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what you can do with a unknown quantum state



Figure 1: Interplay between cloning, estimation and eavesdropping
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Chapter 1

Evolution and measurement in
quantum mechanics - quantum
channels.

1.1 An isolated quantum system

1.1.1 Pure states

Provided we have a full knowledge on the system we describe its quantum state
as a normalized vector |ψ〉 in a Hilbert space H where global phase has no physical
significance (thus it is equivalent to a ray) 1.

1.1.2 Evolution.

Evolution is described by a unitary operator: |ψ(t)〉 = U(t)|ψ(0)〉, U(t)†U(t) = 11.

1.1.3 Measurement.

Measurement is described by a set of orthogonal projectors {Πi} such that:
∑

i Πi =
11, ΠiΠj = δi,jΠi, Πi ≥ 0. Probability of a measurement result i:

pi = 〈ψ|Πi|ψ〉 = Tr(|ψ〉〈ψ|Πi) (1.1)

1.1.4 Mixed states

If we only know that a system is being prepared in a state |ψk〉 with probability qk

then we can introduce a density matrix of a state ρ =
∑

k pk|ψk〉〈ψk| and the correct

1But we do not believe in “reality” of |ψ〉. It just describes our information. Consider an entangled
pair, measurements on either particle, and if this is not enough for you move to a different inertial
frame – cause and effect will be reversed. At least we do not believe today...
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probability rule (i.e. the one which complies with the meaning of mixed state – it
denotes pure states prepared with different probabilities) is:

pi =
∑

k

pkTr(|ψk〉〈ψk|Πi) = Tr(ρΠi). (1.2)

Evolution of a mixed state of an isolated system is obviously ρ(t) = U(t)ρ(0)U(t)†. Set
of quantum states is a convex set of density operators.

1.1.5 Why Tr(ρΠi) probability rule?

Gleason’s theorem Let P = Πi be a set of projectors acting on a real or complex
Hilbert space H, and let f : P 7→ [0, 1] (by writing such a function and treating it
as probability assignment we assume non-contextuality of QM, it does not matter in
which ensemble of projectors a given projector is, the probability only depends on it)
be a function such that

∑
i f(Πi) = 1 whenever {Πi} forms an observable. Then there

exists an operator ρ such that f(Πi) = Tr(ρΠi) (Strictly speaking whenever dimH ≥ 3.
For dimH = 2 it does not work). Amazingly we do not need to assume anything about
f it in principle could be any strange function. The structure of observables forces it
to be linear. For the proof see e.g. .

Counter example for dimH = 2 A measurement is either trivial (projection is
an identity matrix) or is defined by giving one rank one projector which can be written
as: Π~s = 1/2(11+ ~σ · ~s), where ~s is a 3D real unit vector, and ~σ is sigma Pauli matrices
vector. Any non trivial measurement corresponds to a pair of projectors {Π~s, Π−~s}.
For simplicity we can write f(~s) instead of f(Π~s). The function f satisfies Gleason’s
theorem assumptions provided f(~s) + f(−~s) = 1.

For example we can choose f(~s) = 1/2(1 + ~s · ~n) for some ~n. This corresponds to a
standard quantum mechanics where we have f(Π~s) = Tr(ρΠ~s), with ρ = 1/2(11+~σ ·~n).
But we could also take f to be any function of the form f(~s) = 1/2(1 + g(~s)), where
g(~s) = −g(−~s). For example we could take g(~s) = (~s · ~n)3 – or any other odd function
in ~n. Clearly this is not linear in ~s and hence in Πs, and f cannot have the form
f(Π) = Tr(ρΠ). As an extreme example we could choose f to be 1 on the northern
hemisphere, 0 on the southern hemisphere and 1/2 on the equator. This function is
neither linear nor even continuous.

1.2 Composite systems
Consider two quantum systems A and B described using Hilbert spaces HA, HB

respectively. A state of combined system AB is described using a tensor product:
HAB = HA ⊗HB. Let |ei〉, |fi〉 be a basis in HA, HB respectively. Then every state in
HAB can be written as

|ψ〉AB =
∑
ij

cij|ei〉 ⊗ |fj〉. (1.3)
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A pure state which can be written as a product:

|ψ〉AB = |φ〉A ⊗ |ξ〉B (1.4)

is called a product state, and represents an uncorrelated state of two subsystems. A
pure state which cannot be written as a product is called an entangled state.

1.2.1 Description of a subsystem

Consider a state |ψ〉 ∈ HA ⊗ HB, and let us assume that we have access only to
one subsystem e.g. A. In particular this implies that we cannot perform nor have any
information on results of measuring subsystem B.

Imagine that you perform a measurement {ΠA
i } on subsystem A, while somebody

else performs a measurement {ΠB
j } on subsystem B. Probability of combined result

(i, j) is given by:

pi,j = 〈ψ|ΠA
i ⊗ ΠB

j |ψ〉 = Tr(|ψ〉〈ψ|ΠA
i ⊗ ΠB

j ). (1.5)

Since you do not have access to subsystem B, what you effectively measure is the
marginal probability distribution:

pi =
∑

j

Tr(|ψ〉〈ψ|ΠA
i ⊗ ΠB

j ) = Tr(|ψ〉〈ψ|ΠA
i ⊗

∑
j

ΠB
j ). (1.6)

Making use of completeness property of a measurement
∑

j ΠB
j = 11B we get:

pi = Tr(|ψ〉〈ψ| ΠA
i ⊗ 11B). (1.7)

This can be equivalently written as:

pi = Tr(ρAΠA
i ), (1.8)

where ρA = TrB(|ψ〉〈ψ|) is called a reduced density matrix of the state |ψ〉〈ψ| to
subsystem A. The TrB notion means a partial trace over indices corresponding to B
subsystem.

In general, any operator XAB acting on Hilbert space HA ⊗HB, can be written in
a basis:

XAB =
∑

i,i′,j,j′
(XAB)i′,j′

i,j |ei′〉〈ei| ⊗ |fj′〉〈fj|. (1.9)

We define a partial trace over subsystem B as follows:

XA = TrB(XAB) ⇔ (XA)i′
i =

∑
j

(XAB)i′,j
i,j (1.10)

Partial trace over subsystem A is defined analogously.
As seen from Eq. (1.8) all information available for an observer restricted to per-

forming measurements on subsystem A, is described by the reduced density matrix
ρA.
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Notice that this is a a different way in which mixed states appear in quantum
mechanics. In Sec. 1.1.4 mixed states were introduced in order to describe the effect of
random preparation of different pure states. Here we state that mixed state description
naturally arises when we restrict ourselves to a part of a larger quantum system.

If the state of the composite system is itself mixed ρAB, the reduced density matrix
of subsystem A is calculated in the same way and reads: ρA = TrB(ρAB).

1.3 Interaction with the environment

1.3.1 Generalized measurement

Consider system + environment and let the initial state be ρSE = ρS ⊗ ρE, i.e. the
system is decoupled from the environment. Let ρSE evolve under a unitary evolution
(which in general will couple the system with the environment), after which a stan-
dard projection measurement is performed on the environment part (this is no loss of
generality, if we also insited on performing measurement on the system part, we can
equivalently perform a swapping operation between the system and part of environment
space before the measurement, and measure only the environment), and can be denoted
as {11S ⊗ ΠE

i }. The probability of obtaining the result i reads:

pi = Tr
(
UρS ⊗ ρEU † 11S ⊗ ΠE

i

)
= TrS(ρSMi) (1.11)

where
Mi = TrE(11S ⊗ ρE U † 11S ⊗ ΠE

i U). (1.12)

The set {Mi} describes a generalized measurement and is referred to as POVM (Pos-
itive Operator Valued Measure). Hence, every generalized measurement (i.e. the one
where we allow interaction with environment and perform standard measurement on
the environment) can be described by a set {Mi} of positive operators Mi ≥ 0, which
sum up to one

∑
i Mi = 11. Observe that they are not necessarily orthogonal nor have

to be projectors.
Conversely for every set {Mi} such that Mi ≥ 0,

∑
i Mi = 11, there exist ρE, U and

ΠE
i such that Eq. (1.12) is satisfied (A consequence of Steinspring’s dilation theorem).

