in a computer). In the language of network complexity - an al-
gorithm is said to be efficient if it has a uniform and polynomial-size network
family (O(nd) for some constant d) [11]. For example, the quantum Fourier
transform can be performed in an efficient way because it has a uniform family
of networks whose size grows only as a quadratic function of the size of the
input, i.e. O(n2). Changing from one set of gates to another, e.g. constructing
the QFT out of the Hadamard and the controlled-V gates with a prescribed
precision ε, can only affect the network size by a multiplicative constant which
does not affect the quadratic scaling with n. Thus the complexity of the QFT
is O(n2) no matter which set of adequate gates we use. Problems which do not
have efficient algorithms are known as hard problems.

Elementary arithmetic operations taught at schools, such as long addition,
multiplication or division of n bit numbers require O(n2) operations. For ex-
ample, to multiply x = (xn−1...x1x0) and y = (yn−1...y1y0) we successively
multiply y by x0, x1 and so on, shift, and then add the result. Each multi-
plication of y by xk takes about n single bit operations, the addition of the n
products takes of the order of n2 bit operations, which adds to the total O(n2)
operations. Knowing the complexity of elementary arithmetic one can often
assess the complexity of other algorithms. For example, the greatest common
divisor of two integers x and y < x can be found using Euclid’s algorithm; the
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oldest nontrivial algorithm which has been known and used since 300 BC.2 First
divide x by y obtaining remainder r1. Then divide y by r1 obtaining remainder
r2, then divide r1 by r2 obtaining remainder r3, etc., until the remainder is
zero. The last non-zero remainder is gcd(x, y) because it divides all previous
remainders and hence also x and y (it is obvious from the construction that it
is the greatest common divisor). For example, here is a sequence or remainders
(rj , rj+1) when we apply Euclid’s algorithm to compute gcd(12378, 3054) = 6:
(12378,3054), (3054,162), (162, 138), (138, 24), (24, 18), (18,6), (6,0). What is
the complexity of this algorithm? It is easy to see that the largest of the two
numbers is at least halved every two steps, so every two steps we need one bit
less to represent the number, and so the number of steps is at most 2n, where
n is the number of bits in the two integers. Each division can be done with at
most O(n2) operations hence the total number of operations is O(n3).

There are basically three different types of Boolean networks: classical deter-
ministic, classical probabilistic, and quantum. They correspond to, respectively,
deterministic, randomised, and quantum algorithms.

Classical deterministic networks are based on logical connectives such as
and, or, and not and are required to always deliver correct answers. If a
problem admits a deterministic uniform network family of polynomial size, we
say that the problem is in the class P [11].

Probabilistic networks have additional “coin flip” gates which do not have
any inputs and emit one uniformly-distributed random bit when executed dur-
ing a computation. Despite the fact that probabilistic networks may generate
erroneous answers they may be more powerful than deterministic ones. A good
example is primality testing – given an n-bit number x decide whether or not x
is prime. The smallest known uniform deterministic network family that solves
this problem is of size O(nd log logn), which is not polynomially bounded. How-
ever, there is a probabilistic algorithm, due to Solovay and Strassen [13], that
can solve the same problem with a uniform probabilistic network family of size
O(n3 log(1/ε)), where ε is the probability of error. N.B. ε does not depend on
n and we can choose it as small as we wish and still get an efficient algorithm.

The log(1/ε) part can be explained as follows. Imagine a probabilistic net-
work that solves a decision problem 3 and that errs with probability smaller
than 1

2
+ δ for fixed δ > 0. If you run r of these networks in parallel (so that the

size of the overall network is increased by factor r) and then use the majority
voting for the final YES or NO answer your overall probability of error will
bounded by ε = exp(−δ2r). (This follows directly from the Chernoff bound- see
for instance, [14]). Hence r is of the order log(1/ε). If a problem admits such
a family of networks then we say the problem is in the class BPP (stands for
“bounded-error probabilistic polynomial”) [11].

Last but not least we have quantum algorithms, or families of quantum
networks, which are more powerful than their probabilistic counterparts. The

2This truly ‘classical’ algorithm is described in Euclid’s Elements, the oldest Greek treatise
in mathematics to reach us in its entirety. Knuth (1981) provides an extensive discussion of
various versions of Euclid’s algorithm.

3A decision problem is a problem that admits only two answers: YES or NO
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example here is the factoring problem – given an n-bit number x find a list of
prime factors of x. The smallest known uniform probabilistic network family

which solves the problem is of size O(2
d
√
n log n

). One reason why quantum com-
putation is such a fashionable field today is the discovery, by Peter Shor, of
a uniform family of quantum networks of O(n2 log logn log(1/ε)) in size, that
solve the factoring problem [15]. If a problem admits a uniform quantum net-
work family of polynomial size that for any input gives the right answer with
probability larger than 1

2
+ δ for fixed δ > 0 then we say the problem is in the

class BQP (stands for “bounded-error quantum probabilistic polynomial”).
We have

P ⊆ BPP ⊆ BQP (42)

Quantum networks are potentially more powerful because of multiparticle
quantum interference, an inherently quantum phenomenon which makes the
quantum theory radically different from any classical statistical theory.

Richard Feynman [16] was the first to anticipate the unusual power of quan-
tum computers. He observed that it appears to be impossible to simulate a
general quantum evolution on a classical probabilistic computer in an efficient
way i.e. any classical simulation of quantum evolution appears to involve an
exponential slowdown in time as compared to the natural evolution since the
amount of information required to describe the evolving quantum state in clas-
sical terms generally grows exponentially in time. However, instead of viewing
this fact as an obstacle, Feynman regarded it as an opportunity. Let us then fol-
low his lead and try to construct a computing device using inherently quantum
mechanical effects.

4 From interferometers to computers

A single particle interference in the Mach-Zehnder interferometer works as fol-
lows. A particle, in this case a photon, impinges on a beam-splitter (BS1), and,
with some probability amplitudes, propagates via two different paths to another
beam-splitter (BS2) which directs the particle to one of the two detectors. Along
each path between the two beam-splitters, is a phase shifter (PS).

