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1. INTRODUCTION

Richard Feynman observed in the early 1980’s [Feynman 1i®@2kertain quantum me-
chanical effects cannot be simulated efficiently on a ata$siomputer. This observation
led to speculation that perhaps computation in generabidoeiidone more efficiently if it
made use of these quantum effects. But building quantum aterg computational ma-
chines that use such quantum effects, proved tricky, and as@ was sure how to use the
guantum effects to speed up computation, the field develsipedy. It wasn't until 1994,
when Peter Shor surprised the world by describing a polyabtinhie quantum algorithm
for factoring integers [Shor 1994; Shor 1997], that the fifldjuantum computing came
into its own. This discovery prompted a flurry of activityth@mong experimentalists try-
ing to build quantum computers and theoreticians tryingrtd éither quantum algorithms.
Additional interest in the subject has been created by thenition of quantum key distri-
bution and, more recently, popular press accounts of exgetial successes in quantum
teleportation and the demonstration of a three-bit quardoimputer.

The aim of this paper is to guide computer scientists andratbe-physicists through
the conceptual and notational barriers that separate guecamputing from conventional
computing and to acquaint them with this new and excitinglfidt is important for the
computer science community to understand these new develug since they may radi-
cally change the way we have to think about computation,fammging, and complexity.

Classically, the time it takes to do certain computatiomslmadecreased by using paral-
lel processors. To achieve an exponential decrease in équéres an exponential increase
in the number of processors, and hence an exponential sereahe amount of physical
space needed. However, in quantum systems the amount diepsimaincreases expo-
nentially with the size of the system. Thus, an exponeni@dase in parallelism requires
only alinear increase in the amount of physical space neddes effect is called quantum
parallelism [Deutsch and Jozsa 1992].

There is a catch, and a big catch at that. While a quantummysd@ perform massive
parallel computation, access to the results of the comiputét restricted. Accessing the
results is equivalent to making a measurement, which distthe quantum state. This
problem makes the situation, on the face of it, seem evenethes the classical situation;
we can only read the result of one parallel thread, and beaaessurement is probabilis-
tic, we cannot even choose which one we get.

But in the past few years, various people have found clevgswéfinessing the mea-
surement problem to exploit the power of quantum parafteli$his sort of manipulation
has no classical analog, and requires non-traditionalrproming techniques. One tech-
nigue manipulates the quantum state so that a common pyage of the output values
such as the symmetry or period of a function can be read offs fHthnique is used in
Shor’s factorization algorithm. Another technique tramsis the quantum state to increase
the likelihood that output of interest will be read. Grogesearch algorithm makes use of
such an amplification technique. This paper describes quaparallelism in detail, and
the techniques currently known for harnessing its power.

Section 2, following this introduction, explains of the lwasoncepts of quantum me-
chanics that are important for quantum computation. Thitiae cannot give a compre-
hensive view of quantum mechanics. Our aim is to provide¢hder with tools in the form
of mathematics and notation with which to work with the quemtmechanics involved in
guantum computation. We hope that this paper will equip eeadell enough that they
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can freely explore the theoretical realm of quantum conmguti

Section 3 defines the quantum bit, or qubit. Unlike clasdiis, a quantum bit can
be put in a superposition state that encodes Iiotind 1. There is no good classical
explanation of superpositions: a quantum bit represeritiagd1 can neither be viewed
as “between) and1 nor can it be viewed as a hidden unknown state that represitings
0 or 1 with a certain probability. Even single quantum bits endieresting applications.
We describe the use of a single quantum bit for secure kegligson.

But the real power of quantum computation derives from thpperntial state spaces of
multiple quantum bits: just as a single qubit can be in a qugsdtion of0 and1, a register
of n qubits can be in a superposition of all possible values. The “extra” states that
have no classical analog and lead to the exponential siteafiantum state space are the
entangled states, like the state leading to the famous BBRdox (see section 3.4).

We discuss the two types of operations a quantum system aargm measurement
and quantum state transformations. Most quantum algosithuwolve a sequence of quan-
tum state transformations followed by a measurement. Fmsidal computers there are
sets of gates that are universal in the sense that any @hssimputation can be per-
formed using a sequence of these gates. Similarly, thegets@f primitive quantum state
transformations, called quantum gates, that are univeasguantum computation. Given
enough quantum bits, it is possible to construct a univepgahtum Turing machine.

Quantum physics puts restrictions on the types of transdtions that can be done. In
particular, all quantum state transformations, and tleesdll quantum gates and all quan-
tum computations, must be reversible. Yet all classicabrétigms can be made reversible
and can be computed on a quantum computer in comparableSiomee common quantum
gates are defined in section 4.

Two applications combining quantum gates and entangléeksséae described in section
4.2: teleportation and dense coding. Teleportation isrdwester of a quantum state from
one place to another through classical channels. Thatdeldjon is possible is surprising
since quantum mechanics tells us that it is not possiblednecjuantum states or even
measure them without disturbing the state. Thus, it is neioats what information could
be sent through classical channels that could possiblyleriad reconstruction of an un-
known quantum state at the other end. Dense coding, a dugkfmortation, uses a single
guantum bit to transmit two bits of classical informationotB teleportation and dense
coding rely on the entangled states described in the EPRiexget.

Itis only in section 5 that we see where an exponential spgamier classical computers
might come from. The input to a quantum computation can beirpat superposition
state that encodes all possible input values. Performiagctimputation on this initial
state will result in superposition of all of the correspargloutput values. Thus, in the
same time it takes to compute the output for a single inpt¢ €A a classical computer,
a quantum computer can compute the values for all inputsstaltbis process is known
as quantum parallelism. However, measuring the outpugstaiil randomly yield only
one of the values in the superposition, and at the same tisteogeall of the other results
of the computation. Section 5 describes this situation taileSections 6 and 7 describe
techniques for taking advantage of quantum parallelismpiiesf the severe constraints
imposed by quantum mechanics on what can be measured.

Section 6 describes the details of Shor’s polynomial tincedfidng algorithm. The fastest

LEPR = Einstein, Podolsky and Rosen
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known classical factoring algorithm requires exponeriitiaé and it is generally believed
that there is no classical polynomial time factoring altfori. Shor’s is a beautiful al-
gorithm that takes advantage of quantum parallelism byguaiguantum analog of the
Fourier transform.

Lov Grover developed a technique for searching an unstredtlist of n items in
O(y/n) steps on a quantum computer. Classical computers can dottes theanO(n),
so unstructured search on a quantum computer is provably efficient than search on a
classical computer. However, the speed-up is only polyafmot exponential, and it has
been shown that Grover’s algorithm is optimal for quantummpaters. It seems likely that
search algorithms that could take advantage of some pratiteicture could do better. Tad
Hogg, among others, has explored such possibilities. Werithesvarious quantum search
techniques in section 7.

It is as yet unknown whether the power of quantum paralleiambe harnessed for a
wide variety of applications. One tantalizing open questioivhether quantum computers
can solve NP complete problems in polynomial time.

Perhaps the biggest open question is whether useful quasdmputers can be built.
There are a number of proposals for building quantum compuising ion traps, nuclear
magnetic resonance (NMR), optical and solid state tectasigdll of the current proposals
have scaling problems, so that a breakthrough will be netmigd beyond tens of qubits
to hundreds of qubits. While both optical and solid statétégues show promise, NMR
and ion trap technologies are the most advanced so far.

Inan ion trap quantum computer [Cirac and Zoller 1995; S#el96] a linear sequence
of ions representing the qubits are confined by electricdieldisers are directed at indi-
vidual ions to perform single bit quantum gates. Two-bitrapiens are realized by using
a laser on one qubit to create an impulse that ripples thrawgitain of ions to the second
gubit where another laser pulse stops the rippling and pagfohe two-bit operation. The
approach requires that the ions be kept in extreme vacuurataextremely low tempera-
tures.

The NMR approach has the advantage that it will work at roompierature, and that

NMR technology in general is already fairly advanced. Theaids to use macroscopic
amounts of matter and encode a quantum bit in the averagstspénof a large number of
nuclei. The spin states can be manipulated by magnetic eldthe average spin state can
be measured with NMR techniques. The main problem with ttlertigue is that it doesn’t
scale well; the measured signal scales #&&" with the number of qubits.. However,
a recent proposal [Schulman and Vazirani 1998] has been thatienay overcome this
problem. NMR computers with three qubits have been builtsssfully [Cory et al. 1998;
Vandersypen et al. 1999; Gershenfeld and Chuang 1997; Laiast al. 1997]. This
paper will not discuss further the physical and engineepiradplems of building quantum
computers.

The greatest problem for building quantum computers is dexance, the distortion of
the quantum state due to interaction with the environment. sbme time it was feared
that quantum computers could not be built because it wouidhpessible to isolate them
sufficiently from the external environment. The breaktlyiogame from the algorithmic
rather than the physical side, through the invention of ¢uarerror correction techniques.
Initially people thought quantum error correction mightitmpossible because of the im-
possibility of reliably copying unknown quantum statest ibturns out that it is possible
to design quantum error correcting codes that detect certads of errors and enable the
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reconstruction of the exact error-free quantum state. Quarrror correction is discussed
in section 8.
Appendices provide background information on tensor petsland continued fractions.

2. QUANTUM MECHANICS

Quantum mechanical phenomena are difficult to understarod shost of our everyday
experiences are not applicable. This paper cannot proddepunderstanding of quantum
mechanics (see [Feynman et al. 1965; Liboff 1997; Greemsted Zajonc 1997] for
expositions of quantum mechanics). Instead, we will givemadeeling as to the nature
of quantum mechanics and some of the mathematical formaliseded to work with
guantum mechanics to the extent needed for quantum congputin

Quantum mechanics is a theory in the mathematical sensg:gitverned by a set of
axioms. The consequences of the axioms describe the belodgjoantum systems. The
axioms lead to several apparent paradoxes: in the Compfegt éfappears as if an action
precedes its cause; the EPR experiment makes it appeara®if aver a distance faster
than the speed of light is possible. We will discuss the ERgeament in detail in section
3.4. Verification of most predictions is indirect, and regsicareful experimental design
and specialized equipment. We will begin, however, with xgregiment that requires only
readily available equipment and that will illustrate sonfele key aspects of quantum
mechanics needed for quantum computation.

2.1 Photon Polarization

Photons are the only particles that we can directly obserte. following simple experi-
ment can be performed with minimal equipment: a strong lghirce, like a laser pointer,
and three polaroids (polarization filters) that can be piake at any camera supply store.
The experiment demonstrates some of the principles of ggamechanics through pho-
tons and their polarization.

2.1.1 The ExperimentA beam of light shines on a projection screen. Filtdrs3, and
C are polarized horizontally, d5°, and vertically, respectively, and can be placed so as to
intersect the beam of light.

First, insert filterA. Assuming the incoming light is randomly polarized, theeimdity
of the output will have half of the intensity of the incomiright. The outgoing photons
are now all horizontally polarized.

The function of filterA cannot be explained as a “sieve” that only lets those phqtass
that happen to be already horizontally polarized. If thatentbe case, few of the randomly
polarized incoming electrons would be horizontally padad, so we would expect a much
larger attenuation of the light as it passes through the:.filte

Next, when filterC' is inserted the intensity of the output drops to zero. Nonthef
horizontally polarized photons can pass through the \arfitter. A sieve model could
explain this behavior.
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Finally, after filterB is inserted betweeA andC, a small amount of light will be visible
on the screen, exactly one eighth of the original amoungitli

Here we have a nonintuitive effect. Classical experienggssts that adding a filter should
only be able to decrease the number of photons getting thrddgw can it increase it?

2.1.2 The Explanation A photon’s polarization state can be modelled by a unit wvecto
pointing in the appropriate direction. Any arbitrary patation can be expressed as a
linear combinatior|) + b|—) of the two basis vectof§—) (horizontal polarization) and
[T) (vertical polarization).

Since we are only interested in the direction of the pol#éiora(the notion of “magni-
tude” is not meaningful), the state vector will be a unit egct.e., |a|?> + [b]> = 1. In
general, the polarization of a photon can be expressedijas+ b|—) wherea andb are
complex numberssuch thata|? + |b]? = 1. Note, the choice of basis for this representa-
tion is completely arbitrary: any two orthogonal unit vestwill do (e.g.{|\.), |,/ })-

The measurement postulate of quantum mechanics statesthdévice measuring2
dimensional system has an associated orthonormal bakisesjtect to which the quantum
measurement takes place. Measurement of a state transfioenstate into one of the
measuring device’s associated basis vectors. The prdtlpabdt the state is measured as
basis vectofu) is the square of the norm of the amplitude of the componeihtebtiginal
state in the direction of the basis vectaj. For example, given a device for measuring
the polarization of photons with associated bds(s, |to) }, the state) = a|T) + b|—) is
measured af ) with probability|a|? and ag—) with probability|s|? (see Figure 1). Note
that different measuring devices with have different agged basis, and measurements
using these devices will have different outcomes. As mexsants are always made with
respect to an orthonormal basis, throughout the rest optper all bases will be assumed
to be orthonormal.