Hence there is a one to one correspondence between generalized measurements and
POVMs.

Is it really more natural to postulate standard projection measurement then
POVM measurement? (Christopher Fuchs) Judge by yourself:

Standard measurement Generalized measurement
{Πi} {Mi}

Πi ≥ 0 Mi ≥ 0∑
i Πi = 11

∑
i Mi = 11

pi = Tr(ρΠi) pi = Tr(ρMi)
ΠiΠj = δi,jΠi −
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What about POVM version of Gleason’s theorem Consider a function f : M 7→
[0, 1] (non-contextuality), where M denote a set of positive operators 0 ≤ Mi ≤ 11.
Assuming that

∑
i f(Mi) = 1 whenever

∑
i Mi = 11 there exist ρ such that f(Mi) =

Tr(ρMi). No problem with dimH = 2 here and the proof is much simpler.

1.3.2 CP maps

A general evolution of a system + environment (initially decoupled, without loosing
generality we can assume the enivironment is initially in a pure state |0〉 ) will result
in an effective evolution of the system in the form

ρS′ = TrE(U ρS ⊗ |0〉〈0|U †) =
∑

i

〈ei|U ρS ⊗ |0〉〈0|U †|ei〉 =
∑

i

Kiρ
SK†

i (1.13)

where
Ki = 〈ei|U |0〉 (1.14)

Trace preservation condition implies that
∑

K†
i Ki = 11S.

Conversely any transformation of the form:

ρS′ =
∑

i

KiρSK†
i (1.15)

where
∑

K†
i Ki = 11 can be realized via extension + unitary + partial trace (Stinespring

theorem). Any map which can be written in the form (1.15) is a Completely Positive
map. A map E is called CP if it is positive and when extended to bigger system using
E ⊗ I remains positive. Moreover every CP map (not necessarily trace preserving, we
simply do not have condition

∑
K†

i Ki = 11) can be written in the form (1.15)

1.4 Linearity of quantum mechanics
Standard quantum mechanics is linear by which we usually mean that the evolution

of the wave function is linear (even unitary):

E(α|ψ1〉+ β|ψ2〉) = αE(|ψ1〉) + βE(|ψ2〉) (1.16)

it can be written as |ψ′〉 = A|ψ〉. We introduce the density matrix ρ = |ψi〉〈ψi|, its
evolution is obviously also linear: ρ′ = A|ψ〉〈ψ|A† = AρA†. But there is something
more in it!. We have also convex combinations of pure density matrices why there
should also be linearity. Because of probabilistic interpretation of density matrix.

Why the evolution of density matrix must be linear? Evolution of probability
distributions is linear by definition of probability! Consider a set of events {1, . . . , n}
- can represent for example position of a ball . Dynamics of the ball is described by a
conditional probability q(j|i) of given at the initial time the ball was at the position i
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it will finally end at position j. Now let pin(i) be the initial probability for the ball to
be found at position i. What is the output probability? It is simply the rule for the
total probability

pout(j) =
∑

i

q(j|i)pin(i). (1.17)

Or written concisely pout = E(pin), where E is obviously linear. Simply put: since sp1in+
(1− s)p2in (for 0 ≤ s ≤ 1) simply denotes a probability distribution which corresponds
to a situation in which with probability s we were given p1in and with probability (1−s)
we were given p2in the output probability distribution E(sp1in+(1−s)p2in) must be equal
to the probability distribution of a situation in which with probability s we obtained
E(p1in while with probability (1−s) we obtained E(p2in. Hence E must be linear. Even in
extremely non-linear, chaotic etc. classical systems evolution of probability distribution
is linear!

Isomorphic argument now can be adapted for the case of evolution of density ma-
trix. The only feature we need to remind is that density matrix is used in probability
assignment rule pi = Tr(ρMi) and that the density matrix ρ = sρ1 +(1− s)ρ2 describes
the situation in which we are given with probability s the state ρ1 and with probability
1− s we are given the state ρ2. Hence its evolution is linear.

So what about so called non linear quantum mechanics? Bear in mind the difference
between the wave function and the density matrix! In non linear quantum mechanics
one means the non linear evolution of the wave function and not the density matrix.
So what about the density matrix? It simply does not exist, or at least we cannot
introduce it in the same way and ascribe the same sense to it as in standard theory
i.e. as an operator over the Hilbert space and use it in the Born rule. For example
two decompositions of the identity matrix 11 = |0〉〈0|+ |1〉〈1| = |+〉〈+|+ |−〉〈−| could
in principle be distinguishable! So standard density matrix description would not be
sufficient.

If we want to describe the situation in which we have imperfect knowledge about the
system we simply have to say: with probability s we have a wave function |ψ1〉 and with
probability 1 − s we have |ψ2〉, and then track this two (or more) options during the
evolution, and that is all we can do . . . . If you really insist we can build a probability
“supervector”, where each entry corresponds to a probability that a system has a give
wave function (we need an infinite dimensional vector for this). Then the evolution of
such an object would indeed be linear, but most probably completely useless.

1.5 Multipartite systems and operations

1.5.1 Multipartite states

We describe an N partite system using a density matrix ρ1,...,N ∈ L(H1⊗· · ·⊗HN).
We call a state uncorrelated iff it has the form:

ρ1,...,N = ρ1 ⊗ · · · ⊗ ρN (1.18)
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We call a state separable (or classically correlated) iff

ρ1,...,N =
∑

j

pjρ
(j)
1 ⊗ · · · ⊗ ρ

(j)
N , pj ≥ 0 (1.19)

Otherwise the state is entangled.

1.5.2 Multipartite operations

If a CP map E can be written in the form:

E(ρ) =
∑
iN

111,...,N ⊗K
(iN )
N (. . . (

∑
i1

K
(i1)
1 ⊗ 112,...,NρK

†(i1)
1 ⊗ 112,...,N) . . . )111,...,N ⊗K

†(iN )
N

(1.20)

=
∑

i1,...,iN

K
(i1)
1 ⊗ · · · ⊗K

(iN )
N ρK

†(i1)
1 ⊗ · · · ⊗K

†(iN )
N (1.21)

where for every k ∈ {1, . . . , N} ∑
ik

K
†(ik)
k K

(ik)
k = 11k we call it a local operation. Which

means it can be realized by acting independently on each party without any quantum
interaction nor classical communication between the parties.

LOCC operations (local operation assisted with classical communication) have the
form:

E(ρ) =
∑
iN

111,...,N ⊗K
(iN )
N (. . . (

∑
i1

K
(i1,...,iN )
1 ⊗ 112,...,NρK

†(i1,...,iN )
1 ⊗ 112,...,N) . . . )111,...,N ⊗K

†(iN )
N

(1.22)

where for simplicity we have allowed only for one-way communication from N to N − 1
to N − 2 etc. This is reflected by dependence on more indices ik for parties with lower
index k. A crucial condition that this is really an LOCC deterministic operation is
that: for every k, for every ik+1, . . . , iN

∑
ik

K
†(ik,...iN )
k K

(ik,...iN )
k = 11k. Since index of a

Kraus operator can be interpreted as a measurement result, it means that when parties
communicate their measurement results to the party k it has to perform local trace
preserving (deterministic) CP map which can depend on the data transmitted by other
parties. An example would be the process of teleportation. Taking the input state:
ρin = |Ψ−〉12〈Ψ−| ⊗ |ψ〉3〈ψ| we have:

E(ρin) =
3∑

i=0

σ
(i)
1 ⊗K

(i)
23 ρσ

(i)†
1 ⊗K

(i)†
23 = 1112 ⊗ |ψ〉〈ψ| (1.23)

where K(0) = |Ψ−〉〈Ψ−|, K(1) = |Φ−〉〈Φ−|, K(2) = |Φ+〉〈Φ+|, K(3) = |Ψ+〉〈Ψ+|, while
σ(i) are Pauli matrices (σ(0) = 11).