12



φ0

PS

φ1

PS ��

� �
P0 = cos2 φ0−φ1

2

P1 = sin2 φ0−φ1

2

� �

� �

BS1

BS2

� �

� �|0〉

|1〉

|0〉

|1〉

If the lower path is labeled as state |0〉 and the upper one as state | 1〉
then the particle, initially in path |0〉, undergoes the following sequence of
transformations

|0〉 BS17→ 1√
2

(|0〉+ |1〉) PS7→ 1√
2

(eiφ0 | 0〉+ eiφ1 |1〉) (43)

= ei
φ0+φ1

2
1√
2

(ei
φ0−φ1

2 | 0〉+ ei
−φ0+φ1

2 |1〉)
BS27→ ei

φ1+φ2
2 (cos 1

2(φ0 − φ1) |0〉+ i sin 1
2(φ0 − φ1) | 1〉), (44)

where φ0 and φ1 are the settings of the two phase shifters and the action of the
beam-splitters is defined as

|0〉 7→ 1√
2
(| 0〉+ |1〉), | 1〉 7→ 1√

2
(|0〉 − |1〉). (45)

(We have ignored the phase shift in the reflected beam.) The global phase

shift ei
φ0+φ0

2 is irrelevant as the interference pattern depends on the difference
between the phase shifts in different arms of the interferometer. The phase
shifters in the two paths can be tuned to effect any prescribed relative phase
shift φ = φ0 − φ1 and to direct the particle with probabilities

P0 = cos2

(
φ

2

)
=

1

2
(1 + cos φ) (46)

P1 = sin2

(
φ

2

)
=

1

2
(1− cosφ) (47)

respectively to detectors “0” and “1”.
The roles of the three key ingredients in this experiment are clear. The first

beam splitter prepares a superposition of possible paths, the phase shifters mod-
ify quantum phases in different paths and the second beam-splitter combines all
the paths together erasing all information about which path was actually taken

13



by the particle between the two beam-splitters. This erasure is very important
as we shall see in a moment.

Needless to say, single particle interference experiments are not restricted
to photons. One can go for a different “hardware” and repeat the experiment
with electrons, neutrons, atoms or even molecules. When it comes to atoms and
molecules both external and internal degrees of freedom can be used.

Although single particle interference experiments are worth discussing in
their own right, here we are only interested in their generic features simply be-
cause they are all “isomorphic” and once you know and understand one of them
you, at least for our purposes, understand them all (modulo experimental de-
tails, of course). Let us now describe any single particle interference experiment
in more general terms. It is very convenient to view this experiment in a dia-
gramatic way as a quantum network with three quantum logic gates [17]. The
beam-splitters will be now called the Hadamard gates and the phase shifters the
phase shift gates. In particular any single particle quantum interference can be
represented by the following simple network,

H H

φ = φ0 − φ1
�

In order to make a connection with a quantum function evaluation let us
now describe an alternative construction which simulates the action of the phase
shift gate. This construction introduces a phase factor φ using a controlled-U
gate. The phase shift φ is “computed” with the help of an auxiliary qubit in a
prescribed state |u〉 such that U |u〉 = eiφ |u〉.

|u〉

|0〉 H H
�

U |u〉

Measurement

In our example, shown above, we obtain the following sequence of transforma-
tions on the two qubits

|0〉 |u〉 H7→ 1√
2
(|0〉+ |1〉) |u〉 c−U7→ 1√

2
(| 0〉+ eiφ | 1〉) |u〉

H7→ (cos φ2 |0〉+ i sin φ
2 |1〉) |u〉 . (48)

We note that the state of the auxiliary qubit |u〉, being an eigenstate of U , is
not altered along this network, but its eigenvalue eiφ is “kicked back” in front of
the | 1〉 component in the first qubit. The sequence (48) is the exact simulation
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of the Mach-Zehnder interferometer and, as we shall see later on, the kernel of
quantum algorithms.

Some of the controlled-U operations are special - they represent quantum
function evaluations! Indeed, a unitary evolution which computes f : {0, 1}n 7→
{0, 1}m,

|x〉 | y〉 7→ |x〉 | (y + f(x)) mod 2m〉 , (49)

is of the controlled-U type. The unitary transformation of the second register,
specified by

| y〉 7→ | (y + f(x)) mod 2m〉 , (50)

depends on x – the state of the first register. If the initial state of the second
register is set to

|u〉 =
1

2m/2

2m−1∑

y=0

exp

(
−2πi

2m
y

)
|y〉, (51)

by applying the QFT to the state | 111...1〉, then the function evaluation gener-
ates

|x〉 |u〉 =
1

2m/2
|x〉

2m−1∑

y=0

exp

(
−2πi

2m
y

)
|y〉 (52)

7→ 1

2m/2
|x〉

2m−1∑

y=0

exp

(
−2πi

2m
y

)
|f(x) + y〉 (53)

=
e

2πi
2m f(x)

2m/2
|x〉

2m−1∑

y=0

exp

(
−2πi

2m
(f(x) + y)

)
|f(x) + y〉 (54)

=
e

2πi
2m f(x)

2m/2
|x〉

2m−1∑

y=0

exp

(
−2πi

2m
y

)
|y〉 (55)

= e
2πi
2m f(x)|x〉 |u〉 , (56)

where we have relabelled the summation index in the sum containing 2m terms

2m−1∑

y=0

exp

(
−2πi

2m
(f(x) + y)

)
|f(x) + y〉 =

2m−1∑

y=0

exp

(
−2πi

2m
y

)
|y〉. (57)

Again, the function evaluation effectively introduces the phase factors in front
of the |x〉 terms in the first register.

|x〉 |u〉 7→ exp

(
2πi

2m
f(x)

)
|x〉 |u〉 (58)

Please notice that the resolution in φ(x) = 2π
2m f(x) is determined by the size

m of the second register. For m = 1 we obtain φ(x) = πf(x), i.e. the phase
factors are (−1)f(x). Let us see how this approach explains the internal working
of quantum algorithms.
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5 The first quantum algorithms

The first quantum algorithms showed advantages of quantum computation with-
out referring to computational complexity measured by the scaling properties of
network sizes. The computational power of quantum interference was discovered
by counting how many times certain Boolean functions have to be evaluated in
order to find the answer to a given problem. Imagine a “black box” (also called
an oracle) computing a Boolean function and a scenario in which one wants to
learn about a given property of the Boolean function but has to pay for each use
of the “black box” (often referred to as a query). The objective is to minimise
number of queries.

Consider, for example, a “black box” computing a Boolean function f :
{0, 1} 7→ {0, 1}. There are exactly four such functions: two constant functions
(f(0) = f(1) = 0 and f(0) = f(1) = 1) and two “balanced” functions (f(0) =
0, f(1) = 1 and f(0) = 1, f(1) = 0). The task is to deduce, by queries to the
“black box”, whether f is constant or balanced (in other words, whether f(0)
and f(1) are the same or different).