Furthermore, measurement of the quantum state will chdregstate to the result of the
measurement. That is, if measurementof= a|T) + b|—) results in|T), then the state
1 changes td7) and a second measurement with respect to the same basistwith|)
with probability1. Thus, unless the original state happened to be one of theEgors,
measurement will change that state, and it is not possibiietermine what the original
state was.

2The notation—) is explained in section 2.2.
3Imaginary coefficients correspond to circular polarizatio
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Fig. 1. Measurement is a projection onto the basis

Quantum mechanics can explain the polarization experiragribllows. A polaroid
measures the quantum state of photons with respect to tliee dmassisting of the vector
corresponding to its polarization together with a vectdhogonal to its polarization. The
photons which, after being measured by the filter, match tte’$i polarization are let
through. The others are reflected and now have a polarizagrendicular to that of the
filter. For example, filterA measures the photon polarization with respect to the basis
vector|—), corresponding to its polarization. The photons that phssugh filter A all
have polarization—). Those that are reflected by the filter all have polarizalfjon

Assuming that the light source produces photons with rangolarization, filterA will
measures0% of all photons as horizontally polarized. These photon$ pébks through
the filter and their state will bg—). Filter C' will measure these photons with respect to
[T). But the statd—) = 0|T) + 1|]—) will be projected ontd?) with probability0 and no
photons will pass filtet”'.

Finally, filter B measures the quantum state with respect to the basis

1 1
{ﬁm + =), ﬁ(m =)}
which we write as{| ), |\.)}. Note that|—) = %(|/> —|\)) and|]) = \/ii(|/> +
I\\)). Those photons that are measured &% pass through the filter. Photons passing
through A with state|—) will be measured byB as| ) with probability1/2 and s050%

of the photons passing throughwill pass throughB and be in state ). As before, these
photons will be measured by filté¥ as|1) with probability1/2. Thus only one eighth of
the original photons manage to pass through the sequendeef i, B, andC.

2.2 State Spaces and Bra/Ket Notation

The state space of a quantum system, consisting of the gusitmomentums, polariza-
tions, spins, etc. of the various particles, is modelled biibert space of wave functions.
We will not look at the details of these wave functions. Foawum computing we need
only deal with finite quantum systems and it suffices to caersithite dimensional com-
plex vector spaces with an inner product that are spannebsiyaat wave functions such
as|—).

Quantum state spaces and the tranformations acting on therecdescribed in terms
of vectors and matrices or in the more compact bra/ket rootativented by Dirac [Dirac
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1958]. Kets like|z) denote column vectors and are typically used to describatgoa
states. The matching bré&g|, denotes the conjugate transposdx9f For example, the
orthonormal basig|0),|1)} can be expressed 4¢1,0)7, (0,1)7}. Any complex linear
combination ofl0) and|1), a|0) + b|1), can be writter{a, b)”. Note that the choice of the
order of the basis vectors is arbitrary. For example, reprirsg|0) as(0,1)7 and|1) as
(1,0) would be fine as long as this is done consistently.

Combining(z| and|y) as in{z||y), also written agx|y), denotes the inner product of
the two vectors. For instance, sinfeg is a unit vector we havéd|0) = 1 and since0)
and|1) are orthogonal we hav@|1) = 0.

The notationz)(y| is the outer product dfc) and(y|. For example|0)(1]| is the trans-
formation that mapél) to |0) and|0) to (0,0)” since

|0)(1[[1) = |0)(1]1) = |0)
|0)(1]]0) = |0)(1]0) = 0]0) = (O

0

Equivalently,|0)(1| can be written in matrix form wher@) = (1,0)7, (0] = (1,0),
1) = (0,1)7, and(1| = (0, 1). Then

al=(g)oen=(7,)

This notation gives us a convenient way of specifying tramsftions on quantum states
in terms of what happens to the basis vectors (see sectidiodgxample, the transforma-
tion that exchangel®) and|1) is given by the matrix

X = 0)(1] +[1)(0].
In this paper we will prefer the slightly more intuitive ntitm

X:|0) — 1)
1) — 0)

that explicitly specifies the result of a transformation loa basis vectors.

3. QUANTUM BITS

A quantum bit, or qubit, is a unit vector in a two dimensionaiplex vector space for
which a particular basis, denoted b)), |1)}, has been fixed. The orthonormal basis
and|1) may correspond to thg) and|—) polarizations of a photon respectively, or to the
polarizationg ) and|~\). Or |0) and|1) could correspond to the spin-up and spin-down
states of an electron. When talking about qubits, and guactmputations in general, a
fixed basis with respect to which all statements are made é&s thosen in advance. In
particular, unless otherwise specified, all measuremeiitb@vmade with respect to the
standard basis for quantum computatigif,, |1) }.

For the purposes of quantum computation, the basis Jtgtaad|1) are taken to repre-
sent the classical bit valu@sand1 respectively. Unlike classical bits however, qubits can
be in a superposition d0) and|1) such as:|0) + b|1) wherea andb are complex numbers
such thata|? + |b]? = 1. Just as in the photon polarization case, if such a sup¢iposs
measured with respect to the ba§j@), |1)}, the probability that the measured valuéis
is |a|? and the probability that the measured valugjsis |b]2.
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Even though a quantum bit can be put in infinitely many supstiom states, it is only
possible to extract a single classical bit's worth of infation from a single quantum bit.
The reason that no more information can be gained from a tjnit in a classical bit is
that information can only be obtained by measurement. Wheubé is measured, the
measurement changes the state to one of the basis stateswrayhseen in the photon
polarization experiment. As every measurement can resaltly one of two states, one of
the basis vectors associated to the given measuring deacpist as in the classical case,
there are only two possible results. As measurement changestate, one cannot measure
the state of a qubit in two different bases. Furthermore,@ashall see in the section 4.1.2,
guantum states cannot be cloned so it is not possible to mesagjubit in two ways, even
indirectly by, say, copying the qubit and measuring the dopy different basis from the
original.

3.1 Quantum Key Distribution

Sequences of single qubits can be used to transmit privgged@insecure channels. In
1984 Bennett and Brassard described the first quantum kejbdison scheme [Bennett
and Brassard 1987; Bennett et al. 1992]. Classically, pltdiy encryption techniques,
e.g. RSA, are used for key distribution.

Consider the situation in which Alice and Bob want to agrea gecret key so that they
can communicate privately. They are connected by an orglnadirectional open channel
and a uni-directional quantum channel both of which can lsented by Eve, who wishes
to eavesdrop on their conversation. This situation istithted in the figure below. The
guantum channel allows Alice to send individual partickeg( photons) to Bob who can
measure their quantum state. Eve can attempt to measurtathesthese particles and
can resend the particles to Bob.

classical channel

quantum c):\annel

To begin the process of establishing a secret key, Alicesarsquence of bits to Bob
by encoding each bit in the quantum state of a photon as fellolor each bit, Alice
randomly uses one of the following two bases for encoding) &étc

0 — 1)

1 — =)
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or

0 — I\

Bob measures the state of the photons he receives by rangdskigg either basis. After
the bits have been transmitted, Bob and Alice communicaée#sis they used for en-
coding and decoding of each bit over the open channel. Withitffiormation both can
determine which bits have been transmitted correctly, leytidying those bits for which
the sending and receiving bases agree. They will use thessasthe key and discard all
the others. On average, Alice and Bob will agrees6f% of all bits transmitted.

Suppose that Eve measures the state of the photons traegsnitAlice and resends new
photons with the measured state. In this process she withesgrong basis approximately
50% of the time, in which case she will resend the bit with the vgrdrasis. So when
Bob measures a resent qubit with the correct basis therd&#l25% probability that he
measures the wrong value. Thus any eavesdropper on theuguaheinnel is bound to
introduce a high error rate that Alice and Bob can detect bygronanicating a sufficient
number of parity bits of their keys over the open channel. ri&x,only is it likely that
Eve’s version of the key i85% incorrect, but the fact that someone is eavesdropping will
be apparent to Alice and Bob.

Other techniques for exploiting quantum effects for keyriistion have been proposed.
See, for example, Ekert [Ekert et al. 1992], Bennett [Benh@®2] and Lo and Chau [Lo
and Chau 1999]. But none of the quantum key distributionriggles are substitutes for
public key encryption schemes. Attacks by eavesdroppéesr ahan the one described
here are possible. Security against all such schemes aresdedd in both Mayers [Mayers
1998] and Lo and Chau [Lo and Chau 1999].

Quantum key distribution has been realized over a distafiz4 km using standard fiber
optical cables [Hughes et al. 1997] and over 0.5 km througlatmosphere [Hughes et al.
1999].

3.2 Multiple Qubits

Imagine a macroscopic physical object breaking apart andipteupieces flying off in
different directions. The state of this system can be dieedrcompletely by describing the
state of each of its component pieces separately. A sungrasid unintuitive aspect of the
state space of an particle quantum system is that the state of the system ¢tahnays
be described in terms of the state of its component piecés.when examining systems
of more than one qubit that one first gets a glimpse of wheredheputational power of
guantum computers could come from.

As we saw, the state of a qubit can be represented by a vectioe itwo dimensional
complex vector space spanned By and|1). In classical physics, the possible states of
a system ofn particles, whose individual states can be described by tovét a two
dimensional vector space, form a vector spacgroflimensions. However, in a quantum
system the resulting state space is much larger; a systemubits has a state spaceXjf
dimensions. It is this exponential growth of the state space with the neina particles
that suggests a possible exponential speed-up of computati quantum computers over
classical computers.

4Actually, as we shall see, the state space is the set of naedalectors in thi€™ dimensional space, just as
the statez|0) + b|1) of a qubit is normalized so that|? + 6|2 = 1.
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Individual state spaces afparticles combine classically through the cartesian produ
Quantum states, however, combine through the tensor prodetails on properties of
tensor products and their expression in terms of vectorsraatdces is given in Appendix
A. Let us look briefly at distinctions between the cartesiesdpct and the tensor product
that will be crucial to understanding quantum computation.

Let V and W be two 2-dimensional complex vector spaces with bgsgesv.} and
{w1, w2} respectively. The cartesian product of these two spacetakares its basis the
union of the bases of its component spaggs v, w1, wo }. Note that the order of the basis
was chosen arbitrarily. In particular, the dimension ofdtete space of multiple classical
particles grows linearly with the number of particles, sirim(X x Y) = dim(X) +
dim(Y"). The tensor product df andW has basi§v; ® wy,v1 ® wa, v2 @ Wy, v2 @ wa }.
Note that the order of the basis, again, is arbittar$o the state space for two qubits,
each with basi§|0), |1) }, has basig|0) ® |0), |0) ® |1), |1) ® |0), |1) ® |1)} which can be
written more compactly a§|00), |01), |10),|11)}. More generally, we writér) to mean
|brbn—1 . ..bo) whereb; are the binary digits of the number

A basis for a three qubit system is

{1000),1001), 010, |011), [100), [101), [110), [111) }

and in general am qubit system hag" basis vectors. We can now see the exponential
growth of the state space with the number of quantum pastidlbe tensor product ® Y
has dimensiodim (X) x dim(Y).

The statg00) + |11) is an example of a quantum state that cannot be describeahis te
of the state of each of its components (qubits) separatelgtHer words, we cannot find
ai, az, by, by such thata,|0) + b1]1)) ® (a2|0) + b2|1)) = |00) + |11) since

(CL1|O> + b1|1>) X (a2|0> + b2|1>) = a1a2|00> + a1b2|01> + b1a2|10> + b1b2|11>

anda,b2 = 0 implies that eithern;a; = 0 or b1b, = 0. States which cannot be decom-
posed in this way are called entangled states. These s&giessent situations that have
no classical counterpart, and for which we have no intuitibmese are also the states that
provide the exponential growth of quantum state spacesthéimumber of particles.

Note that it would require vast resources to simulate evamallgjuantum system on
traditional computers. The evolution of quantum systenexponentially faster than their
classical simulations. The reason for the potential poweguantum computers is the
possibility of exploiting the quantum state evolution aoaputational mechanism.

3.3 Measurement

The experiment in section 2.1.2 illustrates how measuréofemsingle qubit projects the
guantum state on to one of the basis states associated withetisuring device. The result
of a measurement is probabilistic and the process of measuntechanges the state to that
measured.

Let us look at an example of measurementin a two qubit systemtwo qubit state can
be expressed ag00)+b|01) +¢|10)+d|11), whereq, b, c andd are complex numbers such
that|a|? + [b|* + |c|? + |d|* = 1. Suppose we wish to measure the first qubit with respect

51tis only when we use matrix notation to describe state fransations that the order of basis vectors becomes
relevant.
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to the standard bas{g0), |1)}. For convenience we will rewrite the state as follows:
al00) + b|01) + c|10) + d|11)
= 10) ® (al0) +b[1)) + |1) ® (c[0) +d[1))
= ul0) ® (a/u|0) + b/u|l)) +
v|1) ® (¢/v]0) 4+ d/v|1)).