If we allow communication in all directions we should now allow for a repetition
of this procedure from party 1 to N and so on. Structure of LOCC transformation is
extremely hard to characterize. That is why one introduces...
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Separable operations are operations that can be written in the form:

E(ρ) =
∑

i

K
(i)
1 ⊗ · · · ⊗K

(i)
N ρK

†(i)
1 ⊗ · · · ⊗K

†(i)
N , (1.24)

where
∑

i K
†(i)
1 K

(i)
1 ⊗· · ·⊗K

†(i)
N K

(i)
N . Of course every LOCC operation is also a separable

operation but not vice versa . Not every separable operation can be realized determin-
istically via LOCC. Note however that every separable operation can be realized via
LOCC probabilistically (i.e. when neglecting trace preservation condition at every step
of performing LOCC operation). Though separable operation have no physical signif-
icance they are often used in many proofs replacing LOCC operations since they are
easier to handle. And of course they give useful bound if something cannot be done
by separable operations then it cannot be done by LOCC. Or if we optimize something
using the separability condition on the optimized transformation (weaker then LOCC),
and afterwards find that the optimal solution is LOCC we have found the solution of
LOCC optimization problem

Remaining operations we call global operations since they require quantum interac-
tion between parties.

1.6 Choi-Jamiołkowski isomorphism
Choi-Jamiołkowski isomorphism establishes a one to one correspondence between

completely positive maps E : L(Hin) 7→ L(Hout) and positive operators PE ∈ L(Hout ⊗
Hin) as follows:

PE = E ⊗ I(|Ψ〉〈Ψ|), (1.25)

where |Ψ〉 =
∑

i |i〉 ⊗ |i〉 is an unnormalized maximally entangled state in Hin ⊗ Hin.
Trace preservation condition of E is equivalent to TroutPE = 11in The evolution can be
expressed using PE as follows:

E(ρ) = Trin(PE 11⊗ ρT ). (1.26)

The following notation will prove useful. Given a matrix A =
∑

ij Aij|i〉〈j|, we define
a vector |A〉〉 =

∑
Aij|i〉⊗ |j〉. Given a CP map in the Kraus form E =

∑
i KiρK†

i then
P=

∑
i |Ki〉〉〈〈Ki|.

As a result the positive operator corresponding to: a local map is proportional to
an uncorrelated state, a separable map is proportional to a separable state, a global
map is proportional to an entangled state.

This allows using all techniques know from investigating separability of states for
investigation of separability of maps, such as e.g. PPT criterion.
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Chapter 2

Elements of classical information

2.1 Shannon entropy – Data compression

2.1.1 Motivation

Imagine you want to transmit a message where each letter can be one of 4 symbols
a, b, c, d via a binary channel – encoding the message as a sequence 01111010 . . . . How
to encode the symbols to encode the message using the smallest number of bits?

If symbols a, b, c, d appear with equal frequency p(a) = p(b) = p(c) = p(d) = 1/4
you will probably assign two digit encodings to them:

symbols a b c d
probability 1/4 1/4 1/4 1/4
encoding 00 01 10 11

(2.1)

You need two bits per letter transmitted. Imagine now that in the message symbols
appear with not equal frequencies e.g. p(a) = 1/2, p(b) = 1/4, p(c) = 1/8, p(d) = 1/8.
What is the most economical way to encode the symbols? You may try this:

symbols a b c d
probability 1/2 1/4 1/8 1/8
encoding 0 10 110 111

(2.2)

On average you use 1/2 · 1 + 1/4 · 2 + 1/8 · 3 + 1/8 · 3 = 1.75bits per letter transmitted!.
The optimal transmission rate is quantified by Shannon entropy. Notice that these are
instantaneous codes, we know when a given codeword ends and can decode it without
a reference to future codewords.

2.1.2 Definition

Let X be a random variable, with possible outcomes x ∈ {0, 1, 2, . . . , }︸ ︷︷ ︸
X

. Let p(x) be

a probability of outcome x. Shannon entropy is defined as:

H(X) = −
∑
x∈X

p(x) log2 p(x). (2.3)
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Figure 2.1: The function h(p) = −p log2 p. It is visible it is concave

H(X) is given in bits. Notice that H(X) ≥ 0. H(X) should intuitively be understood
as a measure of randomness of random variable X. Alternatively one can regard it as
an amount of information one gets once learning the exact outcome of the variable.
Some simple examples if we consider only binary outcomes X = {0, 1}:

• p(0) = 1/2, p(1) = 1/2 – complete randomness: H(X) = 1

• p(0) = 0, p(1) = 1 – no randomness: H(X) = −0 log2 0 = 0

• p(0) = p, p(1) = 1− p, H(X) = −p log2 p− (1− p) log2(1− p)

Let us calculate Shannon entropy for examples presented in previous subsection. In the
case of equal frequencies we have H(X) = −4 · 1/4 log2 1/4 = 2, in the second example
we have

H(X) = −1/2 log2 1/2− 1/4 log 1/4− 2 · 1/8 log 1/8 = 1.75. (2.4)

Let us denote h(p) = −p log2 p. The function is plotted in Fig. ?? This function
is concave which means that for any weights wi ≥ 0, which sum up to one we have:∑

i wih(pi) ≤ h(
∑

i wipi). Since H(X) =
∑

xi∈X h(p(xi)), and the sum of concave
functions is concave we have:

1

X̄ H(X) =
1

X̄
∑
xi∈X

h(p(xi)) ≤ H
(

1

X̄
∑

i

p(xi)

)
≤ h(1/X̄ ), (2.5)

where X̄ denotes the number of elements in the set X . Hence we have H(X) ≤ log2 X̄ .
Given many variables X1, . . . , XN which joint probability distribution is p(x1, . . . , xN)

their entropy is defined:

H(X1, . . . , XN) =
∑

x1,...,xN

−p(x1, . . . , xN) log2 p(x1, . . . , xN). (2.6)
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Notice the inequality:

H(Xi) ≤ H(X1, . . . , XN) ≤
∑

i

H(Xi), (2.7)

which means that the entropy of the full system is larger then each of subsystems, and
that correlations decrease the entropy.

In particular given N independent realization of random variable X, we have:

H(XN) = NH(X). (2.8)

2.1.3 Relative entropy

For future use we introduce here the concept of relative entropy. The relative entropy
D(p ‖ q) of probability distribution p with respect to q is defined:

D(p ‖ q) =
∑

i

pi log2

pi

qi

(2.9)

It is a measure of distinguishability between two probability distributions. Notice,
however, that this is not a symmetric function and hence cannot be regarded as a
proper measure of a distance between probability distributions. The relative entropy is
always positive:

D(p ‖ q) = −
∑

i

pi log2

qi

pi

≤ log2

(∑
i

pi
qi

pi

)
= 0, (2.10)

where we have used concavity of − log2 t function.

2.1.4 Shannon source coding theorem

Given the random variable X with Shannon entropy H(X) the minimal average
length of a codeword L we need to use is bounded by:

H(X) ≤ L ≤ H(X) + 1 (2.11)

Lemma. Kraft inequality We first proof the Kraft inequality. Suppose we want to
have a code with codewords of length li. If the code is to be instantaneous we have
a constraint on the lengths of the codewords. Consider a tree, where at each node
a branch splits into two. . Let lmax be the maximum length of a codeword, which
corresponds to the number of levels in the tree. We have total 2max leaves and hence
this many different codewords. If a given codewords has length li which is shorter then
lmax, however, it automatically exclude 2lmax−li codewords from being used (all leaves
having steming from this branch). Since the total number of codewords is 2lmax we have
an inequality:

∑
i 2

lmax−li ≤ 2lmax , which leads to:
∑

i

2−li ≤ 1 (2.12)
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called Kraft inequality. A codeword of given lengths exist iff the Kraft inequality is
satisfied.

Proof. Given probabilities pi, we construct codewords of length:

log2
1

pi

≤ li ≤ log2
1

pi

+ 1. (2.13)

Note that the first inequality is equivalent to pi ≥ 2−li , and the Kraft inequality is
satisfied. The average codeword length reads:

H(X) ≤
∑

i

pili ≤ H(X) + 1. (2.14)

What remains to be proven is that one can do no better then H(X). Let us define
probability distribution qi = 2−li/

∑
i 2
−li . Positivity of relative entropy D(p ‖ q) leads

to:

−
∑

i

pi(log2 pi − log2 qi) = −
∑

i

pi(log2 pi − li − log2

∑
j

2−lj) ≥ 0 (2.15)

∑
i

pili ≥ H(X) +
∑

i

pi log2

(∑
j

2−lj

)
(2.16)

Thanks to the Kraft inequality the second term on the right hand side above is non-
negative. Finally we have ∑

i

pili ≥ H(X). (2.17)

Which ends the proof ¥. Actually this inequality holds also for non-instantaneous codes
the proof is a bit more complicated then.