Classical intuition tells us that we have to evaluate both f(0) and f(1), which
involves evaluating f twice (two queries). We shall see that this is not so in the
setting of quantum information, where we can solve this problem with a single
function evaluation (one query), by employing an algorithm that has the same
mathematical structure as the Mach-Zehnder interferometer. The quantum al-
gorithm that accomplishes this is best represented as the quantum network
shown below, where the middle operation is the “black box” representing the
function evaluation [17].

|0〉 − |1〉

| 0〉 H H
�

f | 0〉 − | 1〉

Measurement

The initial state of the qubits in the quantum network is | 0〉 (| 0〉 − |1〉) (apart
from a normalization factor, which will be omitted in the following). After
the first Hadamard transform, the state of the two qubits has the form (|0〉 +
| 1〉)(|0〉− | 1〉). To determine the effect of the function evaluation on this state,
first recall that, for each x ∈ {0, 1},

|x〉 (| 0〉 − |1〉) f7→ (−1)f(x) |x〉 (| 0〉 − |1〉). (59)

Therefore, the state after the function evaluation is

[(−1)f(0) | 0〉+ (−1)f(1) |1〉](|0〉 − |1〉) . (60)

That is, for each x, the |x〉 term acquires a phase factor of (−1)f(x), which
corresponds to the eigenvalue of the state of the auxiliary qubit under the action
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of the operator that sends | y〉 to | y + f(x)〉. The second qubit is of no interest
to us any more but the state of the first qubit

(−1)f(0) |0〉+ (−1)f(1) | 1〉 (61)

is equal either to
± (|0〉+ |1〉) , (62)

when f(0) = f(1), or
± (|0〉 − |1〉) , (63)

when f(0) 6= f(1). Hence, after applying the second Hadamard gate the state of
the first qubit becomes |0〉 if the function f is constant and | 1〉 if the function
is balanced! A bit-value measurement on this qubit distinguishes these cases
with certainty.

This example [17] is an improved version of the first quantum algorithm
proposed by Deutsch [18] (The original Deutsch algorithm provides the correct
answer with probability 50%.) Deutsch’s result laid the foundation for the
new field of quantum computation, and was followed by several other quantum
algorithms.

Deutsch’s original problem was subsequently generalised to cover “black
boxes” computing Boolean functions f : {0, 1}n 7→ {0, 1}. Assume that, for
one of these functions, it is “promised” that it is either constant or balanced
(i.e. has an equal number of 0’s outputs as 1’s), and the goal is to determine
which of the two properties the function actually has. How many queries to
f are required to do this? Any classical algorithm for this problem would, in
the worst-case, require 2n−1 + 1 queries before determining the answer with
certainty. There is a quantum algorithm that solves this problem with a single
evaluation of f .

The algorithm is illustrated by a simple extension of the network which
solves Deutsch’s problem.

|0〉 H H
�

Measurement

|0〉 H H Measurement

|0〉 H H
�

Measurement

| 0〉 − | 1〉 f | 0〉 − | 1〉

The control register, now composed out of n qubits (n = 3 in the diagram
above), is initially in state |00 · · ·0〉 and an auxiliary qubit in the second register
starts and remains in the state | 0〉 − |1〉.
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Stepping through the execution of the network, the state after the first n-
qubit Hadamard transform is applied is

∑

x

|x〉 (|0〉 − |1〉) , (64)

which, after the function evaluation, is
∑

x

(−1)f(x) |x〉 (| 0〉 − | 1〉). (65)

Finally, after the last Hadamard transform, the state is
∑

x,y

(−1)f(x)+(x·y) | y〉 (| 0〉 − | 1〉). (66)

Note that the amplitude of | 00 · · ·0〉 is
∑

x
(−1)f(x)

2n which is (−1)f(0) when
f is constant and 0 when f is balanced. Therefore, by measuring the first n
qubits, it can be determined with certainty whether f is constant or balanced.
The algorithm follows the same pattern as Deutsch’s algorithm: the Hadamard
transform, a function evaluation, the Hadamard transform (the H-f-H sequence).
We recognize it as a generic interference pattern.

6 Quantum search

The generic H-f-H sequence may be repeated several times. This can be illus-
trated, for example, with Grover’s data base search algorithm [19]. Suppose we
are given, as an oracle, a Boolean function fk which maps {0, 1}n to {0, 1} such
that fk(x) = δxk for some k. Our task is to find k. Thus in a set of numbers
from 0 to 2n − 1 one element has been “tagged” and by evaluating fk we have
to find which one. In order to find k with probability of 50% any classical algo-
rithm, be it deterministic or randomised, will need to evaluate fk a minimum of
2n−1 times. In contrast, a quantum algorithm needs only O(2n/2) evaluations.

Unlike the algorithms studied so far, Grover’s algorithm consists of repeated
applications of the same unitary transformation many (O(2n/2)) times. The
initial state is chosen to be the one that has equal overlap with each of the com-

putational basis states: |S〉 = 2−n/2
∑2n

i=0 | i〉. The operation applied at each
individual iteration, referred to as the Grover iterate, can be best represented
by the following network:

H
�

H
�

f0fk

|ψ〉

|0〉 − |1〉
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The components of the network are by now familiar: Hadamard transforms (H)
and controlled-f gates. It is important to notice that in drawing the network we
have used a shorthand notation: the first register (with the |ψ〉 input) actually
consists of n qubits. The Hadamard transform is applied to each of those qubits
and the controlled-f gates act on all of them simultaneously. Also, the input
to the second register is always |0〉 − | 1〉 but the input to the first register,
denoted |ψ〉 changes from iteration from iteration, as the calculation proceeds.
As usual, the second register will be ignored since it remains constant throughout
the computation.

To begin, consider only the controlled-fk gate. This is just the phase-
kickback construction that was introduced in Section 4 but for the specific
function fk. In particular, the transformation does nothing to any basis el-
ements except for |k〉, which goes to − | k〉. Geometrically, this is simply a
reflection in the hyperplane perpendicular to |k〉 so let us call it Rk.

Similarly, with respect to the first register only, the controlled-f0 operation
sends |0〉 to − |0〉 and fixes all other basis elements, so it can be written R0.
Now consider the sequence of operations HR0H. Since H2 = I, we can rewrite
the triple as HR0H

−1 which is simply R0 performed in a different basis. More
specifically, it is reflection about the hyperplane perpendicular to

H | 0〉 =
1

2n/2

2n−1∑

x=0

|x〉 = |S〉 (67)

so we will simply write the triple as RS .
We can therefore rewrite the Grover iterate in the simple form G = RSRk.

Now, since each reflection is an orthogonal transformation with negative de-
terminant, their composition must be an orthogonal transformation with unit
determinant, in other words, a rotation. The question, of course, is which rota-
tion. To find the answer it suffices to consider rotations in the plane spanned by
| k〉 and |S〉 since all other vectors are fixed by the Grover iterate. The generic
geometrical situation is then illustrated in the following diagram.

|a>

|a’’>

y

y

x
x

|a’> L

L

1

2

If the vector |a〉 is reflected through the line L1 to produce the vector |a′〉 and
then reflected a second time through line L2 to produce the vector | a′′〉, then
the net effect is a rotation by the total subtended angle between |a〉 and | a′′〉,
which is 2x+ 2y = 2(x+ y) = 2θ.
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Therefore, writing
∣∣ k⊥

〉
and

∣∣S⊥
〉

for plane vectors perpendicular to |k〉
and |S〉 respectively, the Grover iterate performs a rotation of twice the angle
from

∣∣ k⊥
〉

to
∣∣S⊥

〉
. Setting, sinφ = 1

2n/2
, this is easily seen to be a rotation by

2(3
π

2
− φ) = π − 2φ mod 2π. (68)

Thus, up to phases, the Grover iterate rotates the state vector by an angle 2φ
towards the desired solution | k〉. Normally, the initial state for the first register
is chosen to be |S〉. Since this initial state |S〉 is already at an angle φ to | k〉,
the iterate should be repeated m times, where

(2m+ 1)φ ≈ π

2
, (69)

giving

m ≈ π

4φ
− 1

4
(70)

to get a probability of success bounded below by cos2(2φ), which goes to 1 as
n 7→ ∞. For large n, 1

2n/2
= sinφ ≈ φ, so

m ≈ π

4

1

2n/2
. (71)

This is an astounding result: any search of an unstructured database can
be performed in time proportional to the square-root of the number of entries
in the database. Subsequent work extended the result to searches for multiple
items [20], searches of structured databases [21], and many other situations.
Also, Zalka [22], Boyer et. al [20] and others have demonstrated that Grover’s
algorithm is optimal, in the sense that any other quantum algorithm for search-
ing an unstructured database must take time at least O(2n/2).