Foru = +/|a|? + |b]2 andv = /|c|? + |d|? the vectorsz/u|0) + b/u|1) andc/v|0) +
d/v|1) are of unit length. Once the state has been rewritten as abew tensor prod-
uct of the bit being measured and a second vector of unitlertigé probabalistic result
of a measurement is easy to read off. Measurement of the firgtilbwith probabil-
ity u?> = |a|?> + |b]? return|0) projecting the state tt0) ® (a/u|0) + b/u|1)) or with
probabilityv = |¢|? + |d|? yield |1) projecting the state t0l) ® (c/v|0) + d/v|1)). As
|0) ® (a/u|0) + b/u|1)) and|1) @ (c/v|0) + d/v|1)) are both unit vectors, no scaling is
necessary. Measuring the second bit works similarly.

For the purposes of quantum computation, multi-bit measerg can be treated as a
series of single-bit measurements in the standard basker®orts of measurements are
possible, like measuring whether two qubits have the sarheewaithout learning the
actual value of the two qubits. But such measurements arigadent to unitary transfor-
mations followed by a standard measurement of individubitguand so it suffices to look
only at standard measurements.

In the two qubit example, the state space is a cartesian protithe subspace consisting
of all states whose first qubit is in the stéi and the orthogonal subspace of states whose
first qubit is in the statél). Any quantum state can be written as the sum of two vectors,
one in each of the subspaces. A measuremett gdibits in the standard basis h2s
possible outcomes:;. Any device measuring qubits of ann-qubit system splits of the
2"-dimensional state spagégéinto a cartesian product of orthogonal subspétes. . , Sy
with H = S x ... x Sy, such that the value of thie qubits being measured is; and
the state after measurement is in space the spader somei. The device randomly
chooses one of thg;’s with probability the square of the amplitude of the comginof
¥ in S;, and projects the state into that component, scaling tolgivgth1. Equivalently,
the probability that the result of the measurement is a gidme is the sum of the squares
of the the absolute values of the amplitudes of all basisove@ompatible with that value
of the measurement.

Measurement gives another way of thinking about entanggetictes. Particles are not
entangled if the measurement of one has no effect on the. offwrinstance, the state
%(|OO> + |11}) is entangled since the probability that the first bit is meeduo be|0)

is 1/2 if the second bit has not been measured. However, if the sebitrhad been
measured, the probability that the first bit is measurel@)ais eitherl or 0, depending on
whether the second bit was measuredGa®r |1) respectively. Thus the probable result
of measuring the first bit is changed by a measurement of ttenslebit. On the other
hand, the stat%(m()) +101)) is not entangled: sinc%(|00> +101)) = 0) ® %(|O> +
[1)), any measurement of the first bit will yie|d) regardless of whether the second bit
was measured. Similarly, the second bit has a fifty-fifty deanf being measured &%)
regardless of whether the first bit was measured or not. Nwatedantanglement, in the
sense that measurement of one particle has an effect on mp@sts of another particle,
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is equivalent to our previous definition of entangled staktestates that cannot be written
as a tensor product of individual states.

3.4 The EPR Paradox

Einstein, Podolsky and Rosen proposed a gedanken expéiinamuses entangled parti-
cles in a manner that seemed to violate fundamental prieiglativity. Imagine a source
that generates two maximally entangled particﬂ%s$00> + %Hl), called an EPR pair,
and sends one each to Alice and Bob.

EPR
source Bob

Alice and Bob can be arbitrarily far apart. Suppose thatéAtieeasures her particle and
observes statf)). This means that the combined state will now|b@ and if now Bob
measures his particle he will also obsej@¥e Similarly, if Alice measuresl ), so will Bob.
Note that the change of the combined quantum state occuentaseously even though
the two particles may be arbitrarily far apart. It appeaed this would enable Alice and
Bob to communicate faster than the speed of light. Furthalysis, as we shall see, shows
that even though there is a coupling between the two pastithere is no way for Alice or
Bob to use this mechanism to communicate.

There are two standard ways that people use to describegbediestates and their mea-
surement. Both have their positive aspects, but both amriect and can lead to misun-
derstandings. Let us examine both in turn.

Einstein, Podolsky and Rosen proposed that each partislsdrae internal state that
completely determines what the result of any given measememill be. This state is,
for the moment, hidden from us, and therefore the best we oererttly do is to give
probabilistic predictions. Such a theory is known as a Ibddélen variable theory. The
simplest hidden variable theory for an EPR pair is that theiglas are either both in
state|0) or both in statg1), we just don't happen to know which. In such a theory no
communication between possibly distant particles is resorgsto explain the correlated
measurements. However, this point of view cannot explagnrésults of measurements
with respect to a different basis. In fact, Bell showed thmt lacal hidden variable theory
predicts that certain measurements will satisfy an inétyy&hown as Bell’s inequality.
However, the result of actual experiments performing tmesasurements show that Bell's
inequality is violated. Thus quantum mechanics cannot iptamed by any local hidden
variable theory. See [Greenstein and Zajonc 1997] for alhigiadable account of Bell's
theorem and related experiments.

The second standard description is in terms of cause anct.efer example, we said
earlier that a measurement performed by Alice affects a ureasent performed by Bob.
However, this view is incorrect also, and results, as Einsteodolsky and Rosen recog-
nized, in deep inconsistencies when combined with retgitithieory. It is possible to set
up the EPR scenario so that one observer sees Alice meastirthfin Bob, while another
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observer sees Bob measure first, then Alice. According #divél, physics must equally
well explain the observations of the first observer as thersg:cWhile our terminology of
cause and effect cannot be compatible with both observersdtual experimental values
are invariant under change of observer. The experimerdaltsecan be explained equally
well by Bob’s measuring first and causing a change in the sfafdice’s particle, as the
other way around. This symmetry shows that Alice and Bob egnimfact, use their EPR
pair to communicate faster than the speed of light, and thsmlves the apparent paradox.
All that can be said is that Alice and Bob will observe the saamlom behavior.

As we will see in the section on dense coding and teleporta®R pairs can be used
to aid communication, albeit communication slower thangheed of light.

4. QUANTUM GATES

So far we have looked at static quantum systems which chamgevben measured. The
dynamics of a quantum system, when not being measured, geerggal by Schrodinger’s
equation; the dynamics must take states to states in a wayptéserves orthogonality.
For a complex vector space, linear transformations thatgowe orthogonality are unitary
transformations, defined as follows. Any linear transfaioraon a complex vector space
can be described by a matrix. L&f* denote the conjugate transpose of the makifix
A matrix M is unitary (describes a unitary transformation\MfA/* = I. Any unitary
transformation of a quantum state space is a legitimatetqoatransformation, and vice
versa. One can think of unitary transformations as beingtimis of a complex vector
space.

One important consequence of the fact that quantum transfozns are unitary is that
they are reversible. Thus quantum gates must be rever&ibleett, Fredkin, and Toffoli
had already looked at reversible versions of standard ctingpmodels showing that all
classical computations can be done reversibly. See Feyamactures on Computation
[Feynman 1996] for an account of reversible computationitmietlation to the energy of
computation and information.

4.1 Simple Quantum Gates

The following are some examples of useful single-qubit quienstate transformations.
Because of linearity, the transformations are fully spedifby their effect on the basis
vectors. The associated matrix, witld), |1) } as the preferred ordered basis, is also shown.

I:1]0) — |0) 10
1) — |1) 01
X:|0) — |1) 01
1) — |0) 10
Y:0) — —|1) 01
1) — |0) -10
Z:10) — |0) 10
1) — —|1) 0 —1

The names of these transformations are conventidniasl the identity transformationy
is negationZ is a phase shift operation, and = Z X is a combination of both. Th&
transformation was discussed previously in section 2 @artbe readily verified that these
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gates are unitary. For example

. 0 -1 0 1
Yy _<1 . ) (_1 O>_I.

The controllednoT gate,C,,,;, Operates on two qubits as follows: it changes the second
bit if the first bit is 1 and leaves this bit unchanged otherwise. The vedtirs |01),
|10), and|11) form an orthonormal basis for the state space of a two-quybtes, ad-
dimensional complex vector space. In order to represensfmamations of this space in
matrix notation we need to choose an isomorphism betwesrsfidice and the space of
complex four tuples. There is no reason, other than corwentd pick one isomorphism
over another. The one we use here assocjates|01), |10), and|11) to the standard 4-
tuple basig1,0,0,0)7, (0,1,0,0)7, (0,0,1,0)T and(0,0,0, 1), in that order. The,,,;
transformation has representations

Chrot : 100) — |00) 1000
|01) — |01) 0100
[10) — |11) 0001
[11) — |10) 0010
The transformatio,,,; is unitary sinceC , = Cyor andC,0:Cror = I. TheC,,,; gate

cannot be decomposed into a tensor product of two singlednisformations.

Itis useful to have graphical representations of quantate stansformations, especially
when several transformations are combined. The controlled gate C,,,; is typically
represented by a circuit of the form

The open circle indicates the control bit, and thandicates the conditional negation of the
subject bit. In general there can be multiple control biem® authors use a solid circle to
indicate negative control, in which the subject bit is taghivhen the control bit is.

Similarly, the controlled-controlledtoT, which negates the last bit of three if and only
if the first two are both, has the following graphical representation.

Single bit operations are graphically represented by gppately labelled boxes as
shown.
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4.1.1 The Walsh-Hadamard TransformatioAnother important single-bit transforma-
tion is the Hadamard Transformation defined by

H:[0) — —5(10)+11))
1) — Z5(0) — [1)).

The transformatiorf/ has a number of important applications. When appliedtoH
creates a superposition staﬁg(m) +|1)). Applied ton bits individually, H generates a
superposition of al2™ possible states, which can be viewed as the binary repatganof
the numbers frord to 2™ — 1.

V)

(H®H®...®H)|00...0)
1
=¢FM®HM®WHMM®~WM+MD

2" —1

1
= N ;M)

The transformation that appliés to » bits is called the Walsh, or Walsh-Hadamard, trans-
formationW. It can be defined as a recursive decomposition of the form

Wi=HWni1=HeW,.

4.1.2 No Cloning. The unitary property implies that quantum states cannobpéd or
cloned. The no cloning proof given here, originally due todt¥ers and Zurek [Wootters
and Zurek 1982], is a simple application of the linearity oitary transformations.

Assume thalU is a unitary transformation that clones, in tiaf|a0)) = |aa) for all
quantum states). Let|a) and|b) be two orthogonal quantum states. $&yfa0)) = |aa)
andU (|b0)) = |bb). Considetic) = (1/v/2)(|a) + |b)). By linearity,

U(lc0)) = =5 (U(Ja0)) + U([b0)))
= 2= (laa) + [bb)).
But if U is a cloning transformation then
U(]c0)) = |ce) = 1/2(|aa) + |ab) + |ba) + |bb)),

which is not equal tq1/v/2)(Jaa) + |bb)). Thus there is no unitary operation that can
reliably clone unknown quantum states. It is clear thaticlgris not possible by using
measurement since measurement is both probabalistic atictéve of states not in the
measuring device’s associated subspaces.

It is important to understand what sort of cloning is andtisiowed. It is possible to
clone a known quantum state. What the no cloning principle ts is that it is impossible
to reliably clone an unknown quantum state. Also, it is pussto obtainn particles
in an entangled statg/00...0) + b|11...1) from an unknown state|0) + b|1). Each
of these particles will behave in exactly the same way wheasmed with respect to
the standard basis for quantum computafi@®. .. 0), |00...01),...,[11...1)}, but not
when measured with respect to other bases. It is not pogeibleate the: particle state
(al0) +b|1)) ® ... ® (a|0) + b]1)) from an unknown state|0) + b|1).
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4.2 Examples

The use of simple quantum gates can be studied with two siexalmples: dense coding
and teleportation.

Dense coding uses one quantum bit together with an EPR paitdode and transmit
two classical bits. Since EPR pairs can be distributed ab&tiwhe, only one qubit (parti-
cle) needs to be physically transmitted to communicate figoddinformation. This result
is surprising since, as was discussed in section 3, onlylassical bit's worth of informa-
tion can be extracted from a qubit. Teleportation is the sfipmf dense coding, in that
it uses two classical bits to transmit a single qubit. Teteggtmn is surprising in light of
the no cloning principle of quantum mechanics, in that ittdes the transmission of an
unknown quantum state.

The key to both dense coding and teleportation is the usetahgted particles. The
initial set up is the same for both processes. Alice and Banw communicate. Each is
sent one of the entangled particles making up an EPR pair,

_ L
V2
Say Alice is sent the first particle, and Bob the second. Sib aptarticle is transmit-

ted, only Alice can perform transformations on her partieled only Bob can perform
transformations on his.

4.2.1 Dense Coding

o (100) + [11)).

Encoder f--------fe-ommmmiomoomchoon = Decoder

< 7

EPR
source

Alice. Alice receives two classical bits, encoding the numifetsrough3. Depending
on this number Alice performs one of the transformatihsX, Y, Z} on her qubit of the
entangled paityy. Transforming just one bit of an entangled pair means pevifoy the
identity transformation on the other bit. The resultingesia shown in the table.