Instead of single letter encoding consider block encoding when we use codewords
encoding N letter words. If LN denotes average codeword length for N -letter block
encoding, using Eqs (2.8,2.11) we have:

NH(X) ≤ LN ≤ NH(X) + 1 (2.18)

hence
H(X) ≤ LN

N
≤ H(X) +

1

N
. (2.19)

As a result asymptotically LN/N limN→∞ = H(X), so the rate of transmission given
by Shannon entropy can be saturated in the limit of large N .

2.1.5 Typical sequences

How intuitively understand that optimal data compression of N bits can be done
using NH(X) bits. Let X be binary random variable, taking value 0 with probability
q and 1 with probability 1 − q. Let us take a long sequence of N realizations of X.
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If sequence is long we will usually have sequence with approximately qN bits 0 and
(1− q)N bits 1. Probability of a given sequence is

p(x1, . . . , xN) = qqN(1− q)(1−q)N (2.20)

Hence:

log2 p(x1, . . . , xN) =−NH(X) (2.21)

p(x1, . . . , xN) =2−NH(X). (2.22)

Since these are approximately only sequences that happen , we have 2NH(X) typical
sequences. In compression when encoding large blocks in order to transmit 2N sequences
we need only use 2NH(X) codewords. This is an intuitive understanding of the result
from previous section.

2.2 Shannon mutual information – Communication
over noisy channel

Consider a channel which is noisy and can flip transmitted bits with some prob-
ability. Let X be input random variable and Y be a random variable describing the
output of the channel. Conditional probability p(yj|xi) describes the action of the chan-
nel. One would like to know how to protect transmitted information against errors and
what is maximal number of logical bits that can be transmitted per one physical bit sent
(channel capacity). We start by quantify correlations between two random variables X
and Y .

2.2.1 Conditional entropy

Let joint probability of X and Y be p(xi, yj). One quantifies the amount of ran-
domness of random variable Y provided one knows the value xi of random variable X
using conditional entropy:

H(Y |xi) = −
∑

j

p(yj|xi) log2 p(yj|xi) (2.23)

On average the conditional entropy reads:

H(Y |X) = −
∑
ij

p(xi)p(yj|xi) log2 p(yj|xi) = −
∑
ij

p(xi, yj) log2 p(yj|xi). (2.24)

This characterizes randomness of random variable Y provided variable X is known.
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2.2.2 Mutual Information

Let us introduce the measure of correlation between random variables X and Y
which will represent: How much do we learn about variable Y once we learn the value
of variable X:

I(X : Y ) = H(Y )−H(Y |X) (2.25)

and is called mutual information. It is symmetric in X, Y since:

I(X : Y ) = H(X) + H(Y )−H(X, Y ). (2.26)

It is zero iff X and Y are uncorrelated. Notice that if p(x, y) is the joint probability
distribution, and by px(x), py(y) we denote its marginal distributions we have:

I(X : Y ) = D(p(x, y) ‖ px(x)py(y)), (2.27)

which reflect the fact that mutual information measures in some sense the distance
between p(x, y) and uncorrelated probability distribution with the same marginals.

2.2.3 Channel capacity

Let us consider a channel, which action is described by p(yj|xi). Let the input
random variable be X. Let us transmit N bits via the channel using typical sequences.
Transmitting a sequence of N bits, there are on average 2H(Y |X) typical error sequences
(similar argument as in Sec. 2.1.5). . At the output we have 2NH(Y ) typical sequence.
For reliable transmission we can use at most 2NH(Y )/2NH(Y |X) = 2NI(X:Y ) different
inputs – we cannot use all typical sequences. Hence we can transmit at most I(X : Y )
logical bits per one physical bit transmitted. Moreover this rate can be achieved. .

Channel capacity is defined (Shannon noisy channel theorem):

C = max
p(x)

I(X : Y ). (2.28)

Where we maximize over input probability distribution. For binary symmetric channel
optimal choice for input probability distribution is p(0) = p(1) = 1/2.
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Chapter 3

Group theory in quantum information

The most important fact from the group theory for a physicist is decomposition of
tensor product of representation into direct product of irreducible ones:

V ⊗n =
⊕

i

V ⊕ki
i (3.1)

where Vi denote different irreducible representations and ki their multiplicities. In
quantum information most commonly V will be a defining representation of SU(2)
group, since we usually deal with qubits, occasionally SU(d).

3.1 Symmetric group
Symmetric group SN is the group of all permutations of N elements.
permutations, representations (Young diagrams etc...)
2.Representations of SU(2), [moze SU(d)] group, tensor representation decompo-

sition into irreducible representations, Schur Lemma a) wspomniec o decoherence free
subspaces, subsystems (Capacity of locally depolarizing N -qubit channesl) 3.Shur-Weyl
theorem

4. Haar measure
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Chapter 4

Covariant operations

4.1 Covariant maps and measurements

4.1.1 Covariant maps

Consider a quantum map E mapping density matrices on the Hilbert space H1 onto
density matrices acting on a Hilbert space H2. Let G be a group, whereas Ug, Vg its
unitary representations acting on H1 and H2 respectively. We say that E is covariant
with respect to representations Ug, Vg of the group G (or simply covariant with respect
to G, if it is clear from context what representations we have in mind) if for all g and
all ρ:

E(UgρU †
g ) = VgE(ρ)V †

g (4.1)

Example 1 (Qubit depolarization). Let dim(H1) = dim(H2) = 2, and let Vg and Ug

be the defining representations of SU(2). Consider the following map:

E(ρ) =
1 + 3η

4
ρ +

1− η

4

3∑
i=1

σiρσi (4.2)

which shrinks the Bloch vector of a qubit by η. This transformation can be rewritten in
the form:

E(ρ) = ηρ + (1− η)/211 (4.3)

which is clearly covariant, since:

E(UρU †) = ηUρU † + (1− η)/211 = UE(ρ)U †. (4.4)

4.1.2 Covariant measurements

Given a POVM measurement {Πg} acting on Hilbert space H, parameterized by
group elements g ∈ G, we say that it is covariant with respect to the representation Ug

of the group G (or simply with respect to the group G) iff, an operator Π0 exists that
for every g we have:

Πg = UgΠ0U
†
g . (4.5)
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Notice that completeness property of POVM imposes a constraint:
∫

dgΠg =

∫
dgUgΠ0U

†
g = 11. (4.6)

Example 2 (Single qubit covariant measurement). POVM measurement of a qubit
defined as:

Πg = 2Ug|0〉〈0|U †
g (4.7)

where Ug is the defining representation of SU(2) is obviously covariant. In order to
check the completeness property notice that the integral over normalized Haar measure:

A = 2

∫
dgUg|0〉〈0|U †

g (4.8)

commutes with Uh for all h ∈ SU(2). Because the Ug representation is irreducible, it
implies by the Schur Lemma that A ∝ 11. Moreover:

Tr(A) =

∫
dgTr(Ug2|0〉〈0|U †

g ) = 2

∫
dg = 2. (4.9)

Therefore A = 11 which proves Πg is indeed the POVM.

4.2 Covariant optimization problems
Covariant operations and measurements are useful, since in many problems where

the figure of merit enjoys certain group symmetry the optimal maps or measurements
can always be found in the subset of covariant operations. This usually simplifies the
problem dramatically and allows for analytical solutions.

4.2.1 Covariant map problems

Let E be a quantum map. Let ρg be input states parameterized by group elements
g ∈ G using some unitary representation Ug: ρg = Ugρ0U

†
g . Let σg = Vgσ0V

†
g be the

state we ideally would like to obtain if we are given ρg, where Vg is again some unitary
representation of G. Moreover we assume that the input state ρg is unknown and the
a priori probability distribution of g is uniform with respect to the Haar measure on
G. Last, we need to define figure of merit F [E(ρg), σg] which measures how close is the
actual to the expected ideal output state (fidelity). The optimal solution for E is the
one that maximizes the average fidelity:

F̄ =

∫
dgF [E(ρg), σg] (4.10)

The last condition we impose is that the figure of merit is invariant under joint action
of Vh representation: F [VhE(ρg)V

†
h , VhσgV

†
h ] = F [E(ρg), σg].