7 Optimal phase estimation

Query models of quantum computation provided a natural setting for subse-
quent discoveries of “real quantum algorithms”. The most notable example
is Shor’s quantum factoring algorithm [15] which evolved from the the order-
finding problem, which was originally formulated in the language of quantum
queries. Following our “interferometric approach” we will describe this algo-
rithm in the terms of multiparticle quantum interferometry. We start with a
simple eigenvalue or phase estimation problem.

Suppose that U is any unitary transformation on m qubits and |u〉 is an
eigenvector of U with eigenvalue eiφ and consider the following scenario. We
do not explicitly know U or |u〉 or eiφ, but instead we are given devices that

perform controlled-U , controlled-U 21

, controlled-U 22

and so on until we reach
controlled-U 2n−1

. Also, assume that we are given a single preparation of the
state |u〉. Our goal is to obtain an n-bit estimator of φ. We start by constructing
the following network,

20



U20

U21

U22|u〉 |u〉

| 0〉+ | 1〉

| 0〉+ | 1〉

| 0〉+ | 1〉

|0〉+ ei2
0φ |1〉

|0〉+ ei2
1φ |1〉

|0〉+ ei2
2φ |1〉

�

�

�

The second register of m qubits is initially prepared in state |u〉 and remains
in this state after the computation, whereas the first register of n qubits evolves
into the state,

(| 0〉+ ei2
n−1φ |1〉)(| 0〉+ ei2

n−2φ | 1〉) · · · (| 0〉+ eiφ | 1〉) =

2n−1∑

y=0

e2πi φy2n | y〉 . (72)

Consider the special case where φ = 2πx/2n for x =
∑n−1
i=0 2ixi, and recall

the quantum Fourier transform (QFT) introduced in Section 2. The state which
gives the binary representation of x, namely, |xn−1 · · ·x0〉 (and hence φ) can be
obtained by applying the inverse of the QFT , that is by running the network
for the QFT in the backwards direction (consult the diagram of the QFT). If x
is an n-bit number this will produce the exact value φ.

However, φ does not have to be a fraction of a power of two (and may not
even be a rational number). For such a φ, it turns out that applying the inverse
of the QFT produces the best n-bit approximation of φ with probability at least
4/π2 ≈ 0.405.

To see why this is so, let us write φ = 2π(a/2n + δ), where a = (an−1 . . . a0)
is the best n-bit estimate of φ

2π
and 0 < |δ| ≤ 1/2n+1. Applying the inverse

QFT to the state in Eq. (72) now yields the state

1

2n

2n−1∑

x=0

2n−1∑

y=0

e
2πi
2n (a−x)ye2πiδy |x〉 (73)

and the coefficient in front of |x = a〉 in the above is the geometric series

1

2n

2n−1∑

y=0

(e2πiδ)y =
1

2n

(
1− (e2πiδ)2n

1− e2πiδ

)
. (74)

Since |δ| ≤ 1
2n+1 , it follows that 2n|δ| ≤ 1/2, and using the inequality 2z ≤

sinπz ≤ πz holding for any z ∈ [0, 1/2], we get |1 − e2πiδ2n | = 2| sin(πδ2n)| ≥
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4|δ|2n. Also, |1− e2πiδ | = 2| sinπδ| ≤ 2πδ. Therefore, the probability of observ-
ing an−1 · · ·a0 when measuring the state is

∣∣∣∣
1

2n

(
1− (e2πiδ)2n

1− e2πiδ

)∣∣∣∣
2

≥
(

1

2n

(
4δ2n

2πδ

))2

=
4

π2
, (75)

which proves our assertion. In fact, the probability of obtaining the best esti-
mate can be made 1 − δ for any 0 < δ < 1, by creating the state in Eq.(72)
but with n + O(log(1/δ)) qubits and rounding the answer off to the nearest n
bits [17].

8 Periodicity and quantum factoring

Amazingly, the application of optimal phase estimation to a very particular
unitary operator will allow us to factor integers efficiently. In fact, it will allow
us to solve a more general class of problems related to the periodicity of certain
integer functions.

Let N be an m-bit integer, and let a be an integer smaller than N , and
coprime to N . Define a unitary operator Ua acting on m qubits such that for
all y < N

| y〉 7→ Ua | y〉 = |ay mod N 〉 . (76)

This unitary operation can be called multiplication by a modulo N . Since a is
coprime to N , as discussed in Section 2, there exists a least strictly positive r
such that ar = 1 mod N . This r is called the order of a moduloN . Equivalently,
r is the period of the function f(x) = ax mod N , i.e. the least r > 0 such that
f(x) = f(x+r) for all x. We are after the optimal n-bit estimate of this period,
given some specified precision n.

Now let the vectors |uk〉 (k ∈ {1, . . . , r}) be defined by

|uk〉 = r−1/2
r−1∑

j=0

e−
2πikj
r

∣∣ aj mod N
〉
. (77)

It is easy to check [23] that for each k ∈ {1, . . . , r}, |uk〉 is an eigenvector with

eigenvalue e2πi kr of the modular multiplication operator Ua defined above.
It is important to observe that one can efficiently construct a quantum net-

work for controlled multiplication modulo some number N . Moreover, for any j,
it is possible to efficiently implement a controlled-U 2j

a gate [24, 25]. Therefore,
we can apply the techniques for optimal phase estimation discussed in Section
7. For any k ∈ {1, . . . , r}, given the state |uk〉 we can obtain the best n-bit
approximation to k

r . This is tantamount to determining r itself. Unfortunately,
there is a complication.