Value Transformation New state
0 o= (I ®I)o (100) +[11))

H3|H

L = (X9 Dby - (10) +[01)
2 o= @I J5(—[10)+]01))
3 Ys=(Z2®I)o %(|00> —[11))

Alice then sends her qubit to Bob.

Bob. Bob applies a controlledtoT to the two qubits of the entangled pair.
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InitiaI state ControlledNoT First bit Second bit
Yo = 5(100) +111))  —=(]00) + [10)) %(I0>+I1>) 0)
Y1 = f(|10>+|01>) =5 (11) +101)) f(|1>+|0>) 1)
Yo = D (=10) +[01) L (—[11) +]01) L(—[1)+[0) )
U3 = 75(100) — [11))  —5(|00) — [10))  —5(/0) —[1)) 0)

Note that Bob can now measure the second qubit without distgithe quantum state.
If the measurement returf® then the encoded value was eitbar 3, if the measurement
returns|1) then the encoded value was eithesr 2.

Bob now applied to the first bit:

Initial state First bit H(First bit)
Po SO+ S0+ 1)+ (0 - 1) =10)
v (0 +10) 5 (F5(0) - 1) + L5 (0) 1) = 0)
Ga (=11 10) L5 (= 55(10) — 1) + S5 (10) + 1)) = [1)
v S(0)—11) S (Z00)+ 1) - S50y - 1) = 1)

Finally, Bob measures the resulting bit which allows him istidguish betweef and
3, andl and2.

4.2.2 Teleportation. The objective is to transmit the quantum state of a partislag
classical bits and reconstruct the exact quantum state aetieiver. Since quantum state
cannot be copied, the quantum state of the given particleedessarily be destroyed. Sin-
gle bit teleportation has been realized experimentallyujBmeester et al. 1997; Nielsen
et al. 1998; Boschi et al. 1998].

Decoder Encoder

Y

7

source
Alice. Alice has a qubit whose state she doesn’t know. She wantsitbtbe state of ths
qubit
¢ = al0) + b|1)

to Bob through classical channels. As with dense coding:efdind Bob each possess one
gubit of an entangled pair

Yo = —(|00> +[11)).

g
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Alice applies the decoding step of dense coding to the gutmtbe transmitted and her
half of the entangled pair. The starting state is quantute sta

1
Pt = 7§(a|0> ® (/00) +[11)) +b|1) @ (|00) + [11)))

1
= —(a]000) + a|011) + b|100) + b|111)),
\/5( 000) + a|011) + b|100) + b[111))
of which Alice controls the first two bits and Bob controls 1ast one. Alice now applies
Chot ® I andH ® I ® I to this state:

(H@I®I)(Crot ®1)(¢ @ 1ho)

1
= (H®I®I)(C’not®l)7§(a|000>+a|011>—|—b|100>+b|111>)
1
= (HoI® I)E(a|000> + a|011) + b[110) + b[101))
= %(a(|000> + [011) +[100) + [111)) + b(|010) 4 [001) — |110) — |101)))
= %(I00>(a|0> +b[1)) +[01)(al1) +b0)) + [10)(a|0) — b[1)) + [11)(al1) — 0]0)))

Alice measures the first two qubits to get ond@), |01), |10), or |11) with equal prob-
ability. Depending on the result of the measurement, theriguna state of Bob’s qubit is
projected tau|0) + b|1), a|1) + b]0), a|0) — b|1), ora|l) — b|0) respectively. Alice sends
the result of her measurement as two classical bits to Bob.

Note that when she measured it, Alice irretrievably altehedstate of her original qubit
¢, whose state she is in the process of sending to Bob. Thi®fdke original state is the
reason teleportation does not violate the no cloning ppieci

Bob. When Bob receives the two classical bits from Alice he knoms the state of his
half of the entangled pair compares to the original statela’ qubit.

bits received state decoding
00 al0) + b|1) I
01 all) + b|0) X
10 al0) — b|1) Z
11 a|l) — b|0) Y

Bob can reconstruct the original state of Alice’s qubit,by applying the appropriate
decoding transformation to his part of the entangled pawoteNhat this is the encoding
step of dense coding.

5. QUANTUM COMPUTERS

This section discusses how quantum mechanics can be useddonp computations and
how these computations are qualitatively different frowstaperformed by a conventional
computer. Recall from section 4 that all quantum state foanmsations have to be re-
versible. While the classicaloT gate is reversibleaAND, OR andNAND gates are not.
Thus it is not obvious that quantum transformations canycaut all classical computa-
tions. The first subsection describes complete sets ofsilegates that can perform any
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classical computation on a quantum computer. Furthernitatescribes sets of gates with
which all quantum computations can be done. The second cifrseliscusses quantum
parallelism.

5.1 Quantum Gate Arrays
The bra/ket notation is useful in defining complex unitarg@ions. For two arbitrary
unitary transformation&; andUs, the “conditional” transformatiof®) (0| @ Uy + |1)(1| ®
Us, is also unitary. The controlledoT gate can defined by

C171025 = |O><O| ®I+ |1><1| ®X

The three-bit controlled-controlledoT gate or Toffoli gate of section 4 is also an in-
stance of this conditional definition:
T=10)0]®II+|1)(1]® Cpot-

The Toffoli gateT' can be used to construct complete set of boolean connectisesan
be seen from the fact that it can be used to construcAfiN® andNOT operators in the
following way:

TI1,1,2) = |1,1,-x)
Tlz,y,0) = |z,y,z Ay)

TheT gate is sufficient to construct arbitrary combinatoriatuits.
The following quantum circuit, for example, implements aitiflll adder using Toffoli
and controlledNOT gates:

le) [9)
|z) |z)
ly) )
0) )
0) <)

wherex andy are the data bits; is their sum (modul@), ¢ is the incoming carry bit, and
¢’ is the new carry bit. Vedral, Barenco and Ekert [Vedral e1886] define more complex
circuits that include in-place addition and modular adxiti

The Fredkin gate is a “controlled swap” and can be defined as

F=0)0|@Ial+ 1) (1S
whereS is the swap operation
S = [00)(00] + [01)(10| + [10)(01| + |11)(11].

The reader can verify thdt, like T', is complete for combinatorial circuits.
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Deutsch has shown [Deutsch 1985] that it is possible to cactsteversible quantum
gates for any classically computable function. In fact possible to conceive of a univer-
sal quantum Turing machine [Bernstein and Vazirani 1997}hls construction we must
assume a sufficient supply of bits that correspond to theddpduring machine.

Knowing that an arbitrary classical functigrwith m input andk output bits can be im-
plemented on quantum computer, we assume the existenapiafidum gatearray/; that
implementsf. Uy is am + k bit transformation of the forn/; : |z, y) — |z,y ® f(z))
wheres denotes the bitwise exclusiv@r®. Quantum gate arrays;, defined in this way,
are unitary for any functiorf. To computef(x) we applyU; to |z) tensored withk
zores|z,0). Sincef(z) & f(x) = 0 we haveU;U; = I. Graphically the transformation
Uy :|z,y) — |z,y @ f(x)) is depicted as

7) — — o)

ly) —— — ly @ f(z)).

While theT and F’ gates are complete for combinatorial circuits, they caaobteve ar-
bitrary quantum state transformations. In order to reaibérary unitary transformatiofs
single bit rotations need to be included. Barenco et. alrdBeo et al. 1995] show that
C,o: together with all 1-bit quantum gates is a universal gatelsstiffices to include the
following one-bit transformations

cosa  Sina e« 0
—sina cosa J '\ 0 e~
forall 0 < a < 27 together with the”,,,; to obtain a universal set of gates. As we shall

see, such non-classical transformations are crucial fploéing the power of quantum
computers.

5.2 Quantum Parallelism

What happens it/; is applied to input which is in a superposition? The answeaisy
but powerful: sincé/y is a linear transformation, it is applied to all basis vestor the
superposition simultaneously and will generate a supéipo®f the results. In this way,
it is possible to computg(x) for n values ofz in a single application o/ ;. This effectis
called quantum parallelism.

The power of quantum algorithms comes from taking advaméigeantum parallelism
and entanglement. So most quantum algorithms begin by ctmgpafunction of interest
on a superposition of all values as follows. Start witmagubit statg00 . . .0). Apply the

6@ is not the direct sum of vectors.
“More precisely, we mean arbitrary unitary transformatiopgo a constant phase factor. A constant phase shift
of the state has no physical, and therefore no computatisigaificance.
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Walsh-Hadamard transformatid¥ of section 4.1.1 to get a superposition

1 1 A=
ﬁ(|oo...o>+|oo...1>+...+|11...1>)_ Nou ; |z)

which should be viewed as the superposition of all intefers x < 2". Add ak-bit
register|0) then by linearity

1 2" -1 1 2"—1
2" —1

- % S o £(0)
x=0

wheref(x) is the function of interest. Note that sinaequbits enable working simultane-
ously with2™ states, quantum parallelism circumvents the time/spadeoff of classical
parallelism through its ability to provide an exponentiaaunt of computational space in
a linear amount of physical space.

Consider the trivial example of a controlled-controlledT (Toffoli) gate, 7", that com-
putes the conjunction of two values:

|z) ——— |)
ly) —o— ly)
0) —=— |z Avy)

Now take as input a superposition of all possible bit comtiims of x andy together
with the necessary.

HI0) ® H|0) @ [0) = —

S

1
S0+ e ﬁﬂo) +1) ©10)

(1000 4 |010) -+ [100) + [110)).

N~

Apply T to the superposition of inputs to get a superposition of &salts, namely
1
T(H|0) ® H|0) ® |0)) = §(|000> +1010) + |100) 4 |111)).

The resulting superposition can be viewed as a truth tabsl¢hf® conjunction, or more
generally as the graph of a function. In the output the vahfes, y, andz A y are
entangled in such a way that measuring the result will give lore of the truth table, or
more generally one point of graph of the function. Note tht bits can be measured
in any order: measuring the result will project the state soierposition of the set of all
input values for whicly produces this result and measuring the input will projeetrésult
to the corresponding function value.
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Measuring at this point gives no advantage over classiaallpism as only one result
is obtained, and worse still one cannot even choice whichltrese gets. The heart of
any quantum algorithm is the way in which it manipulates quanparallelism so that
desired results will be measured with high probability. sTedrt of manipulation has no
classical analog, and requires non-traditional programyrtéchniques. We list a couple of
the techniques currently known.

—Amplify output values of interest. The generalidea is &mform the state in such a way
that values of interest have a larger amplitude and thezdfave a higher probability of
being measured. Examples of this approach will be desciibselction 7.

—Find common properties of all the values pfz). This idea is exploited in Shor’s
algorithm which uses a quantum Fourier transformation taiolihe period off.

6. SHOR'S ALGORITHM

In 1994, inspired by work of Daniel Simon (later published$imon 1997]), Peter Shor
found a bounded probability polynomial time algorithm facforingn-digit numbers on
a quantum computer. Since the 1970’s people have searcheffifient algorithms for
factoring integers. The most efficient classical algorittmown today is that of Lenstra and
Lenstra [Lenstra and Lenstra 1993] which is exponentidiénsize of the input. The input
is the list of digits of M, which has sizex ~ log M. People were confident enough that
no efficient algorithm existed, that the security of cryptgghic systems, like the widely
used RSA algorithm, depend on the difficulty of this proble®hor’s result surprised the
community at large, prompting widespread interest in quiantomputing.

Most factoring algorithms, including Shor’s, use a stadd&duction of the factoring
problem to the problem of finding the period of a function. Shges quantum parallelism
in the standard way to obtain a superposition of all the \vatii¢he function in one step. He
then computes the quantum Fourier transform of the fungtidiich like classical Fourier
transforms, puts all the amplitude of the function into ripldts of the reciprocal of the
period. With high probability, measuring the state yields period, which in turn is used
to factor the integei/.

The above description captures the essence of the quangamitlaim, but is something
of an oversimplification. The biggest complication is tHet quantum Fourier transformis
based on the fast Fourier transform and thus gives only appade results in most cases.
Thus extracting the period is trickier than outlined abdne,the techniques for extracting
the period are classical.

We will first describe the quantum Fourier transform and thiee a detailed outline of
Shor’s algorithm.

6.1 The Quantum Fourier Transform

Fourier transforms in general map from the time domain toftaguency domain. So
Fourier transforms map functions of periotb functions which have non-zero values only
at multiples of the frequenc%g. Discrete Fourier transform (DFT) operates/@requally
spaced samples in the interj@J) 27) for someN and outputs a function whose domain is
the integers betwednand N —1. The discrete Fourier transform of a (sampled) function of
periodr is a function concentrated near multiples%f)f If the periodr dividesN evenly,
the result is a function that has non-zero values only atipled of % Otherwise, the
result will approximate this behavior, and there will be re@10 terms at integers close to
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multiples of 2.