In the above setting we may prove the following:
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Theorem 1. The optimal operation can always be found as a covariant one.

Proof. Let E be the optimal operation yielding average fidelity F̄ Let us define a new
operation Ec by:

Ec(ρg) =

∫
dhV †

h E(UhρgU
†
h)Vh. (4.11)

This operation yields the average fidelity:

F̄c =

∫
dgdh F [V †

h E(UhρgU
†
h)Vh, σg] =

∫
dgdh F [E(UhρgU

†
h), VhσgV

†
h ] =

=

∫
dgdh F [E(ρhg), σhg] (4.12)

Introducing new variable h′ = hg and making use of of invariance of the Haar measure
we get:

F̄c =

∫
dgdh′ F [E(ρh′), σh′ ] = F̄ . (4.13)

Therefore operation Ec is also optimal. What remains to be shown is its covariance
property:

Ec(Ug′ρgU
†
g′) =

∫
dhV †

h E(UhUg′ρgU
†
g′U

†
h)Vh =

∫
dhV †

h E(Uhg′ρgU
†
hg′)Vh (4.14)

Introducing new variable h′ = hg′ we get:
∫

dh′V †
h′g′−1E(Uh′ρgU

†
h′)Vh′g′−1 = Vg′

∫
dh′V †

h′E(Uh′ρgU
†
h′)Vh′ V †

g′ = Vg′Ec(ρg)V
†
g′ (4.15)

4.2.2 Covariant estimation problems

1. covariant operations (moze juz tu...) 2. Jamiolkowski isomorphism, Covariance
condition on Jamiolkowski isomorphism 3. Examples: 1->1 qubit covariant operations,
1->2 qubits covariant operations (moze ale raczej nie)
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Chapter 5

Quantum state estimation -
Quantum->Classical channel

5.1 State discrimination - two states
Imagine you are given one of two states |ψ1〉, |ψ2〉. Your goal is to perform a

measurement in order to determine which state we received.
The task is simple provided states are orthogonal 〈ψ1|ψ2〉 = 0. One simply performs

projective measurement in {|ψ1〉, |ψ2〉} basis. Distinguishability is perfect. Let us now
take nonorthogonal, nonidentical states 0 < |〈ψ1|ψ2〉| < 1. Assume for simplicity that
both states are equiprobable.

5.1.1 Minimizing probability of error

We want to minimize probability of error i discrimination. Let p(j|i) be the proba-
bility that we guess the state j when the actual state is i. We need to find the optimal
measurement that will minimize the error. Since this is a two outcome measurement
we model our measurement with two POVM: M1, M2, (

∑
i Mi = 11). Probability dis-

tribution is given by p(j|i) = Tr (Mj|ψi〉〈ψi|) = 〈ψi|Mj|ψi〉. Error we want to minimize
is given by

E =
1

2
〈ψ1|M2|ψ1〉+

1

2
〈ψ2|M1|ψ2〉. (5.1)

We want to minimize E over {Mi}. Substituting M2 = 11−M1 we have:

E =
1

2
+

1

2
Tr [M1(|ψ2〉〈ψ2| − |ψ1〉〈ψ1|)] . (5.2)

Without loosing generality we may take:

|ψ1〉 = sin
θ

2
|0〉+ cos

θ

2
|1〉 =

(
sin θ

2

cos θ
2

)
(5.3)

|ψ2〉 = − sin
θ

2
|0〉+ cos

θ

2
|1〉 =

( − sin θ
2

cos θ
2

)
. (5.4)
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Introducing

W = |ψ2〉〈ψ2| − |ψ1〉〈ψ1| =
(

0 1
1 0

)
= |+〉〈+| − |−〉〈−|, (5.5)

where |+〉 = (|0〉 + |1〉)/√2, |−〉 = (|0〉 − |1〉)/√2. We see that the problem amounts
to finding M1 such that TrWM1 is maximal. Keeping constraints M1 ≥ 0, and M2 ≥ 0
(which means M1 ≤ 1 - has to have all eigenvalues no bigger than 1). Notice that
TrWM1 ∈ [−1, 1] since for every |ψ〉 we have TrMi|ψ〉〈ψ| ∈ [0, 1]. Hence the optimal
choice is to take: M1 = |+〉〈+| since it gives TrWM1 = 1. The optimal POVMs and
minimal discrimination error thus read:

E =
1

2
(1 + |〈ψ2|+〉|2 − |〈ψ1|+〉|2) =

1

2
(1− sin θ) (5.6)

Notice that the optimal measurement is an von Neumann projection measurement (this
is also true for discrimination of N linearly independent states). Only for θ = π/2 we
have E = 0, hence perfect discrimination is possible only when states are orthogonal.
This has profound consequences and leads to Quantum Cryptography. Replacing sin θ
with a function of scalar product between two states we get:

E =
1

2

(
1−

√
1− |〈ψ1|ψ2〉|2

)
. (5.7)

This formula can be used easily for arbitrary states.

Many copies Imagine that as above you are given with probability 1/2 either |ψ1〉,
or |ψ2〉, but this time not a single copy but N copies. So in fact you are given either
|ψ1〉⊗N , or |ψ2〉⊗N . Using Eq. 5.7 we get:

EN =
1

2

(
1−

√
1− |〈ψ1|ψ2〉|2N

)
. (5.8)

Notice that if 〈ψ1|ψ2〉 < 1, EN+1 < EN so more copies we have the better is distin-
guishability. I particular

lim
N→∞

EN = 0, (5.9)

which means one can distinguish quantum states perfectly once one has an arbitrary
large number of copies.

5.1.2 Unambiguous discrimination

We again face the problem of discriminating between |ψ1〉, |ψ2〉, but this time we
only tell which state we received when we are sure. Otherwise we say we do not know.
The goal is to find a measurement strategy that will minimize the probability of cases
when we do not know.

The measurement will be described by three POVMs (it is clear that von Neuman
measurement cannot descirbe this): M1, M2, M?, corresponding to the result that leads
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us to guess correctly that the state was |ψ1〉, result that leads us to guess correctly that
the state was |ψ2〉, and the result when we say we do not know.

Unambiguity conditions read:

〈ψ2|M1|ψ2〉 = 0 〈ψ1|M2|ψ1〉 = 0, (5.10)

since M1 ≥ 0, M2 ≥ 0, this leads to M1 = ξ1|ψ⊥2 〉〈ψ⊥2 |, M2 = ξ2|ψ⊥1 〉〈ψ⊥1 |. Symmetry
between |ψ1〉, |ψ2〉 allows us to take ξ1 = ξ2 =: ξ. Positivity of Mi requires ξ ≥ 0.
However, we have additional constraint, namely M? = 11 − M1 − M2 ≥ 0. Using
parametrization of states given in Eq. 5.3 this condition can be written as:

M? = 11− ξ(|ψ⊥2 〉〈ψ⊥2 |+ ξ|ψ⊥1 〉〈ψ⊥1 |) =

(
1− ξ(1 + cos θ) 0

0 1− ξ(1− cos θ)

)
(5.11)

This means that ξ is limited by ξ ≤ 1/(1+cos θ). Taking ξ = 1/(1+cos θ) we find that
the optimal probability of successful discrimination reads:

1− 1

2
Tr [M?(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|)] = 1− |〈ψ1|ψ2〉|. (5.12)

5.1.3 Mutual information in ambiguous and unambiguous dis-
crimination

What is better strategy ambiguous or unambiguous strategy if one aims at optimiz-
ing mutual information between classical values X = 0, 1 encoded in states |ψ1〉, |ψ2〉
and values Y obtained in the measurement.