Our task is: given an m bit long number N and randomly chosen a < N
coprime with N , find the order of a modulo N . The problem with the above
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method is that we are aware of no straightforward efficient way to prepare any
of the states |uk〉. However, the state

|1〉 = r−1/2
r∑

k=1

|uk〉 (78)

is most definitely an easy state to prepare.
If we start with |1〉 in place of the eigenvector |uk〉, apply the phase estima-

tion network and measure the first register bit by bit we will obtain n binary
digits of x such that, with probability exceeding 4/π2, x

2n is the best n-bit es-

timate of k
r for a randomly chosen k from {1, . . . , r}. The question is: given x

how to compute r? Let us make few observations:

• k/r is unique, given x.
Value x/2n, being the n-bit estimate, differs by at most 1/2n from k/r.
Hence, as long as n > 2m, the n bit estimate x determines a unique value
of k

r since r is an m-bit number.

• Candidate values for k/r are all convergents to x/2m.
For any real number θ, there is a unique sequence of special rationals
(pnqn )n∈N (gcd(pn, qn) = 1) called the convergents to θ that tend to θ as n

grows. A theorem [9] states that if p and q are integers with
∣∣∣θ − p

q

∣∣∣ < 1
2q2

then p/q is a convergent to θ. Since we have 1
2n ≤ 1

2(2m)2 ≤ 1
2r2 , this

implies
∣∣ x

2n
− k

r

∣∣ < 1
2r2 and k/r is a convergent to x/2n.

• Only one convergent is eligible.
It is easy to show that there is at most one fraction a/b satisfying both
b ≤ r and

∣∣ x
2n − a

b

∣∣ < 1
2r2 .

Convergents can be found efficiently using the well-known continued fraction
method [9]. Thus we employ continued fractions and our observations above to
find a fraction a/b such that b ≤ 2m and

∣∣ x
2n − a

b

∣∣ < 1
2n . We get the rational

k/r, and k = a, r = b, provided k and r are coprime. For randomly chosen k,
this happens with probability greater than or equal to 1/ ln r [26].

Finally, we show how order-finding can be used to factor a composite number
N . Let a be a randomly chosen positive integer smaller than N such that
gcd(a,N ) = 1. Then the order of a modulo N is defined, and we can find it
efficiently using the above algorithm. If r is even, then we have:

ar = 1 mod N (79)

⇔ (ar/2)2 − 12 = 0 mod N (80)

⇔ (ar/2 − 1)(ar/2 + 1) = 0 mod N. (81)

The product (ar/2 − 1)(ar/2 + 1) must be some multiple of N , so unless
ar/2 = ±1 mod N at least one of terms must have a nontrivial factor in common
with N . By computing the greatest common divisor of this term and N , one
gets a non-trivial factor of N .
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Furthermore, if N is odd with prime factorisation

N = pα1

1 pα2

2 · · ·pαss , (82)

then it can be shown [26] that if a < N is chosen at random such that gcd(a,N ) =
1 then the probability that its order modulo N is even and that ar/2 6= ±1 mod
N is:

Pr(r is even and ar/2 6= ±1 mod N ) ≥ 1− 1

2s−1
. (83)

Thus, combining our estimates of success at each step, with probability greater
than or equal to

4

π2

1

ln r

(
1− 1

2s−1

)
≥ 2

π2

1

lnN
(84)

we find a factor of N 4. (Here we have used that N is composite and r < N .) If
N is logN = n bits long then by repeating the whole process O(n) times, or by
a running O(n) computations in parallel by a suitable extension of a quantum
factoring network, we can then guarantee that we will find a factor of N with a
fixed probability greater than 1

2
. This, and the fact that the quantum network

family for controlled multiplication modulo some number is uniform and of size
O(n2), tells us that factoring is in the complexity class BQP .

But why should anybody care about efficient factorisation?

9 Cryptography

Human desire to communicate secretly is at least as old as writing itself and
goes back to the beginnings of our civilisation. Methods of secret communica-
tion were developed by many ancient societies, including those of Mesopotamia,
Egypt, India, and China, but details regarding the origins of cryptology5 remain
unknown [27].

Originally the security of a cryptosystem or a cipher depended on the se-
crecy of the entire encrypting and decrypting procedures; however, today we
use ciphers for which the algorithm for encrypting and decrypting could be re-
vealed to anybody without compromising their security. In such ciphers a set
of specific parameters, called a key, is supplied together with the plaintext as
an input to the encrypting algorithm, and together with the cryptogram as an
input to the decrypting algorithm [28]. This can be written as

Êk(P ) = C, and conversely, D̂k(C) = P, (85)

where P stands for plaintext, C for cryptotext or cryptogram, k for crypto-
graphic key, and Ê and D̂ denote an encryption and a decryption operation
respectively.

4N.B. by Eq.(83), the method fails if N is a prime power, N = pα, but prime powers can
be efficiently recognised and factored by classical means.

5The science of secure communication is called cryptology from Greek kryptos hidden and
logos word. Cryptology embodies cryptography, the art of code-making, and cryptanalysis,
the art of code-breaking.
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The encrypting and decrypting algorithms are publicly known; the security
of the cryptosystem depends entirely on the secrecy of the key, and this key
must consist of a randomly chosen, sufficiently long string of bits. Probably the
best way to explain this procedure is to have a quick look at the Vernam cipher,
also known as the one-time pad [29].

If we choose a very simple digital alphabet in which we use only capital
letters and some punctuation marks such as

A B C D E ... ... X Y Z ? , .
00 01 02 03 04 ... ... 23 24 25 26 27 28 29

we can illustrate the secret-key encrypting procedure by the following simple
example (we refer to the dietary requirements of 007):

S H A K E N N O T S T I R R E D
18 07 00 10 04 13 26 13 14 19 26 18 19 08 17 17 04 03
15 04 28 13 14 06 21 11 23 18 09 11 14 01 19 05 22 07
03 11 28 23 18 19 17 24 07 07 05 29 03 09 06 22 26 10

In order to obtain the cryptogram (sequence of digits in the bottom row)
we add the plaintext numbers (the top row of digits) to the key numbers (the
middle row), which are randomly selected from between 0 and 29, and take the
remainder after division of the sum by 30, that is we perform addition modulo
30. For example, the first letter of the message “S” becomes a number “18”in
the plaintext, then we add 18 + 15 = 33; 33 = 1 × 30 + 3, therefore we get 03
in the cryptogram. The encryption and decryption can be written as Pi + ki
(mod 30) = Ci and Ci − ki (mod 30) = Pi respectively for the symbol at
position i.

The cipher was invented in 1917 by the American AT&T engineer Gilbert
Vernam. It was later shown, by Claude Shannon [30], that as long as the key
is truly random, has the same length as the message, and is never reused then
the one-time pad is perfectly secure. So, if we have a truly unbreakable system,
what is wrong with classical cryptography?

There is a snag. It is called key distribution. Once the key is established,
subsequent communication involves sending cryptograms over a channel, even
one which is vulnerable to total passive eavesdropping (e.g. public announce-
ment in mass-media). This stage is indeed secure. However in order to establish
the key, two users, who share no secret information initially, must at a certain
stage of communication use a reliable and a very secure channel. Since the inter-
ception is a set of measurements performed by an eavesdropper on this channel,
however difficult this might be from a technological point of view, in principle
any classical key distribution can always be passively monitored, without the
legitimate users being aware that any eavesdropping has taken place.