The Fast Fourier transform (FFT) is a version of DFT wharés a power of 2. The
guantum Fourier transform (QFT) is a variant of the discFetarier transform which, like
FFT, uses powers of 2. The quantum Fourier transform opeoatehe amplitude of the

guantum state, by sending
Y g@)z) =Y G(e)e)

whereG(c) is the discrete Fourier transform gfx), andx and ¢ both range over the
binary representations for the integers betweéeamd N — 1. If the state were measured
after the Fourier transform was performed, the probalitiat the result wak:) would be
|G(c)|?. Note that the quantum Fourier transform does not outpunation the way the
Uy transformation does; no output appears in an extra register

Applying the quantum Fourier transform to a periodic fuantj(z) with periodr, we
would expect to end up with_, G(c)|c), whereG(c) is zero except at multiples o¥.
Thus, when the state is measured, the result would be a rlnudﬂpg sayj%. But as
described above, the quantum Fourier transform only gippsxximate results for periods
which are not a power of two, i.e. do not dividé. However the larger the power of
two used as a base for the transform, the better the approgma he quantum Fourier
transformUq pr with baseN = 2™ is defined by

1’ spe
U ) - — e 2" |c).
QFT | > \/2—7_” ; | >
In order for Shor’s algorithm to be a polynomial algorithine tqjuantum Fourier trans-
form must be efficiently computable. Shor shows that the turarfourier transform with
base2™ can be constructed using on@@ gates. The construction makes use of two
types of gates. One is a gate to perform the familiar Hadamnandformation. We will
denote byH; the Hadamard transformation applied to jttle bit. The other type of gate
performs two-bit transformations of the form

0 O
0 O
1 0
0e

i@k,j

0
1
Sk = 0
0

O O O

wheref,_; = /2%, This transformation acts on tigh andjth bits of a larger register.
The quantum Fourier transform is given by

HpSo1...80m—1H1 ... Hp—35m—3m—25m—3m—1Hm—25m—2m—1Hm_1
followed by a bit reversal transformation. If FFT is follod/by measurement, as in Shor’s
algorithm, the bit reversal can be performed classicakye [Shor 1997] for more details.
6.2 A Detailed Outline of Shor’s algorithm

The detailed steps of Shor’s algorithm are illustrated wittunning example where we
factor M = 21.

Step 1. Quantum parallelisnChoose an integerarbitrarily. If a is not relatively prime
to M, we have found a factor af/. Otherwise apply the rest of the algorithm.
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Letm be such thaf/? < 2™ < 2M?2. [This choice is made so that the approximation
used in Step 3 for functions whose period is not a powexwfll be good enough for the
rest of the algorithm to work.] Use quantum parallelism ascdbed in 5.2 to compute
f(z) = a® modM for all integers from0 to 2™ — 1. The function is thus encoded in the
quantum state

2m—1
1
— x, f(x)). 1
7w 2 [0 @) (1)
Example.Suppose: = 11 were randomly chosen. Sindd? = 441 < 29 < 882 =
2M? we findm = 9. Thus, a total ofl4 quantum bits9 for » and5 for f(z) are required
to compute the superposition of equation 1.

Step 2. A state whose amplitude has the same perigd ahe quantum Fourier trans-
form acts on the amplitude function associated with the tirgbate. In order to use the
guantum Fourier transform to obtain the periodfofa state is constructed whose ampli-
tude function has the same periodfas

To construct such a state, measure the[lagt, M| qubits of the state of equation 1 that
encodef(x). Arandom value: is obtained. The value is not of interest in itself; only the
effect the measurement has on our set of superpositionsrigepést. This measurement
projects the state space onto the subspace compatiblehsitheéasured value, so the state
after measurementis

CY g, u),

for some scale facta? where
_J1iff(z)=u
g(x) = { 0 otherwise.

Note that ther's that actually appear in the sum, those wijtlx) # 0, differ from each
other by multiples of the period, thygz) is the function we are looking for. If we could
measure two successivés in the sum, we would have the period. Unfortunately theslaw
of quantum physics permit only one measurement.

Example.Suppose that random measurement of the superposition atiequl pro-
duces8. The state after this measureme(Eigure 2) clearly shows the periodicity of
I

Step 3. Applying a quantum Fourier transforfihe|u) part of the state will not be used,
so we will no longer write it. Apply the quantum Fourier tréoren to the state obtained in
Step 2.

Ugrr: Y _g(@)|z) =Y G(e)le)

Standard Fourier analysis tells us that when the periofithe functiong(z) defined in
Step 2 is a power of two, the result of the quantum Fouriesfiam is

Z%IJ’?%
i

80nly the9 bits of = are shown in Figure 2; the bits ¢f{x) are known from the measurement.
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Fig. 2. Probabilities for measuring when measuring the staté Zzex |z, 8) obtained in Step 2, where
X = {z]211% mod21 = 8}}
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Fig. 3. Probability distribution of the quantum state affeurier Transformation.

where the amplitude i8 except at multiples o™ /r. When the period does not divide
2™, the transform approximates the exact case so most of thétad®pis attached to
integers close to multiples éfT—

Example.Figure 3 shows the result of applying the quantum Fouriendfiam to the
state obtained in Step 2. Note that Figure 3 is the graph dastd-ourier transform of the
function shown in Figure 2. In this particular example theqeof f does not divide™.

Step 4. Extracting the periodvieasure the state in the standard basis for quantum com-
putation, and call the resuit In the case where the period happens to be a pow2y of
so that the quantum Fourier transform gives exactly masiglf2" /r, the period is easy
to extract. In this case; = j27m for somej. Most of the timej andr will be relatively
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prime, in which case reducing the fractigh (= %) to its lowest terms will yield a frac-
tion whose denominatay is the periodr. The fact that in general the quantum Fourier
transform only approximately gives multiples of the scdledjuency complicates the ex-
traction of the period from the measurement. When the peésiodt a power o, a good
guess for the period can be obtained using the continuetidraexpansion of. This
classical technique is described in Appendix B.

Example.Say that measurement of the state returas 427. Sincev and2™ are rela-
tive prime the perioad will most likely not divide2™ and the continued fraction expansion
described in Appendix B needs to be applied. The following tsace of the algorithm
described in Appendix B:

ilai| pi | @i | €i

0[O0 0 | 1 |0.8339844
1111 1] 110.1990632
215 5 | 6 ]0.02352941

3142|211|253 0.5

which terminates witlé = go < M < ¢3. Thus,q = 6 is likely to be the period of.

Step 5. Finding a factor af/. When our guess for the periodl, is even, use the Eu-
clidean algorithm to efficiently check whether eitlgf? + 1 or a?/? — 1 has a non-trivial
common factor with\/.

The reason why?/2 4 1 or a?/? — 1 is likely to have a non-trivial common factor with
M is as follows. Ifq is indeed the period of () = a” modM, thena? = 1 modM since
aa® = a® modM for all z. If ¢ is even, we can write

(a?? +1)(a?”? — 1) = 0modAM.

Thus, so long as neithef/? +1 nora?/? —1 is a multiple ofM, eithera?/? +1 ora?/? — 1
has a non-trivial common factor with/ .

Example.Since6 is even eithen/2 —1 =113 — 1 = 13300ra%? +1 =113 +1 =
1332 will have a common factor witld/. In this particular example we find two factors
gcd21,1330) = 7 and gcq21, 1332) = 3.

Step 6. Repeating the algorithm, if necessargrious things could have gone wrong so
that this process does not yield a factor\df
(1) The valuey was not close enough to a muItipIe%}.

(2) The period- and the multiplierj could have had a common factor so that the denom-
inatorq was actually a factor of the period not the period itself.

(3) Step 5yields\f asM'’s factor.

(4) The period off () = «® modM is odd.

Shor shows that few repetitions of this algorithm yieldsadaof M with high probability.

6.2.1 A Comment on Step 2 of Shor’s Algorithithe measurement in Step 2 can be
skipped entirely. More generally Bernstein and Vaziraredistein and Vazirani 1997]
show that measurements in the middle of an algorithm canyahka avoided. If the
measurement in Step 2 is omitted, the state consists of apmgigons of several periodic
functions all of which have the same period. By the lineasftyuantum algorithms, apply-
ing the quantum Fourier transformation leads to a supeipogf the Fourier transforms
of these functions, each of which is entangled with the spoadingu and therefore do
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not interfere with each other. Measurement gives a value fsoe of these Fourier trans-
forms. Seeing how this argument can be formalized illusrame of the subtleties of
working with quantum superpostions Apply the quantum krudransform tensored with
the identity,Ugrr ® I, toCZ2 e, f(2)) to get

2" —12"—1

C' Y Y e fa),

z=0 =0

2mixzc
C’ E E E e |c,u)

w alf(r)=u c

which is equal to

for w in the range off(x). What results is a superposition of the results of Step 3 for
all possibleu’s. The quantum Fourier transform is being applied to a faroflseparate
functionsg,, indexed byu where

gu_{1 if f(z) =

0 otherwise,

all with the same period. Note that the amplitudes in statésdifferentu’s never interfere
(add or cancel) with each other. The transfdrgrr ® I as applied above can be written

1 m—127—1
UQFT®I:C’ZZQU($)|$, HC’ZZ ZG Ve, u),
ueER =0 u€ER =0 c=0

whereG,(c) is the discrete Fourier transform gf(z) andR is the range off (z).
Measure: and run Steps 4 and 5 as before.

7. SEARCH PROBLEMS

A large class of problems can be specified as search probletms form “find somer in

a set of possible solutions such that statenfefat) is true.” Such problems range from
database search to sorting to graph coloring. For exantmdeyraph coloring problem can
be viewed as a search for an assignment of colors to vertcdisas the statement “all
adjacent vertices have different colors” is true. Simylaal sorting problem can be viewed
as a search for a permutation for which the statement “thepitionz takes the initial
state to the desired sorted state” is true.

An unstructuredsearch problem is one where nothing is know (or no assumptien
used) about the structure of the solution space and therstatd®. For example, deter-
mining P(z) provides no information about the possible valuePgt:; ) for zg # x1. A
structuredsearch problem is one where information about the searatespad statement
P can be exploited.

For instance, searching an alphabetized list is a strutgearch problem and the struc-
ture can be exploited to construct efficient algorithms. thmeo cases, like constraint sat-
isfaction problems such as 3-SAT or graph colorability, pheblem structure can be ex-
ploited for heuristic algorithms that yield efficient sart for some problem instances.
But in the general case of an unstructured problem, randésslyng the truth of state-
mentsP(z;) one by one is the best that can be done classically. For atsspace of
size N, the general unstructured search problem requir@¥) evaluations ofP. On a
guantum computer, however, Grover showed that the unsnedtsearch problem can be
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solved with bounded probability withi®(1/N) evaluations ofP. Thus Grover's search
algorithm [Grover 1996] is provably more efficient than atyogithm that could run on a
classical computer.

While Grover's algorithm is optimal [Bennett et al. 1997;y@o et al. 1996; Zalka 1997]
for completely unstructured searches, most search praiteralve searching a structured
solution space. Just as there are classical heuristicitdgw that exploit problem struc-
ture, one would expect that there are more efficient quantgorithms for certain struc-
tured problem instances. Grover et.al. [Cerf et al. 1998puSrover’s search algorithm
in place of classical searches within a heuristic algoritbrehow that a quadratic speed-
up is possible over a particularly simple classical heiarfstr solving NP-hard problems.
Brassard et.al. [Brassard et al. 1998], using the techsigfi&rover's search algorithm
in a less obvious way, show that general heuristic searches guantum analogs with
quadratic speed-up.

There is hope that for certain structured problems a speeagteater than quadratic is
possible. Such algorithms will likely require new approagthat are not merely quantum
implementations of classical algorithms. Shor’s algaritftwhen viewed as a search for
factors, is an example of an algorithm that achieves exp@aispeed-up by using problem
structure (number theory) in new ways unique to quantum caation.

Tad Hogg has developed heuristic quantum search algoritiahexploit problem struc-
ture. His approach is distincly non-classical and usesusroperties of quantum com-
putation. One problem with this approach is that, like maastrfstic algorithms, the use
of problem structure is complicated enough that it is hardtiermine the probability that
a single iteration of an algorithm will give a correct answEhnerefore it is unknown how
efficient Hogg'’s algorithms are. Classically the efficiemfyheuristic algorithms is esti-
mated by empirically testing the algorithm. But as therenig@onential slow down when
simulating a quantum computer on a classical one, emptdsthg of quantum algorithms
is currently infeasible except in small cases. Small casdisate that Hogg'’s algorithms
are more efficient than Grover’s algorithm applied to stuuedl search problems, but that
the speed-up is likely to be only polynomial. While less iesting theoretically, even a
small polynomial speed-up on average for these computdtibfficult problems is of sig-
nificant practical interest. Until sufficiently large quant computers are built, or better
techniques for analyzing such algorithms are found, theieffcy cannot be determined
for sure.