For optimal ambiguous discrimination we have random variables X = {0, 1}, Y =
{0, 1}:

p(1|1) = p(0|0) = pa (5.13)
p(1|0) = p(0|1) = 1− pa, where (5.14)

pa =
1

2

(
1 +

√
1− |〈ψ1|ψ2〉|2

)
=

1

2
(1 + sin θ) (5.15)

Thus mutual information Ia(X : Y ) reads:

Ia(X : Y ) = 1 + pa log2 pa + (1− pa) log2(1− pa) (5.16)

In unambiguous discrimination we have X = {0, 1}, Y = {0, 1, ?}
p(1|1) = p(0|0) = pu (5.17)
p(?|0) = p(?|1) = 1− pu where (5.18)

pu = 1− |〈ψ1|ψ2〉| = 1−
√
| cos θ| (5.19)

And the mutual information reads:

Iu(X : Y ) = pu (5.20)

Fig. 5.1 presents mutual information in both ambiguous and unambiguous discrimina-
tion.
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Figure 5.1: Comparison of mutual information obtained in the optimal ambiguous Ia

and unambiguous Iu discrimination of two states
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Chapter 6

Quantum cloning -
Quantum->Quantum channel

6.1 No-cloning theorems
Classical information in its digital form can be copied perfectly. Can you copy a

unknown quantum state that is given to you. First of all you may grow suspicious since
you have learned before that one can not discriminate nonorthogonal quantum states
perfectly and hence one can not just measure and then reprepare more copies of the
state, as this will induce unavoidable errors. But can you just copy an unknown state
without measuring it? The answer is again no!

The general framework for cloning is the following. Consider the Hilbert space
H = H1⊗H2⊗HX , whereH1 is the space supporting the state of a system to be copied,
H2 supports the states of the system which is our “blank page”, and HX supports all
other degrees of freedom including the copying machine and the rest of the universe.
We say that the operation U (according to quantum theory should be unitary) performs
cloning of a state |ψ〉 iff:

U |ψ〉 ⊗ |0〉 ⊗ |X0〉 = |ψ〉 ⊗ |ψ〉 ⊗ |Xψ〉. (6.1)

In other words should produce a state |ψ〉 in both systems 1 and 2 while the remaining
degrees of freedom can change depending on the cloned state. Notice that the output
state is a product state – there is no entanglement between subsystems. It has to be
so, otherwise clones when inspected independently would be in mixed states.

6.1.1 Linearity → No-cloning of linearly dependent states

Theorem. If there is a quantum machine that can copy two quantum states |ψ1〉,
|ψ2〉 perfectly, then it cannot copy the state which is their linear superposition |φ〉 =
a|ψ1〉+ b|ψ2〉.
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Proof. If an operation U clones two states |ψ1〉, |ψ2〉 we have:

U |ψ1〉 ⊗ |0〉 ⊗ |X0〉 = |ψ1〉 ⊗ |ψ1〉 ⊗ |Xψ1〉 (6.2)
U |ψ2〉 ⊗ |0〉 ⊗ |X0〉 = |ψ2〉 ⊗ |ψ2〉 ⊗ |Xψ2〉. (6.3)

Thanks to linearity of Quantum Mechanics:

U |φ〉 ⊗ |0〉 ⊗ |X0〉 = aU |ψ1〉 ⊗ |0〉 ⊗ |X0〉+ bU |ψ2〉 ⊗ |0〉 ⊗ |X0〉 =

a|ψ1〉 ⊗ |ψ1〉 ⊗ |Xψ1〉+ |ψ2〉 ⊗ |ψ2〉 ⊗ |Xψ2〉 (6.4)

whereas for cloning of |φ〉 we would like to have at the output:

|φ〉 ⊗ |φ〉 ⊗ |Xφ〉 = (a|ψ1〉+ b|ψ2〉)⊗ (a|ψ1〉+ b|ψ2〉)⊗ |Xφ〉 (6.5)

Clearly cloning of |φ〉 is impossible.
The above proof only made use of linearity of transformation and not unitarity. In

particular the above proof does not forbids cloning of two nonorthogonal states. But
this will come... Nevertheless the proof basing on linearity is useful since it also forbids
probabilistic cloning of linearly dependent states – probabilistic transformation need
not be unitary bur are always linear.

6.1.2 Unitarity → No-cloning of non-orthogonal states

Theorem There is no deterministic cloning transformation (unitary) performing
cloning for two nonorthogonal state

Proof. Let |ψ1〉, |ψ2〉 be two different nonorthogonal states: 0 < |〈ψ1|ψ2〉| < 1.
Assume the cloning is possible:

U |ψ1〉 ⊗ |0〉 ⊗ |X0〉 = |ψ1〉 ⊗ |ψ1〉 ⊗ |Xψ1〉 (6.6)
U |ψ2〉 ⊗ |0〉 ⊗ |X0〉 = |ψ2〉 ⊗ |ψ2〉 ⊗ |Xψ2〉. (6.7)

Thanks to unitarity scalar product of input states should be equal to scalar product of
output states:

〈ψ1|ψ2〉〈0|0〉〈X0|X0〉 = 〈ψ1|ψ2〉〈ψ1|ψ2〉〈Xψ1|Xψ2〉 (6.8)

this leads to:
〈ψ1|ψ2〉(1− 〈ψ1|ψ2〉〈Xψ1|Xψ2〉) = 0 (6.9)

which is only possible for 〈ψ1|ψ2〉 = 0 or 〈ψ1|ψ2〉 = 0, hence we arrive at contradiction
and conclude that cloning of nonorthogonal states is impossible.

6.2 Optimal cloning
Since the perfect cloning is impossible except for very limited cases, we would like

to investigate what is the best quality of copies that can be obtained. Let us consider a
general problem of producing M imperfect copies out of N perfect originals |ψ〉⊗N . Let
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us consider unitary transformation U acting on the Hilbert space H⊗M ⊗ HX , where
HX represents the space of the cloning machine:

U : |ψ〉⊗N ⊗ |0〉⊗(M−N) ⊗ |X〉 7→ |Ψ〉M,X . (6.10)

The output |Ψ〉M,X is in general an entangled states of all M copies and the cloning
machine. Tracing out the space X we obtain the state of M copies:

ρM = TrX(|Ψ〉〈Ψ|) (6.11)

It should be remembered that this state typically will contain correlations between
copies. Comparing the obtained state with the perfect M copies state |ψ〉⊗ can be done
using global fidelity figure of merit:

FG = 〈ψ|⊗MρM |ψ〉⊗M . (6.12)

If instead we are only interested in single copy fidelity, we can calculate single copy
fidelity for the i-th copy:

Fi = 〈ψ|ρi|ψ〉, (6.13)

where
ρi = Tr1,...,i−1,i+1,...,M(ρM) (6.14)

is obtained after tracing out all the copies instead of the i-th one. Provided all Fi are
equal we call the cloning symmetric, otherwise we call it asymmetric.

6.2.1 Optimal 1 → 2 qubit asymmetric cloning cloning

We present below an intuitive construction of optimal 1 → 2 universal asymmetric
cloning, without the proof for its optimality. Consider the following unitary operation
acting on three qubits, denoted A, B, and X:

V : |i〉A ⊗ |j〉B ⊗ |k〉X 7→ |i⊕ j ⊕ k〉A ⊗ |i⊕ j〉B ⊗ |i⊕ k〉X (6.15)

Notice the following properties of operation V . If the system A is prepared in an
unknown state |ψ〉A, while subsystems BX are prepared in |Φ+〉 = (|00〉 + |11〉)/√2)
we get:

V : |ψ〉A ⊗ |Φ+〉BX 7→ |ψ〉A ⊗ |Φ+〉BX , (6.16)

and hence the state |ψ〉A remains where it was. On the other hand if at the input we
take subsystems BX in the state |0〉B ⊗ 1√

2
(|0〉+ |1〉)X the transformation read:

V : |ψ〉A ⊗ |Φ+〉BX 7→ |ψ〉B ⊗ |Φ+〉AX , (6.17)

and as a result the state is “teleported” to subsystem B.
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Since we want to have imperfect copies in both A and B subsystems it is natural to
consider the transformation where initially we prepare systems BX in a superposition
of |Φ+〉BX and |0〉B ⊗ 1√

2
(|0〉+ |1〉)X . The transformation then reads:

V : |ψ〉A⊗
(

a|Φ+〉BX + b|0〉B ⊗ 1√
2
(|0〉+ |1〉)X

)
7→ a|ψ〉A⊗|Φ+〉BX + b|ψ〉B⊗|Φ+〉AX .