In the late 1970s Whitfield Diffie and Martin Hellman [31] proposed an
interesting solution to the key distribution problem. It involved two keys, one
public key π for encryption and one private key κ for decryption:

Êπ(P ) = C, and D̂κ(C) = P. (86)
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In these systems users do not need to share any private key before they start
sending messages to each other. Every user has his own two keys; the public
key is publicly announced and the private key is kept secret. Several public-key
cryptosystems have been proposed since 1976; here we concentrate our attention
on the most popular one namely the RSA [32]. In fact the techniques were first
discovered at CESG in the early 1970s by James Ellis, who called them “Non-
Secret Encryption” [33]. In 1973, building on Ellis’ idea, C. Cocks designed what
we now call RSA [34], and in 1974 M. Williamson proposed what is essentially
known today as the Diffie-Hellman key exchange protocol.

Suppose that Alice wants to send an RSA encrypted message to Bob. The
RSA encryption scheme works as follows:

Key generation Bob picks randomly two distinct and large prime numbers p
and q. We denote n = pq and φ = (p−1)(q−1). Bob then picks a random
integer 1 < e < φ that is coprime with φ, and computes the inverse d of e
modulo φ (gcd(e, φ) = 1). This inversion can be achieved efficiently using
for instance the extended Euclidean algorithm for the greatest common
divisor[9]. Bob’s private key is κ = d and his public key is π = (e, n)

Encryption Alice obtains Bob’s public key π = (e, n) from some sort of yellow
pages or an RSA public key directory. Alice then writes her message as a
sequence of numbers using, for example, our digital alphabet. This string
of numbers is subsequently divided into blocks such that each block when
viewed as a number P satisfies P ≤ n. Alice encrypts each P as

C = Êπ(P ) = P e mod n (87)

and sends the resulting cryptogram to Bob.

Decryption Receiving the cryptogram C, Bob decrypts it by calculating

D̂κ(C) = Cd mod n = P (88)

where the last equality will be proved shortly.

The mathematics behind the RSA is a lovely piece of number theory which
goes back to the XVI century when a French lawyer Pierre de Fermat discovered
that if a prime p and a positive integer a are coprime, then

ap−1 = 1 mod p. (89)

The cryptogram C = P e mod n is decrypted by Cd mod n = P ed mod n
because ed = 1 mod φ, implying the existence of an integer k such that ed =
kφ+ 1 = k(p− 1)(q − 1) + 1. If P 6= 0 mod p, using equation (9.5) this implies

P ed mod p =
(
P (p−1)

)k(q−1)

P mod p = P mod p. (90)
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The above equality holds trivially in the case P = 0 mod p. By identical
arguments, P ed mod q = P mod q. Since p and q are distinct primes, it follows
that

P ed mod n = P. (91)

For example, let us suppose that Bob’s public key is π = (e, n) = (179, 571247). 6

He generated it following the prescription above choosing p = 773, q = 739 and
e = 179. The private key d was obtained by solving 179d = 1 mod 772 × 738
using the extended Euclidean algorithm which yields d = 515627. Now if we
want to send Bob encrypted “SHAKEN NOT STIRRED” we first use our digital
alphabet to obtain the plaintext which can be written as the following sequence
of six digit numbers

180700 100413 261314 192618 190817 170403

Then we encipher each block Pi by computing Ci = P ei mod n; e.g. the first
block P1 = 180700 will be eciphered as

P e1 mod n = 180700179 mod 571247 = 141072 = C1, (92)

and the whole message is enciphered as:

141072 253510 459477 266170 286377 087175

The cryptogram C composed of blocks Ci can be send over to Bob. He can
then decrypt each block using his private key d = 515627, e.g. the first block is
decrypted as

141072515627 mod 571247 = 180700 = P1. (93)

In order to recover plaintext P from cryptogram C, an outsider, who knows
C, n, and e, would have to solve the congruence

P e mod n = C, (94)

for example, in our case,

P 179
1 mod 571247 = 141072. (95)

Solving such an equation is believed to be a hard computational task for clas-
sical computers. So far, no classical algorithm has been found that computes
the solution efficiently when n is a large integer (say 200 decimal digits long or
more). However, if we know the prime decomposition of n it is a piece of cake
to figure out the private key d: we simply follow the key generation procedure
and solve the congruence ed = 1 mod (p−1)(q−1). This can be done efficiently
even when p and q are very large. Thus, in principle, anybody who knows n
can find d by factoring n. The security of RSA therefore relies among others
on the assumption that factoring large numbers is computationally difficult.

6 Needless to say, number n in this example is too small to guarantee security, do not try
this public key with Bob.
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In the context of classical computation, such difficulty has never been proved.
Worse still, we have seen in Section 8 that there is a quantum algorithm that
factors large number efficiently. This means that the security of the RSA cryp-
tosystem will be completely compromised if large-scale quantum computation
becomes one day practical. This way, the advent of quantum computation rules
out public cryptographic schemes commonly used today that are based on the
“difficulty” of factoring or the “difficulty” of another mathematical operation
called discrete logarithm [9].

On the other hand, quantum computation provides novel techniques to gen-
erate a shared private key with perfect confidentiality, regardless the compu-
tational power (classical or quantum) of the adversaries. Such techniques are
referred to as quantum key distribution protocols and were proposed indepen-
dently in the United States (S.Wiesner [35], C.H. Bennett and G. Brassard [36])
and in Europe (A. Ekert [37]). Discussion on quantum key distribution is outside
the scope of this lecture.

10 Conditional quantum dynamics

Quantum gates and quantum networks provide a very convenient language for
building any quantum computer or (which is basically the same) quantum mul-
tiparticle interferometer. But can we build quantum logic gates?

Single qubit quantum gates are regarded as relatively easy to implement. For
example, a typical quantum optical realisation uses atoms as qubits and controls
their states with laser light pulses of carefully selected frequency, intensity and
duration; any prescribed superposition of two selected atomic states can be
prepared this way.

Two-qubit gates are much more difficult to build.
In order to implement two-qubit quantum logic gates it is sufficient, from the

experimental point of view, to induce a conditional dynamics of physical bits,
i.e. to perform a unitary transformation on one physical subsystem conditioned
upon the quantum state of another subsystem,

U = | 0〉 〈0 | ⊗ U0 + | 1〉 〈1 | ⊗ U1 + · · ·+ |k〉 〈k | ⊗ Uk, (96)

where the projectors refer to quantum states of the control subsystem and the
unitary operations Ui are performed on the target subsystem [6]. The sim-
plest non-trivial operation of this sort is probably a conditional phase shift such
as B(φ) which we used to implement the quantum Fourier transform and the
quantum controlled-not (or xor) gate.