7.1 Grover’s Search Algorithm

Grover’s algorithm searches an unstructured list of 8izeor anz that makes a statement
true. Letn be such tha™ > N, and letU, be the quantum gate that implements the
classical functionP(x) that tests the truth of the statement, where true is encogled a

Up:|z,0) — |z, P(x))

The first step is the standard one for quantum computing itestin section 5.2. Compute
P for all possible inputse;, by applyingUp to a register containing the superposition
\/% Z;‘;é |z) of all 2 possible inputs: together with a register set g leading to the
superposition

n—1
= 3 I Pla). )
x=0
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The difficult step is to obtain a useful result from this sygussition.
For anyx such thatP(x) is true, |zq, 1) will be part of the superposition of Eq. 2.
Since the amplitude of such a state%f, the probability that a random measurement

of the superposition produces is only 2=™. The trick is to change the quantum state
in Eq. 2 so as to greatly increase the amplitude of vedtaysl) for which P is true and
decrease the amplitude of vectars0) for which P is false.

Once such a transformation of the quantum state has beerrped, one can simply
measure the last qubit of the quantum state which repres¥nts Because of the am-
plitude change, there is a high probability that the resilltbve 1. If this is the case, the
measurement has projected the state of Eq. 2 onto the smb%gczf:l |¢;, 1) where
k is the number of solutions. Further measurement of the m@nmgabits will provide one
of these solutions. If the measurement of qubft:) yields0, then the whole process is
started over and the superposition of Eq. 2 must be compgtad.a

Grover’s algorithm then consists of the following steps:

(1) Prepare a register containing a superposition of abiptesvalues:; € [0...2" — 1].
(2) ComputeP(x;) on this register.
(3) Change amplitude; to —a; for x; such thatP(x;) = 1. An efficient algorithm for

changing selected signs is described in section 7.1.2. Agblthe amplitudes after
this step is shown here.

o T

(4) Apply inversion about the average to increase amplitfde; with P(z;) = 1. The
guantum algorithm to efficiently perform inversion aboud tiverage is given in sec-
tion 7.1.1. The resulting amplitudes look as shown, whegathplitude of all the;;’s
with P(z;) = 0 have been diminished imperceptibly.

oo L

(5) Repeat steps 2 throughf4,/2" times.
(6) Read the result.

Boyer et.al. [Boyer et al. 1996] provide a detailed analgfthe performance of Grover’s
algorithm. They prove that Grover’s algorithm is optimaltoga constant factor; no quan-
tum algorithm can perform an unstructured search fasteey Hfso show that if there is
only a singler, such thatP (o) is true, then afte§ /2" iterations of steps 2 through 4 the
failure rate is0.5. After iteratinggx/2—" times the failure rate drops & ". Interestingly,
additional iterations will increase the failure rate. Frample, afterg\/2_” iterations the
failure rate is close ta.

There are many classical algorithms in which a proceduepieated over and over again
for ever better results. Repeating quantum proceduresmyarpve results for a while, but
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after a sufficient number of repetitions the results will gietrse again. Quantum proce-
dures are unitary transformations, which are rotationsaiex space, and thus while a
repeated applications of a quantum transform may rotatstttte closer and closer to the
desired state for a while, eventually it will rotate past tfesired state to get farther and
farther from the desired state. Thus to obtain useful restdin a repeated application of
a quantum transformation, one must know when to stop. Brd®taal. [Brassard et al.

1998] describe an extension of Grover’s algorithm that #smsier Transforms to deter-

mine the number of solutions and the optimal number of itenat The extension does not
increase the overall complexity of the algorithm.

Grover has extended his algorithm to achieve quadraticdsppdor other non-search
problems such as computing the mean and median of a funcdimovér 1998]. Using
similar techniques grover has also shown that certain bgaablems that classically run
in O(log V) can be solved iD(1) on a quantum computer. Grover’s search can used as
a subroutine in other quantum computations since Biron. §Baon et al. 1998] show
how the technigque can be used with arbitrary initial amgiulistributions, while still
maintainingO(v/N) complexity.

7.1.1 Inversion about the Averagdlo perform inversion about the average on a quan-
tum computer the inversion must be a unitary transformatieurthermore, in order for
the algorithm as a whole to solve the problentifn/N) time, the inversion must be able
to be performed efficiently. As will be shown shortly, theansion can be accomplished
with O(n) = O(log(N)) quantum gates.

It is easy to see that the transformation

N-—-1 N-1
Z ai|:vi) — Z (2A — ai)|:vi>,
=0 =0

whereA denotes the average of thgs, is performed by thévV x N matrix

21 2 2
No o 2™y ¥

D= N N N
2 2 2
2z 2

SinceDD* = I, D is unitary and is therefore a possible quantum state tramsfion.
We now turn to the question of how efficiently the transforimratcan be performed,
and show that it can be decomposed it) = O(log(N)) elementary quantum gates.
Following Grover,D can be defined a® = WRW whereW is the Walsh-Hadamard

transform defined in section 4 and

10 ... 0
0-10 ...
R= 0 ... ... 0
0 0 —1
To see thaD = W RW, considerR = R’ — I wherel is the identity and
20 ...0
y 00 O
R’ = 0...... 0
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Now WRW = W(R' — )W = WR'W — [. ltis easily verified that

2 2 2
¥y

)
WRW=|3§ N N
y 2 5

N N N

and thusV R'W — I = D.

7.1.2 Changing the SignWe still have to explain how to invert the amplitude of the
desired result. We show, more generally, a surprising smgaly to invert the amplitude
of exactly those states witR(z) = 1 for a generalP.

Let Up be the gate array that performs the computatign: |z,b) — |z,b ® P(x)).
Apply Up to the superposition)) = fyn S "o |x) and choosé = %|0) —|1) to end
up in a state where the sign of allwith P(z) = 1 has been changed, ahts unchanged.

To see this, letX, = {z|P(z) = 0} andX; = {z|P(x) = 1} and consider the
application ofUp.

Up(16,4)

S O IR SEUED SERIES SERY

- \/;ﬁ(z; 2,0 ® 0) +m§1 2,0 ® 1) —162;0 |z,1® 0) _zez;; lz,1@®1))
= \/;W(m; |z, 0) + g}; |z, 1) — g}; |z, 1) — 1; |z, 0))

- jz_(; EEDWDLL

Thus the amplitude of the statesih have been inverted as desired.

7.2 Heuristic Search

7.2.1 A Note on the Walsh-Hadamard Transforifhere is another representation for
the Walsh-Hadamard transformation of section 4.1.1 thaséful for understanding how
to use the Walsh-Hadamard transformation in constructirsgntym algorithms. The bit
Walsh-Hadamard transformation i®ax 2™ matrix W with entriesi,., where both- and
s range fromD to 2" — 1. We will show that

1

_ _1 r-s

NoTAR

wherer - s is the number of commonhbits in the the binary representationscdnds.
To see this equality, note that

W) = 3" Wils).

Wrs =

Letr,_; ...7o be the binary representationafands,,_; . .. sg be the binary representa-
tion of s.

W({r) = (H®...Q H)(|rp—1) ® ... ® |ro))
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vy =0
v =1
v =0
vy =1

{v1 =0} {vi =1} {v2 =0} {va =1}

W

0

Fig. 4. Lattice of variable assignments in a CSP

1
= O+ (-1 1)) ®...®(0)+ (=1)"°|1
\/2—n(|>() 1) (10) + (=1)"1))
1 2" —1
= —1)Emt s, ) @ ... @ (—1)%70s
1 2" —1
= — —1)%7"s).
7 2 (D)
7.2.2 Overview of Hogg's algorithmsA constraint satisfaction problem (CSP) has
variablesV = {vy, ..., v, } which can taken different valuesX = {z1,...,z,,} subject
to certain constraint€’;, . .., C;. Solutions to a constraint satisfaction problem lie in the

space of assignmentsefs tov;’s, V x X. There is a natural lattice structure on this space
given by set containment. Figure 4 shows the assignmenéspatits lattice structure for
n=2,m=2,x; =0, andzs = 1. Note that the lattice includes both incomplete and
inconsistent assignments.

Using the standard correspondence between sets of enechelaments and binary
sequences, in whichlain thenth place corresponds to inclusion of thth element and a
0 corresponds to exclusion, standard basis vectors for agmestate space can be put in
one to one correspondence with the sets. For example, Fsgghrews the lattice of Figure
4 rewritten in ket notation where the elements= 0, v; = 1, v = 0 andvy = 1 have
been enumerated in that order.

If a state violates a constraint, then so do all states alidnehe lattice. The approach
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|1111)
|1110) |1101) 11011) 0111)
|1100) |1010) |1001) 0110) j0101) |0011)
|1000) |0100) 10010) |0001)
|0000)

Fig. 5. Lattice of variable assignments in ket form

Hogg takes in designing quantum algorithms for constraitisiaction problems is to be-
gin with all the amplitude concentrated in tfie . . 0) state and to iteratively move ampli-
tude up the lattice from sets to supersets and away fromlsatyiblate the constraints.
Note that this algorithm begins differently than Shor’salthm and Grover’s algorithm,
which both begin by computing a function on a superpositibalbthe input values at
once.

Hogg gives two ways [Hogg 1996; Hogg 1998] of constructingnéary matrix for
moving amplitude up the lattice. We will describe both methand then describe how he
moves amplitude away from bad sets.

Moving amplitude up: Method 1. There is an obvious transformation that moves
amplitude from sets to supersets. Any amplitude assoctatéde empty set is evenly
distributed among all sets with a single element. Any amgétassociated to a set with a
single element is evenly distributed among all two elemetg which contain that element
and so on. For the lattice of a three element set

111)
T
011) 1101) |110)

>
001) 1010) 100)
000)

We want to transform

1000) — 1/4/3(]001) 4 |010) + |100)
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|001) — 1/v/3(]011) + [110) + |101)

The complete matrix for this transformation looks like (@sial the basis vectors are or-
dered according to their binary representation)

(1) 0 00O0O0DO01
% 5 000000
?LLOOOOO
L??ooooo
?Looiooo
oﬁiLofooo
V2 V2
0 0 010110

Unfortunately this transformation is not unitary. Hogg [itp1996] uses the fact that
the closest (in a suitable metric) unitary mattix, to an arbitrary matrix\/ can be found
usingM’s singular value decompositia = UDV™ whereD is a diagonal matrix, and
U andV are unitary matrices. The produdt,; = UV gives the closest unitary matrix
to M. Provided that/, is sufficiently close ta\f, U, will behave in a similar way td/
and will therefore do a reasonably job of moving amplituderfrsets to their supersets.

Moving amplitude up: Method 2.The second approach [Hogg 1998] uses the Walsh-
Hadamard transformation. Hogg assumes that the desiratrhas formWW DW where
W is the Walsh-Hadamard transformation abds a diagonal matrix whose entries de-
pend only on the size of the sets. Hogg calculates the erfitnie® which maximize the
movement of amplitude from a set to its supersets. This tion exploits the property
1 (_1)Irﬂ8\

= — (=1l =
Wi (-1) i

shown in section 7.2.1.

Moving amplitude away from bad sets. To effect moving amplitude away from sets
that violate the constraints, Hogg suggests adjusting ttasegs of the sets, depending on
the extent to which they violate the constraints, in such @ thiat amplitude distributed
to sets that have bad subsets cancels, where as the amplistidleuted to sets from all
good subsets adds. Different choices here will work moreess keffectively depending
on the particular problem. One choice he suggests is imgettie phase of all bad sets
which will result in some cancelation in the amplitude of stgets between the amplitude
coming from good subsets and bad subsets. This phase imveesi be done as in Grover’s
algorithm (7.1.2) with a that tests whether a given state satisfies all of the consdrar
not. Another suggestion is to give random phases to the tadsedhat on average the
contribution to the amplitude of a superset from bad subisetero. Other choices are
possible.

Because the canceling resulting from the phase changess\faoim problem to prob-
lem, the probability of obtaining a solution is difficult toayse. A few small experiments
have been done and the guess is that the cost of the seafgtastit exponentially, but
considerably more slowly than in the unstructured case.uRtit sufficiently large quan-



36 . E. Rieffel and W. Polak

tum computers are built, or better techniques for analysinth algorithms are found, the
efficiency cannot be determined for sure.

8. QUANTUM ERROR CORRECTION

One fundamental problem in building quantum computersesied to isolate the quan-
tum state. An interaction of particles representing qubvith the external environment
disturbs the quantum state, and causes it to decohere nsfdren in an unintended and
often non-unitary fashion.

Steane [Steane 1998] estimates that the decoherence ofsteyndikely to be built is
107 times too large to be able to run Shor’s algorithm as it staomda 130 digit number.
However, adding error correction algorithms to Shor’s athon mitigates the effect of
decoherence, making it again look possible that a systerd d@ubuilt on which Shor’s
algorithm could be run for large numbers.

On the surface quantum error correction is similar to ctad®rror correcting codes in
that redundant bits are used to detect and correct errorsthBusituation for quantum
error correction is somewhat more complicated than in thesital case since we are not
dealing with binary data but with quantum states.

Quantum error correction must reconstruct the exact emtqdantum state. Given the
impossibility of cloning or copying the quantum state, trésonstruction appears harder
than in the classical case. However, it turns out that adaksechniques can be modified
to work for quantum systems.