(6.18)
Calculating the output single copy reduced density matrices we get:

ρA =

[
(a + b)2

2
+

a2

2

]
|ψ〉〈ψ|+ b2

2
|ψ⊥〉〈ψ⊥| (6.19)

ρB =

[
(a + b)2

2
+

b2

2

]
|ψ〉〈ψ|+ a2

2
|ψ⊥〉〈ψ⊥| (6.20)

where |ψ⊥〉 is the orthogonal state to |ψ〉. The corresponding fidelities read:

FA = 1− b2

2
(6.21)

FB = 1− a2

2
(6.22)

The symmetric cloning corresponds to the choice a = b, which together with normaliza-
tion constraint implies a = b = 1/

√
3 and leads to the optimal cloning fidelity F = 5/6.
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Chapter 7

Entangled states and no-signaling

7.1 Entangled states
Consider a bipartite system with Hilbert space HA ⊗ HB. Let |i〉A, |j〉B be some

basis in HA and HB respectively. The most general pure state of the system can be
written as:

|ψ〉 =
∑
ij

cij|i〉A ⊗ |j〉B. (7.1)

States which can be written as |ψ〉 = |ψA〉⊗|ψB〉 are called product states, and describe
a situation in which there is no correlation between subsystems. All other pure states
are called entangled.

Imagine a local measurements are performed by both parties described by a two set
of POVM: ΠA

i ,
∑

i Π
A
i = 11A, ΠB

j ,
∑

j ΠB
j = 11B, This two local measurements together

constitute a measurement on the whole system
∑

ij ΠA
i ⊗ ΠB

j = 11. Joined probability
distribution of obtained results reads:

p(i, j) = Tr(|ψ〉〈ψ| ΠA
i ⊗ ΠB

j ). (7.2)

If the state is product, it is clear that p(i, j) = pA(i)pB(j), and hence there are no cor-
relations between subsystems for any measurement. For entangled states there always
exist local measurements for which probability distribution is correlated.

Example: polarization measurement on the singlet state. Consider two pho-
tons in the singlet state:

|Ψ−〉 =
1√
2
(| ↔〉 ⊗ | l〉 − | l〉 ⊗ | ↔〉). (7.3)

Let two parties perform local von Neumann projection measurements in | ↔〉, | l〉 basis.
Joint probability of measurement results reads:

p|Ψ−〉( , ) ↔ l
↔ 0 1/2
l 1/2 0

(7.4)
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Clearly this is a correlated state.
From this example one could think that entanglement is nothing more that correla-

tions known from the classical world i.e. photons were prepared with probability 1/2 in
| ↔〉 ⊗ | ↔〉 and with probability 1/2 in | l〉 ⊗ | l〉, and the measurement only reveals
which of this alternatives were realized. In this case we would describe the state using
density matrix:

ρ =
1

2
| ↔〉〈↔ | ⊗ | l〉〈l |+ 1

2
| l〉〈l | ⊗ | ↔〉〈↔ | (7.5)

This state will give us the same probability distribution when local measurement in
| ↔〉, | l〉 basis are performed pρ(i, j) = Tr(ρ ΠA

i ⊗ ΠB
i ).

Consider now, however, local polarization measurement in |↗↙〉 = 1/
√

2(| ↔〉 + | l
〉), |↖↘〉 = 1/

√
2(| ↔〉 − | l〉) basis. Probability distributions for |Ψ−〉 and ρ state

respectively reads:

p|Ψ−〉( , ) ↗↙ ↖↘
↗↙ 0 1/2
↖↘ 1/2 0

pρ( , ) ↗↙ ↖↘
↗↙ 1/4 1/4
↖↘ 1/4 1/4

(7.6)

Clearly probability distribution differ and hence we cannot think of |Ψ−〉 as photons
being prepared with probability 1/2 in | ↔〉 ⊗ | ↔〉 and with probability 1/2 in | l
〉 ⊗ | l〉. Notice also the interesting property of the singlet state |Ψ−〉, that probability
distribution in case of |↗↙〉, |↖↘〉 is the same as for | ↔〉, | l〉 measurement. This is
a general property of |Ψ−〉, namely the state does not change under identical unitary
operations on two subsystems i.e. U ⊗ U |Ψ−〉 = |Ψ−〉 and hence will give the same
probabilities for outcomes of measurement in all basis provided they are identical for
both parties.

This can not be mimic by a separable state and moreover it can not be mimic by
any local, realistic theory due to violation of Bell inequalities by Quantum mechanics.

Correlations in Quantum theory are present also in the case of full knowl-
edge about the system – entanglement, and measurements on such systems
cannot be treated as merely revealing previously encoded values.

7.2 No signaling
Presence of entangled states in quantum theory prompted some ideas of superlumi-

nal communication. Consider again the singlet state:

|Ψ−〉 =
1√
2
(| ↔〉 ⊗ | l〉 − | l〉 ⊗ | ↔〉). (7.7)

and imagine A performs the measurement in | ↔〉, | l〉 basis. If A gets the result↔ the
state is projected to | ↔〉⊗| l〉 if A gets the result l the state is projected to | l〉⊗| ↔〉.
So clearly the measurement of A changes the state of B. Moreover, the change is
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instantaneous. So does it allow for super-luminal communication? If A could influence
which measurement result will occur he could clearly send information, but results are
probabilistic and he does not have power to choose which result should happen. But A
could attempt the following strategy: I will consider two set of measurements ΠA

i , Π′A
i ,

when I want to send 0 I will choose the measurement ΠA
i , when I want to send 1 I will

perform the measurement Π′A
i , since different measurements sets project on different

states B may have chance to recognize which measurement I have performed.
Specifically, when wanting to transmit 0, A performs measurement in | ↔〉, | l〉

basis, if and in order to transmit 1, A performs measurement in |↖↘〉, |↗↙〉 basis. We get
the following communication channel:

A sends 0, B gets | ↔〉 or | l〉 with probabilities 1/2 (7.8)
A sends 1, B gets |↖↘〉 or |↗↙〉 with probabilities 1/2 (7.9)

(7.10)

Can B distinguish these two cases? It would be enough if B could distinguish them
with probability higher then 1/2 (pure guessing), it would allow super-luminal commu-
nication. Unfortunately (or fortunately) he cannot.

7.2.1 No signaling theorem

B measurement probabilities are independent of whether A chose to perform ΠA
i or

Π′A
i measurement. Let ρ be a general state of the whole system. Joint probability of

outcomes of local measurements reads:

p(i, j) = Tr(ρΠA
i ⊗ ΠB

i ). (7.11)

Probability distribution of results of B read:

pB(j) =
∑

i

Tr(ρΠA
i ⊗ ΠB

i ) = Tr(ρ(
∑

i

ΠA
i )⊗ ΠB

i ) = Tr(ρ 11A ⊗ ΠB
i ). (7.12)

So clearly B probabilities does not depend on the measurement of A.

7.2.2 Reduced density matrix

Since B probabilities does not depend on what is happening in A subsystem, one
can introduce an object that will represent the state of B when the state of A is ignored.
Looking at Eq. (7.12) one can rewrite it as follows:

pB(j) = Tr(ρ 11A ⊗ ΠB
i ) = Tr(ρB ΠB

i ), (7.13)

where ρB = TrA(ρ) is a partial trace of ρ over subsystem A. ρB is called the reduced
density matrix for subsystem B. It carries all information necessary to predict proba-
bilities of local measurements of B.
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7.2.3 If discrimination of nonorthogonal states or cloning was
possible super-luminal signaling would be possible

Notice that what prevents super-luminal communication is the impossibility for B
to distinguish between two situations: (i): | ↔〉, | l〉 with probabilities 1/2, (ii) |↖↘〉,
|↗↙〉 with probabilities 1/2. If, however, distiguishability of these 4 state was possible
B would know which state he received and hence know what bit A wanted to send.
Similarly if perfect cloning was possible B could first produce arbitrary large number
of clones for each of these state and hence make them distinguishable.

7.3 Teleportation
We have learned in previous chapters that if given a single copy of an unknown state

it is impossible to determine it precisely. We can neither clone nor measure it in a way
that will allow us to learn what state we were given.