Let us illustrate the notion of the conditional quantum dynamics with a
simple example. Consider two qubits, e.g. two spins, atoms, single-electron

quantum dots, which are coupled via a σ
(1)
z σ

(2)
z interaction (e.g. a dipole-dipole

interaction):
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|0〉

|1〉

Ĥ1 = ~ω1σ
(1)
z

�V̂ = ~Ωσ(1)
z σ

(2)
z

�

|0〉

|1〉

Ĥ2 = ~ω2σ
(2)
z

The first qubit, with resonant frequency ω1, will act as the control qubit and
the second one, with resonant frequency ω2, as the target qubit. Due to the
coupling V̂ the resonant frequency for transitions between the states |0〉 and | 1〉
of one qubit depends on the neighbour’s state. The resonant frequency for the
first qubit becomes ω1 ± Ω depending on whether the second qubit is in state
| 0〉 or |1〉. Similarly the second qubit’s resonant frequency becomes ω2 ± Ω,
depending on the state of the first qubit. Thus a π-pulse at frequency ω2 + Ω
causes the transition |0〉 ↔ |1〉 in the second qubit only if the first qubit is in
| 1〉 state. This way we can implement the quantum controlled-not gate.

11 Decoherence and recoherence

Thus in principle we know how to build a quantum computer; we can start with
simple quantum logic gates and try to integrate them together into quantum
networks. However, if we keep on putting quantum gates together into networks
we will quickly run into some serious practical problems. The more interacting
qubits are involved the harder it tends to be to engineer the interaction that
would display the quantum interference. Apart from the technical difficulties
of working at single-atom and single-photon scales, one of the most important
problems is that of preventing the surrounding environment from learning about
which computational path was taken in the multi-particle interferometer. This
“welcher Weg” information can destroy the interference and the power of quan-
tum computing.

Consider the following qubit-environment interaction, known as decoherence[38],

|0,m〉 7→ |0,m0〉, |1,m〉 7→ |1,m1〉, (97)

where |m〉 is the initial state and |m0〉, |m1〉 are the two final states of the envi-
ronment. This is basically a measurement performed by the environment on a
qubit. Suppose that in our single qubit interference experiment (see Eqs. (43))
a qubit in between the two Hadamard transformation is “watched” by the en-
vironment which learns whether the qubit is in state |0〉 or |1〉. The evolution
of the qubit and the environment after the first Hadamard and the phase gate
is described by the following transformation,

|0〉 |m〉 H7→ 1√
2

(|0〉+ |1〉) |m〉 φ7→ 1√
2

(eiφ/2 |0〉 + e−iφ/2 |1〉) |m〉 . (98)
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We write the decoherence action as

1√
2

(ei
φ
2 |0〉+ e−i

φ
2 | 1〉) |m〉 7→ 1√

2
(ei

φ
2 | 0〉 |m0〉 + e−i

φ
2 |1〉 |m1〉). (99)

The final Hadamard gate generates the output state

1√
2

(ei
φ
2 |0〉 |m0〉+ e−i

φ
2 |1〉 |m1〉) (100)

H7→ 1

2
|0〉
(
ei
φ
2 |m0〉+ e−i

φ
2 |m1〉

)

+
1

2
|1〉
(
ei
φ
2 |m0〉 − e−i

φ
2 |m1〉

)
. (101)

Taking |m0〉 and |m1〉 to be normalised and 〈m0 |m1〉 to be real we obtain
the probabilities P0 and P1,

P0 =
1

2
(1 + 〈m0 |m1〉 cos φ) , (102)

P1 =
1

2
(1− 〈m0 |m1〉 cos φ) . (103)

It is instructive to see the effect of decoherence on the qubit alone when its
state is written in terms as a density operator. The decoherence interaction
entangles qubits with the environment,

(α| 0〉+ β|1〉) |m〉 7→ α| 0〉|m0〉+ β| 1〉|m1〉. (104)

Rewriting in terms of density operators and tracing over the environment’s
Hilbert space on the both sides, we obtain

(
|α|2 αβ∗

α∗β |β|2
)
7→
(

|α|2 αβ∗〈m0|m1〉
α∗β〈m1|m0〉 |β|2

)
. (105)

The off-diagonal elements, originally called by atomic physicists coherences, van-
ish as 〈m1|m0〉 7→ 0, that is why this particular interaction with the environment
is called decoherence.

How does decoherence affect, for example, Deutsch’s algorithm? Substitut-
ing 0 or π for φ in Eq.(102) we see that we obtain the correct answer only with
some probability, which is

1 + 〈m0|m1〉
2

. (106)

If 〈m0|m1〉 = 0, the perfect decoherence case, then the network outputs 0 or 1
with equal probabilities, i.e. it is useless as a computing device. It is clear that
we want to avoid decoherence, or at least diminish its impact on our computing
device.

In general when we analyse physically realisable computations we have to
consider errors which are due to the computer-environment coupling and from
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the computational complexity point of view we need to assess how these er-
rors scale with the input size n. If the probability of an error in a single run,
δ(n), grows exponentially with n, i.e. if δ(n) = 1 − A exp(−αn), where A and
α are positive constants, then the randomised algorithm cannot technically be
regarded as efficient any more regardless of how weak the coupling to the en-
vironment may be. Unfortunately, the computer-environment interaction leads
to just such an unwelcome exponential increase of the error rate with the in-
put size. To see this consider a register of size n and assume that each qubit
decoheres separately,

|x〉 |M 〉 = |xn−1 . . .x1x0〉 |m〉 . . . |m〉 |m〉
7→ |xn−1 . . .x1x0〉

∣∣mxn−1

〉
... |mx1 〉 |mx0 〉 = |x〉 |Mx〉 , (107)

where xi ∈ {0, 1}. Then a superposition α |x〉+ β | y〉 evolves as

(α |x〉+ β | y〉) |M 〉 7→ α |x〉 |Mx〉+ β | y〉 |My〉 , (108)

but now the scalar product 〈Mx |My〉 which reduces the off-diagonal elements
of the density operator of the whole register and which affects the probabilities
in the interference experiment is given by

〈Mx |My〉 = 〈mx0 |my0 〉 〈mx1 |my1〉...
〈
mxn−1

∣∣myn−1 〉 (109)

which is of the order of

〈Mx |My〉 = 〈m0 |m1〉H(x,y), (110)

where H(x, y) is the Hamming distance between x and y, i.e. the number of
binary places in which x and y differ (e.g. the Hamming distance between
101101 and 111101 is 1 because the two binary string differ only in the second
binary place). Hence there are some coherences which disappear as 〈m0 |m1〉n
and therefore in some interference experiments the probability of error may grow
exponentially with n.