8.1 Characterization of Errors

In the following it is assumed that all errors are the restdfumntum interaction between a
set of qubits and the environment. The possible errors fon sengle qubit considered are
linear combinations of no errorg), bit flip errors (X), phase errorsA), and bit flip phase
errors ). A general single bit error is thus a transformatiqd + ex X + e3Y + e4Z.
Interaction with the environment transforms single quadisording to

) = (e1] + ea X +e3Y + eaZ)h) = Y _ e Eilv).

For the general case of quantum registers, possible empesxaressed as linear com-
binations of unitary error operatofs. These could be combinations of single bit errors,
like tensor products of the single bit error transformagi¢h, X, Y, Z}, or more general
multi-bit transformations. In any case, an error can betenias) _, e; E; for some error
operatordy; and coefficients;.

8.2 Recovery of Quantum State

An error correcting code for a set of errdrs consists of a mapping that embeds data
bits inn + & code bits together with a syndrome extraction operatprshat maps: + k
code bits to the set of indices of correctable ertByssuch thati = S¢(E;(C(z))). If
y = E;(C(z)) for some unknown but correctable error, then efefy) can be used to
recover a properly encoded valGgzx), i.e. Egcl(y)(y) = C(z).

Now consider the case of a quantum register. First, the efdte register can be in a
superposition of basis vectors. Furthermore, the errobeaa combination of correctable
error operatorg;. It turns out that it is still possible to recover the encodadntum state.



Introduction to Quantum Computing . 37

Given an error correcting code with syndrome extraction operatSg, ann-bit quan-
tum statgy)) is encoded in a+k bit quantum statép) = C|¢). Assume that decoherence
leads to an error stale;; e; E;|¢) for some combination of correctable err@fs The orig-
inal encoded statg) can be recovered as follows:

(1) Apply the syndrome extraction operatsir to the quantum state padded with suffi-
cient|0) bits:

K2

SC(Z iBil) ®10) =Y ei(Eilg) @ i)).

Quantum parallelism gives a superposition of differenbesreach associated with
their respective error index

(2) Measure théi) component of the result. This yields some (random) vajuand
projects the state to

Eio |¢7 ZO>

(3) Apply the inverse error transformatidffo1 to the firstn + k qubits of E;, |¢, io) to
get the corrected stal).

Note that step 2 projects a superposition of multiple emamgformations into a single
error. Consequently, only one inverse error transformasaequired in step 3.

8.3 Error Correction Example

Consider the trivial error correcting codéthat mapg0) — |000) and|1) — |111). C
can correct single bit flip errors

E={II,XILIo X [,I®I®X}.
The syndrome extraction operator is
S i |xo,x1,22,0,0,0) — |xg, 21, T2, To XOr L1, To XOr To, T1 XOF L),

with the corresponding error correction operators showthertable. Note thak; = Ei‘1
for this example.

Bit flipped | Syndrome| Error correction

none| ]000) none
0| [110) XoIel
1] [101) I®X®I
2| |o11) I®I®X

Consider the quantum bji¢) = %(|0> — |1)) that is encoded as
1

Clp) =19) = 73

(|000) — |111))

and the error
4 3
E:3X®I®I+51®X®I.

The resulting error state is

El¢) = (§X®I®I+§I®X®1)( L 1000y — 111))

S

2



38 . E. Rieffel and W. Polak

4 3

= 5X®I®I(\/_(|OOO> |111>))+5I®X®I(\/_(|OOO> 1111)))
4 3

= 5% ® I ® I(j000) — [111)) + sl X ® I(]000) — [111))
4

= = _(]100) — [011)) +

52 (1010) — [101))

3
5V2
Next apply the syndrome extraction®|¢)) ® |000) as follows:

So((El¢)) © |000))

4 3
= Sef f(”OOOOO) |011000))+5\—f(|010000>—|101ooo>))

:V(|100110>_|011110>) 7(|010101> 1101101))

- 5\[(|1oo> |011>)®|110>+5—\/§(|010>—|101>)®|101>

Measuring the last three bits of this state yields eitth&) or |101). Assuming the mea-
surement produces the former, the state becomes

1
—(]100) — |011)) ® |110).
7 (1100) —1011)) ® [110)

The measurement has the almost magical effect of causimgitatine summand of the
error to disappear. The remaining part of the error can bevenhby applying the inverse
error operatoX ® I ® I, corresponding to the measured valuB)), to the first three bits,
to produce

—(|000> [111)) = Clp) = |¢).

S

9. CONCLUSIONS

Quantum computing is a new, emerging field that has the pgateatdramatically change
the way we think about computation, programming and conigylex he challenge for
computer scientists and others is to develop new programtashniques appropriate for
guantum computers. Quantum entanglement and phase edincelhtroduce a new di-
mension to computation. Programming no longer consistsaréiy formulating step-by-
step algorithms but requires new techniques of adjustimged, and mixing and diffusing
amplitudes to extract useful output.

We have tried to give an accurate account of the state-e&thef quantum computing
for computer scientists and other non-physicists. We hagernibed some of the quantum
mechanical effects, like the exponential state space,rtengled states, and the linearity
of quantum state transformations, that make quantum pésafi possible. Even though
guantum computations must be linear and reversible, asgickl algorithm can be imple-
mented on a quantum computer. But the real power of these ra@hines, the exponential
parallelism, can only be exploited using new, innovativegpamming techniques. People
have only recently begun to research such techniques.
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We have described Shor’s polynomial-time factorizatiogoathm that stimulated the
field of quantum computing. Given a practical quantum corap@&hor’s algorithm would
make many present cryptographic methods obsolete. Gemsaaich algorithm, while only
providing a polynomial speed-up, proves that quantum cderpuare strictly more pow-
erful than classical ones. Even though Grover’s algoritla® reen shown to be optimal,
there is hope that faster algorithms can be found by explpiproperties of the problem
structure. We have described one such approach taken by. Hogg

There are a few other known quantum algorithms that we diddisziuss. Jones and
Mosca [Jones and Mosca 1998] describe the implementatiar2ebit quantum computer
of a constant time algorithm [Deutsch and Jozsa 1992] thatisginguish whether a func-
tion is balanced or constant. Grover [Grover 1998] dessriue efficient algorithm for
estimating the median of a set of values and both Grover [@r2998] and Terhal and
Smolin [Terhal and Smolin 1997] using different methods salve the coin weighing
problem in a single step.

Beyond these algorithms not much more is known about whaddo® done with a
practical quantum computer. It is an open question whethapobwe can find quantum
algorithms that provide exponential speed-up for problethsr than factoring. There is
some speculation among physicists that quantum transfamsamight be slightly non-
linear. So far all experiments that have been done are d¢ensiwith the standard linear
guantum mechanics, but a slight non-linearity is still ploies Abrams and Lloyd [Abrams
and Lloyd 1998] show that even a very slight non-linearityldobe exploited to solve
all NP hard problems on a quantum computer in polynomial tifi@is result further
highlights the fact that computation is fundamentally agbgl process, and that what can
be computed efficiently may depend on subtle issues in phiysic

The unique properties of quantum computers give rise to niemskof complexity
classes. For instance, BQP is the set of all languages @ttbpta quantum Turing ma-
chine in polynomial time with bounded probability. Detailsthe extensive research done
in the field of quantum complexity theory is beyond the scoftbie paper. The interested
reader may start by consulting [Bennett et al. 1997] and Vet 1998] respectively for
analyses of time and space complexity of quantum compuatdtigilliams and Clearwater
1998] contains an introduction to early results in quantomlexity.

Of course, there are daunting physical problems that must&eome if anyone is ever
to build a useful quantum computer. Decoherence, the tishoof the quantum state due
to interaction with the environment, is a key problem. A bigdkthrough for dealing with
decoherence came from the algorithmic, rather than theigddyside of the field with
the development of quantum error correction techniquesh&ve described some of the
principles involved. Further advances in quantum errorexiion and the development of
robust algorithms will be as important for the developmépiractical quantum computers
as advances in the hardware side.

9.1 Further Reading

Andrew Steane’s survey article “Quantum computing” [S&ed898] is aimed at physicists.
We recommend reading his paper for his viewpoint on thisestbjparticularly for his
description of connections between information theory gndntum computing and for
his discussion of error correction, of which he was one oftlaén developers. He also has
an overview of the physics involved in actually building gtuem computers, and a survey
of what had been done up to July 1997. His article contains eerdetailed history of
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the ideas related to quantum computing than the present,@agthas more references as
well. Another shorter and very readable tutorial can be ¢bariBerthiaume 1997].

Richard Feynman’sectures on Computatidireynman 1996] contains a reprint of the
lecture “Quantum Mechanical Computers” [Feynman 1985]civiiiegan the whole field.
It also discusses the thermodynamics of computations whiclosely tied with reversible
computing and information theory.

Colin Williams and Scott Clearwater’s bo@&kplorations in Quantum Computifig/illiams
and Clearwater 1998] comes with software, in the form of Mathtica notebooks, that
simulates some quantum algorithms like Shor’s algorithm.

The second half of the October 1997 issue of the SIAM Jourh@bonputing contains
six seminal articles on quantum computing, including foerlvave already cited [Bennett
et al. 1997] [Bernstein and Vazirani 1997] [Shor 1997] [Sm1®97].

Most of the articles referenced in this paper, and many ntae,be found at the Los
Alamos preprint serverht t p: / / xxx. | anl . gov/ ar chi ve/ quant - ph. Links to
research projects and other information about quantum atingpcan be found on our
web siteht t p: / / www. pocs. conmf gc. ht i .

REFERENCES

ABRAMS, D. S.AND LLOYD, S. 1998. Nonlinear quantum mechanics implies polynotniaé- solution
for NP-complete and #p problems. Los Alamos Physics Prefrichive, ht t p: / / xxx. | anl . gov/
abs/ quant - ph/ 9801041.

BARENCO, A., BENNETT, C. H., Q.EVE, R., DIVINCENZO, D. P., MARGOLUS, N. H., SHOR, P. W.,
SLEATOR, T., SMOLIN, J. A.,AND WEINFURTER H. 1995. Elementary gates for quantum compu-
tation. Physical Review A 55, 3457-3467. Preprint at Los Alamos Physics Preprint ikectnt t p: /

I xxx. | anl . gov/ abs/ quant - ph/ 9503016 and athtt p://vest a. physi cs. ucl a. edu/
cgi - bi n/ unconpress_ps_cgi ?torgat sl. ps.

BENNETT, C. H. 1992. Quantum cryptography using any two nonorthafjstates.Physical Review
Letters 68

BENNETT, C. H., BERNSTEIN, E., BRASSARD, G.,AND VAZIRANI, U. V. 1997. Strengths and weak-
nesses of quantum computin§ociety for Industrial and Applied Mathematics Journal oangput-
ing 26, 5, 1510-1523. Preprint at Los Alamos Physics Preprint ikectht t p: / / xxx. | anl . gov/
abs/ quant - ph/ 9701001.

BENNETT, C. H. AND BRASSARD, G. 1987. Quantum public key distribution reinvent&GACTN:
SIGACT News (ACM Special Interest Group on Automata and Gtahility Theory) 18

BENNETT, C. H., BRASSARD, G.,AND EKERT, A. K. 1992. Quantum cryptograph§cientific Ameri-
can 267 4 (Oct.), 50.

BERNSTEIN, E. AND VAZIRANI, U. V. 1997. Quantum complexity theor$ociety for Industrial and
Applied Mathematics Journal on Computing, 26 1411-1473. A preliminary version of this paper ap-
peared in the Proceedings of the 25th Association for CoimgpMachinery Symposium on the Theory
of Computing.

BERTHIAUME. 1997. Quantum computation. Adan L. Selman, Editor, Complexity Theory Retrospective,
In Honor of Juris Hartmanis on the Occasion of His Sixtiethti@iay, July 5, 1988Volume 2.

BIRON, D., BIHAM, O., BIHAM, E., GRASSEL, M., AND LIDAR, D. A. 1998. Generalized grover
search algorithm for arbitrary initial amplitude distrtmn. Los Alamos Physics Preprint Archive,
http://xxx.lanl.gov/abs/ quant-ph/ 9801066.

BoscHI, D., BRANCA, S., MARTINI, F. D., HARDY, L., AND POPESCY S. 1998. Experimental re-
alization of teleporting an unknown pure quantum state wial @lassical and einstein-podolski-rosen
channelsPhysical Review Letters 80121 — 1125.

BOUWMEESTER D., PaN, J.-W., MATTLE, K., EIBL, M., WEINFURTER, H.,AND ZEILINGER, A. 1997.
Experimental quantum teleportatiodature 390 575.

BOYER, M., BRASSARD, G., HBYER, P.,AND TAPP, A. 1996. Tight bounds on quantum search. In



Introduction to Quantum Computing . 41

Proceedings of the Workshop on Physics of Computation: @iy '96 (Los Alamitos, CA, 1996).
Institute of Electrical and Electronic Engineers Comp@&eciety Press. Preprint at Los Alamos Physics
Preprint Archiveht t p: / / xxx. | anl . gov/ abs/ quant - ph/ 9605034.

BRASSARD, G., HBYER, P.,AND TAPP, A. 1998. Quantum counting. Preprint at Los Alamos Physics
Preprint Archiveht t p: / / xxx. | anl . gov/ abs/ quant - ph/ 9805082.

CERF, N. J., QROVER, L. K., AND WILLIAMS, C. P. 1998. Nested quantum search and np-complete
problems. Preprint at Los Alamos Physics Preprint Arctite, p: / / xxx. | anl . gov/ abs/ quant -
ph/ 9806078.

CIRAC, J. |. AND ZOLLER, P. 1995. Quantum computations with cold trapped i¢tsysical Review
Letters 74 4091-4094.

CORY, D. G., Mass, W., PrRICE, M., KNILL, E., LAFLAMME, R., ZUREK, W. H., HAVEL, T. F., AND
SOMAROO, S. S. 1998. Experimental quantum error correction. Pme@i Los Alamos Physics
Preprint Archiveht t p: / / xxx. | anl . gov/ abs/ quant - ph/ 9802018.

DeuTtscH, D. 1985. Quantum theory, the Church-Turing principle dr@universal quantum computer.
Proceedings of the Royal Society of London Ser. A Ag006117.

DEUTSCH, D. AND JOZSA, R. 1992. Rapid solution of problems by quantum computaffsaceedings
of the Royal Society of London Ser. A A4393-558.

DIrRAC, P. 1958. The Principles of Quantum Mechani@th ed.). Oxford University Press.

EKERT, A. K., RARITY, J., TAPSTER P.,AND PALMA, G. 1992. Practical quantum cryptography based
on two-photon interferometrhysical Review Letters 69

FEYNMAN, R. 1982. Simulating physics with computerfiternational Journal of Theoretical
Physics 216&7, 467—488.

FEYNMAN, R. 1985. Quantum mechanical computégtics News 11Also in Foundations of Physi¢cs
16(6):507-531, 1986.

FEYNMAN, R. 1996. In A. J. Y AND R. W. ALLEN Eds., Feynman Lectures on Computation
Addison-Wesley.

FEYNMAN, R. P., LEIGHTON, R. B., AND SANDS, M. 1965. Lectures on Physics, Vol. lIAddison-
Wesley.

GERSHENFELD N. A. AND CHUANG, |. L. 1997. Bulk spin resonance quantum computiBgence 275
350-356.

GREENSTEIN, G. AND ZAJONC, A. G. 1997. The Quantum Challengdones and Bartlett Publishers,
Sudbury, Mass.

GROVER, L. K. 1996. A fast quantum mechanical algorithm for databsesarch. IfProceedings of the
Twenty-Eighth Annual ACM Symposium on the Theory of Congp{Rhiladelphia, Pennsylvania, 22—-24
May 1996), pp. 212-219.

GROVER, L. K. 1998. A framework for fast quantum mechanical aldoris. Proceedings of the 30th
annual ACM symposium on the theory of compytisg-62. Preprint at Los Alamos Physics Preprint
Archive,ht t p: / / xxx. | anl . gov/ abs/ quant - ph/ 9711043.

HARDY, G. H.AND WRIGHT, E. M. 1979. An Introduction to the Theory of Numbe@xford University
Press.

HoGG, T. 1996. Quantum computing and phase transitions in comdmiial searchJournal of Artifi-
cial Intelligence Research,£1-128. Preprint at Los Alamos Physics Preprint Archintet, p: / / xXX.
| anl . gov/ abs/ quant - ph/ 9508012.

HoGG, T. 1998. Highly structured searches with quantum compuBysical Review Letters 82473—
2473.

HUGHES, R. J., BUTTLER, W. T., KWIAT, P. G., LAMOREAUX, S. K., MORGAN, G. L., NORDHOLT,

J. E.,AND PETERSON C. G. 1999. Practical quantum cryptography for securedpsee commu-
nications. Preprint at Los Alamos Physics Preprint Archimet p: / / xxx. | anl . gov/ abs/ quant -
ph/ 99050009.

HUGHES, R. J., BUTTLER, W. T., KwWIAT, P. G., WUTHER, G. G., MORGAN, G. L., NORDHOLT, J. E.,
PETERSON C. G.,AND SIMMONS, C. M. 1997. Secure communications using quantum cryptogra
phy. In S. P. OTALING AND A. R. PIRICH Eds.,Photonic Quantum Computin§olume 3076 (1997),
pp. 2-11.

HUNGERFORD T. A. 1974. Algebra Springer Verlag, New York, Heidelberg, Berlin.



42

E. Rieffel and W. Polak

JONES, J. A. AND MosCA, M. 1998. Implementation of a quantum algorithm on a nucheagnetic
resonance quantum computdournal of Chemical Physics 108, 1648-1653. Preprint at Los Alamos
Physics Preprint Archiveht t p: / / xxx. | anl . gov/ abs/ quant - ph/ 9801027.

LAFLAMME, R., KNILL, E., ZUREK, W., CATASTI, P.,AND MARIAPPAN, S. 1997. NMR GHZ. Los
Alamos Physics Preprint Archivét t p: / / xxx. | anl . gov/ abs/ quant - ph/ 9709025.

LENSTRA, A. AND LENSTRA, H. Eds. 1993. The Development of the Number Field Sjev@ume 1554
of Lecture Notes in MathematicSpringer Verlag.

LiBoFF, R. L. 1997. Introductory Quantum Mechanics (3rd editiolyddison-Wesley, Reading, Mass.

Lo, H.-K. AND CHAU, H. F.  1999. Unconditional security of quantum key disttiba over arbitrarily
long distancesScience 2832050 — 2056.

MAYERS, D. 1998. Unconditional security in quantum cryptograpBgeprint at Los Alamos Physics
Preprint Archiveht t p: / / xxx. | anl . gov/ abs/ quant - ph/ 9802025.

NIELSEN, M. A., KNILL, E.,AND LAFLAMME, R. 1998. Complete quantum teleportation using nuclear
magnetic resonance. Preprint at Los Alamos Physics Ptefarghive, htt p: // xxx. | anl . gov/
abs/ quant - ph/ 9811020.

SCHULMAN, L. J.AND VAZIRANI, U. 1998. Scalable NMR quantum computation. Los Alamos eRys
Preprint Archiveht t p: / / xxx. | anl . gov/ abs/ quant - ph/ 9804060.

SHOR, P. W. 1994.  Algorithms for quantum computation: Discretg &nd factoring. IfProceedings of
the 35th Annual Symposium on Foundations of Computer Sc{®luy. 1994), pp. 124-134. Institute of
Electrical and Electronic Engineers Computer Society $ffesp: / / netli b. att.com netlib/
att/ mat h/ shor/ quantum al gori t hns. ps. Z.

SHOR, P.W. 1997. Polynomial-time algorithms for prime factatipn and discrete logarithms on a quan-
tum computerSociety for Industrial and Applied Mathematics Journal an@puting 265, 1484—1509.
Expanded version of [Shor 1994].

SIMON, D. R. 1997. On the power of quantum computatiBociety for Industrial and Applied Mathe-
matics Journal on Computing 26, 1474-141483. A preliminary version of this paper appegan the
Proceedings of the 35th Annual Symposium on Foundationuoffiliter Science.

STEANE, A. 1996. The ion trap quantum information processor. Laamdds Physics Preprint Archive,
http://xxx.lanl.gov/ abs/ quant - ph/ 9608011.

STEANE, A. 1998. Quantum computingReports on Progress in Physics,&, 117-173. Preprint at Los
Alamos Physics Preprint Archivét t p: / / xxx. | anl . gov/ abs/ quant - ph/ 9708022.

TERHAL, B. M. AND SMOLIN, J. A. 1997. Single quantum querying of a database. Los Addtysics
Preprint Archiveht t p: / / xxx. | anl . gov/ abs/ quant - ph/ 9705041.

VANDERSYPEN L. M. K., YANNONI, C. Y., SHERWOOD, M. H., AND CHUANG, |. L. 1999. Real-
ization of effective pure states for bulk quantum compatatiPreprint at Los Alamos Physics Preprint
Archive,ht t p: / / xxx. | anl . gov/ abs/ quant - ph/ 9905041.

VEDRAL, V., BARENCO, A., AND EKERT, A. K. 1996. Quantum networks for elementary arithmetic
operations. Physical Review A. Preprint at Los Alamos Rts/Breprint Archiveht t p: / / xxx. | anl .
gov/ abs/ quant - ph/ 9511018.

WATROUS, J. 1998. Relationships between quantum and classicaédpamded complexity classes. In
Thirteenth Annual IEEE Conference on Computational CorifgléJune 1998).

WiLLIAMS, C. P. AND CLEARWATER, S. H. 1998. Explorations in Quantum Computindrelos,
Springer-Verlag.

WOOTTERS W. K. AND ZUREK, W. H. 1982. A single quantum cannot be cloniature 299 802.

ZALKA, C. 1997. Grover's quantum searching algorithm is optinh@ls Alamos Physics Preprint
Archive,ht t p: / / xxx. | anl . gov/ abs/ quant - ph/ 9711070.

ACKNOWLEDGMENTS

The authors would like to thank Tad Hogg and Carlos Mochomfany enjoyable conver-
sations about quantum computing, and for their feedbackagadier draft of this paper.
We are also grateful to Lee Corbin, David Goldberg, Lov GroM®rman Hardy, Vaughan
Pratt, Marc Rieffel and the anonymous referees for detaitedments on earlier drafts



Introduction to Quantum Computing . 43

of this paper. Finally, we would like to thank FXPAL for en#hiastically supporting this
work.

APPENDIX
A. TENSOR PRODUCTS

The tensor producty) of an-dimensional and &-dimensional vector is ak-dimensional
vector. Similarly, if A and B are transformations on-dimensional and &-dimensional
vectors respectively, thea @ B? is a transformation onk-dimensional vectors.

The exact mathematical details of tensor products are lebtfom scope of this paper
(see [Hungerford 1974] for a comprehensive treatment). deompurposes the following
algebraic rules are sufficient to calculate with tensor povsl For matrices\,B,C,D, U,
vectorsu, x, y, and scalarsg, b the following hold:

(A® B)(C® D) = AC® BD

(A B)(z®y) = Az ® By
(r4+y)Qu = 2Quty®u
uR(r+y) = uRr+uy

ar @by = ablx @ y)

(A B)@U:(Aew B®U)’

C D CoU DU
which specialized for scalats b, ¢, d to
ab aU bU
<c d>®U_ <cU dU>'

The conjugate transpose distributes over tensor produets,

A matrix U is unitaryif its conjugate transpose its inverdé*U = I.

The tensor product of several matrices is unitary if and dfrdach one of the matrices
is unitary up to a constant. Lét = 4; ® A, ®...® A,,. ThenU is unitary if A¥ A; = k; I
andHiki =1.

UU =(Al®A0..0A4,)(A1®A4:0...0 4,)
= ATA ®A5A ... .0 AL A,
= kil®...kyl
=1

where eacH refers to the identity matrix of appropriate dimension.
For example, the distributive law allows computations &f fibrm:

(@0|0) + bo[1)) © (a1]0) + ba[1))

9Technically, this is a right Kronecker product.
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= (aol0) ® a1|0)) + (bo|1) ® a1|0)) + (aol0) @ b1|1)) + (bo|1) @ b1[1))
= aoa1((|0) ®(0)) + boax (1) @ |0)) + agb1(|0) ® [1)) 4 bob1(|1) ® [1))
= a0a1(|00> + b0a1|10> + a0b1|01> + b0b1|11>

B. CONTINUED FRACTIONS AND EXTRACTING THE PERIOD FROM THE MEA-
SUREMENT IN SHOR’S ALGORITHM

In the general case where the periodoes not divide™, the valuev measured in step 4
of Shor’s algorithm will be, with high probability, close smme multiple of‘%, sayj%.

The aim is to extract the periodfrom the measured value Shor shows that, with high
probability,v is within % of somej?. Thus

oo L
r 2
for somej, which implies that
vt
2m 2.2m " 2M2

The difference between two distinct fractioglsand%: with denominators less thal is

bounded
1
>_

p_v
M2

q ¢

_ ’pq’ —r'q
qq'

Thus there is at most one fractit%nwith denominator; < M such that‘Qim — 5‘ < 3=

In the high probability case thatis within % ofj%, this fraction will be%.
The unique fraction with denominator less than M that is Witﬁ)}—z of 57 can be ob-
tained efficiently from the continued fraction expansionsgf as follows. Using the se-

qguences
- v
% = (5]
v
€ = 2_m — agp
b=l
a, =
€En—1
1
€np = — Anp
€En—1
Po = ao
p1 = aiap+1
Pn = @pPn—1+ Pn—2
q@ =1
g = a

Gn = GnQn—1+ Qqn-2

compute the first fractioﬁf such thayy,, < M < ¢,+1. See any standard number theory
text, like Hardy and Wrigﬁﬂt [Hardy and Wright 1979], for whyis procedure works.
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In the high probability case wheg: is within 1%, of a multiple Z of 1, the fraction
obtained from the above procedure%isas it has denominator less thah. We take the
denominator; of the obtained fraction as our guess for the period, whidhweark when
j andr are relatively prime.