It is clear that for quantum computation of any reasonable length to ever be
physically feasible it will be necessary to incorporate some efficiently realisable
stabilisation scheme to combat the effects of decoherence. Deutsch was the first
one to discuss this problem. During the Rank Prize Funds Mini–Symposium
on Quantum Communication and Cryptography, Broadway, England in 1993
he proposed ‘recoherence’ based on a symmetrisation procedure (for details
see [39]). The basic idea is as follows. Suppose we have a quantum system,
we prepare it in some initial state |Ψi〉 and we want to implement a prescribed
unitary evolution |Ψ(t)〉 or just preserve |Ψi〉 for some period of time t. Now,
suppose that instead of a single system we can prepare R copies of |Ψi〉 and
subsequently we can project the state of the combined system into the symmet-
ric subspace i.e. the subspace containing all states which are invariant under
any permutation of the sub-systems. The claim is that frequent projections
into the symmetric subspace will reduce errors induced by the environment.
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The intuition behind this concept is based on the observation that a prescribed
error-free storage or evolution of the R independent copies starts in the sym-
metric sub-space and should remain in that sub-space. Therefore, since the
error-free component of any state always lies in the symmetric subspace, upon
successful projection it will be unchanged and part of the error will have been
removed. Note however that the projected state is generally not error–free since
the symmetric subspace contains states which are not of the simple product
form |Ψ〉 |Ψ〉 . . . |Ψ〉. Nevertheless it has been shown that the error probability
will be suppressed by a factor of 1/R [39].

More recently projections on symmetric subspaces were replaced by more
complicated projections on carefully selected subspaces. These projections, pro-
posed by Shor [40], Calderbank and Shor [41], Steane [42] and others [43, 44, 45,
46, 47], are constructed on the basis of classical error-correcting methods but
represent intrinsically new quantum error-correction and stabilisation schemes;
they are the subject of much current study.

Let us illustrate the main idea of recoherence by describing a simple method
for protecting an unknown state of a single qubit in a noisy quantum register.
Consider the following scenario: we want to store in a computer memory one
qubit in an unknown quantum state of the form |φ〉 = α |0〉+β |1〉 and we know
that any single qubit which is stored in a register undergoes a decoherence type
entanglement with an environment described by Eq.(104). To see how the state
of the qubit is affected by the environment, we calculate the fidelity of the
decohered state at time t with respect to the initial state |φ〉

F (t) = 〈φ |ρ(t) |φ〉 , (111)

where ρ(t) is given by Eq. (105). It follows that

F (t) = |α|4 + |β|4 + 2|α|2|β|2Re[〈m0(t) |m1(t)〉] . (112)

The expression above depends on the initial state |φ〉 and clearly indicates
that some states are more vulnerable to decoherence than others. In order to
get rid of this dependence we consider the average fidelity, calculated under the
assumption that any initial state |φ〉 is equally probable. Taking into account
the normalisation constraint the average fidelity is given by

F̄ (t) =

∫ 1

0

F (t) d |α|2 =
1

3
(2 + Re[〈m0(t) |m1(t)〉]) . (113)

If we assume an exponential-type decoherence, where 〈m0(t) |m1(t)〉 = e−γt,
the average fidelity takes the simple form

F̄ (t) =
1

3
(2 + e−γt) . (114)

In particular, for times much shorter than the decoherence time td = 1/γ, the
above fidelity can be approximated as

F̄ (t) ' 1− 1

3
γt + O(γ2t2) . (115)
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Let us now show how to improve the average fidelity by quantum encoding.
Before we place the qubit in the memory register we encode it: we can add two
qubits, initially both in state |0〉, to the original qubit and then perform an
encoding unitary transformation

| 000〉 7→ | 0̄0̄0̄〉 = (|0〉 + | 1〉)(| 0〉+ |1〉)(| 0〉+ |1〉), (116)

| 100〉 7→ | 1̄1̄1̄〉 = (|0〉 − | 1〉)(| 0〉 − |1〉)(| 0〉 − |1〉), (117)

generating state α | 0̄0̄0̄〉 + β | 1̄1̄1̄〉, where | 0̄〉 = |0〉 + |1〉 and | 1̄〉 = |0〉 − |1〉.
Now, suppose that only the second stored qubit was affected by decoherence
and became entangled with the environment:

α(|0〉+ |1〉)(| 0〉 |m0〉 + | 1〉 |m1〉)(| 0〉+ |1〉) +

β(| 0〉 − |1〉)(| 0〉 |m0〉 − | 1〉 |m1〉)(| 0〉 − |1〉), (118)

which can also be written as

(α | 0̄0̄0̄〉 + β | 1̄1̄1̄〉)(|m0〉 + |m1〉) + (α | 0̄1̄0̄〉 + β | 1̄0̄1̄〉)(|m0〉 − |m1〉). (119)

The decoding unitary transformation can be constructed using a couple of
quantum controlled-NOT gates and the Toffoli gate, thus completing the error-
correcting network:

ENCODING DECOHERENCE AREA DECODING

|0〉

|0〉

α |0〉 + β |1〉

|x2〉

|x1〉

α | 0〉+ β | 1〉
�

�

�

�

�

�

H

H

H

α | 0̄0̄0̄〉+ β | 1̄1̄1̄〉

Encoded State H

H

H

�

�

�

�

�

�

�

Careful inspection of the network shows that any single phase-flip | 0̄〉 ↔ | 1̄〉
will be corrected and the environment will be effectively disentangled from the
qubits. In our particular case we obtain

(α | 0〉+ β | 1〉) [|00〉 (|m0〉 + |m1〉) + |10〉 (|m0〉 − |m1〉)]. (120)

The two auxiliary outputs carry information about the error syndrome - 00
means no error, 01 means the phase-flip occurred in the third qubit, 10 means
the phase-flip in the second qubit and 11 signals the phase flip in the first qubit.

Thus if only one qubit in the encoded triplet decoheres we can recover the
original state perfectly. In reality all three qubits decohere simultaneously and,
as the result, only partial recovery of the original state is possible. In this
case lengthy but straightforward calculations show that the average fidelity of
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the reconstructed state after the decoding operation for an exponential-type
decoherence is

F̄ec(t) =
1

6
[4 + 3e−γt − e−3γt] . (121)

For short times this can be written as

F̄ec(t) ' 1− 1

2
γ2t2 + O(γ3t3). (122)

Comparing Eq. (114) with Eq. (121), we can easily see that for all times t,

F̄ec(t) ≥ F̄ (t). (123)

This is the essence of recoherence via encoding and decoding. There is much
more to say (and write) about quantum codes and the reader should be warned
that we have barely scratched the surface of the current activities in quantum
error correction, neglecting topics such as group theoretical ways of constructing
good quantum codes [45, 46], concatenated codes [47], quantum fault tolerant
computation [48] and many others.

12 Concluding remarks

Research in quantum computation and in its all possible variations has become
vigorously active and any comprehensive review of the field must be obsolete
as soon as it is written. Here we have decided to provide only some very basic
knowledge, hoping that this will serve as a good starting point to enter the field.
Many interesting papers in these and many related areas can be found at the Los
Alamos National Laboratory e-print archive (http://xxx.lanl.gov/archive/quant-
ph) and on the web site of the Center for Quantum Computation (www.qubit.org).
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