The problem of teleportation is the following. Consider two parties A and B that a
share an entangled two qubit state. Additionally one of the parties A has an unknown
qubit state |φ〉 = a|0〉+b|1〉 which she intends to send to B. She does not want to send it
physically however, but rather use an entangled state they share and possibly classical
communication channel in order to make the state |φ〉 to “emerge” in B laboratory.
Amazingly this is indeed possible, and even though A does not know what state she
teleports, the state “reaches” B without any disturbance (in theory of course).

Let A and B share an entangled state |Ψ+〉 = 1/
√

2(|01〉+ |10〉). Together with the
qubit to be teleported the full state reads:

|φ〉 ⊗ |Ψ+〉 = (a|0〉+ b|1〉)⊗ 1√
2
(|01〉+ |10〉). (7.14)

Notice, however, that the above state can be equivalently written as:

1

2
√

2
[(|01〉+ |10〉)⊗ (a|0〉+ b|1〉) + (|01〉 − |10〉)⊗ (a|0〉 − b|1〉)+

(|00〉+ |11〉)⊗ (a|1〉+ b|0〉) + (|00〉 − |11〉)⊗ (a|1〉 − b|0〉)] (7.15)

Hence if A performs a joint measurement on her two qubits in basis |Ψ+〉, |Ψ−〉, |Φ+〉,
|Φ−〉, (Bell measurement), with probability 1/4, it will project B qubit on one of four
states:

a|0〉+ b|1〉, a|0〉 − b|1〉, a|1〉+ b|0〉, a|1〉 − b|0〉. (7.16)

If no further information is transmitted from A to B, then the qubit of B is effectively
in a completely mixed state (as it should be, since it was before A performed the
measurement and no super-luminal communication is possible). If, however, A informs
B, which measurement result she has obtained (which she can do via a classical channel),
then depending on the result obtained: |Ψ+〉, |Ψ−〉, |Φ+〉 or |Φ−〉, B applies to his qubit
a respetive unitary operation: 11, σz, σx or σy. As a result B always ends with his qubit
in |φ〉 state.
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In a concise form we can write the teleportation as a 3 qubit to 3 qubit channel:

3∑
i=0

|Ψi〉〈Ψi| ⊗ σi

(|φ〉〈φ| ⊗ |Ψ+〉〈Ψ+|) |Ψi〉〈Ψi| ⊗ σ†i =
1

4
11⊗ |φ〉〈φ|. (7.17)

where |Ψi〉 denote 4 Bell states, σi Pauli matrices, where σ0 = 11.

33



Chapter 8

Quantum eavesdropping -
Quantum->Quantum->Classical
channel

8.1 Cryptography
The science of cryptography is about transmitting a messages in the way that no

illegitimate party can learn its meaning. One of the earliest cryptographic method was
Ceasar cipher in which a letter in a message was replaced by a letter k places further in
the alphabet. If we took k = 3 then CEASAR would be encoded as FADVDU. Such a
code can be broken easily once one knows that the message was encoded using Ceasar
cipher. One simply has to check all possible values of k, which is the number of letters
in the alphabet – 26, which is not a great amount of work.

The general scheme in cryptography can be depicted as follows:

message -

?

key

µ´
¶³

encoding

- cipher -

?

key

µ´
¶³

decoding

- message

In case of the Ceasar cipher the message is CEASAR, the cipher is FADVDU and the
key is k = 3.

A more general cipher is the substitution cipher, where each letter in mapped onto
another letter. The Ceasar cipher is an example of substitution cipher. In a general
substitution cipher we have 26! possibilities. Hence, such a cipher can not be broken
by checking all possible letter substitutions, and thus is more secure than the Ceasar
cipher. Nevertheless, it can be broken by letter frequency analysis, since each language
has its particular letter frequency pattern, and one can quickly find out which letter
was substituted to which one by investigating frequencies in which they appear.

Actually almost all used ciphers can theoretically be broken, and they strength
stems from the practical difficulties of doing so. Nevertheless, if one really want to
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use a cipher which is proven to be secure then there is such a cipher: the one time
pad. Write your message in the binary form, take the key which is the a completely
random sequence of 0 and 1 of the same length as the message and perform bitwise
XOR operations to obtain the cipher

message 0 1 1 0 1 1 0
key 0 0 0 1 0 1 1

cipher = message⊕ key 0 1 1 1 1 0 1

Notice that since the key is completely random so is the message. More formally let K
be the random variable associated with the key. Let the key have length n. Complete
randomness means that all binary sequences are equally probable: p(K) = 1/2n. The
cipher is obtained as C = M ⊕ K, where M is the message. What means perfect
security? It means that the cipher carries no information about the message for someone
who does not know the key. This corresponds to the statement that mutual information
between M and C is zero: I(M : C) = 0.

Proof security of one time pad. Let p(M) be probability distribution of messages
transmitted. The conditional probability p(C|M) that a cipher C is obtained from
message M reads:

p(C|M) =
∑
K

p(K)δC,M⊕K = 1/2n. (8.1)

Hence obviously we have p(C) = 1/2n. This means the cipher is completely random.
The mutual information I(M : C) reads:

I(M : C) = H(C)−H(C|M) = n−
∑
C,M

p(C|M)p(M) log2 p(C|M) = 0. (8.2)

Hence the one time pad is secure.
The one time pad has one drawback which makes it impractical for real life commu-

nication: it must be the same length as the transmitted message, otherwise the mutual
information I(M : C) is not zero and the cipher could in principle be broken. The main
obstacle is thus the effective distribution of the random key to legitimate parties. One
of the most promising techniques for doing this is quantum key distribution (QKD).

8.2 Quantum key distribution
We have observed in previous chapters that nonorthogonal quantum states cannot

be distinguished nor cloned perfectly. This inaccessibility of quantum states which
seems only a nuisance at a first glance proves to be the key to secure information
transmission.

8.2.1 BB84 protocol

Let us describe here the most famous protocol proposed by Bennet and Brassard in
1984 (BB84). Consider two parties A, B, which are connected by a quantum channel
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allowing for transmission od qubits (e.g. an optical fiber in through which single photons
are sent), and a classical channel (e.g. telephone). We assume that noth channels are
insecure and can be subjected to eavesdropping. We only assume that classical channel
is authenticated i.e. A and B know that they talk to each other and their classical
messages although potentially tapped cannot be altered.

A and B will use photon polarization for qubits transmitted via the quantum chan-
nel. A will send to B one of four states: | ↔〉, | l〉, |↗↙〉, |↖↘〉 randomly with equal
probabilities. We will say that the first two states form basis 1, and the last two basis
2. A and B assign logical values to this states as follows:

basis 1 basis 2
| ↔〉 | l〉 |↗↙〉 |↖↘〉

0 1 0 1
(8.3)

B measures the polarization state of an incoming photon randomly in one of two basis.
If he measures in the correct basis his results should be perfectly correlated with bits
sent, whereas when he measures in the incorrect basis his results will be completely
uncorrelated with that of A. After the transmission took place B communicates to A
via the classical channel in which basis he performed the measurement in a given run.
He does not reveal, however, the actual results obtained. After this communication A
i B keep only bits measured in compatible basis (approximately half). We call this a
sifting stage. In ideal situation A and B should have perfectly correlated bits.

A ↔ ↗↙ ↗↙ ↖↘ l l ↔ ↗↙
B + × + + + × × ×

compatible? X X X X
key 0 0 1 0

Now the quantum features enter the game. How A and B can be sure that they share
bits that nobody else know about – i.e. that they have a one time pad. Put in one
sentence this can be stated as follows:

You can not distinguish perfectly between 4 states used in BB84, and more-
over you cannot learn anything about their identity without introducing
disturbance.

Hence, A and B can make themselves sure that nobody have eavesdropped on their
communication, by revealing part of their bits on classical channel (e.g. 100 bits), and
checking whether they all agree. If there are no errors they can be sure with high
degree of confidence (the higher the more bits they have revealed) that nobody had
eavesdropped. If all bits agree, the revealed bits are of course discarded, while the
remaining ones are kept and constitute the one time pad. If there are errors in bits
reveled, however, A and B it suggest a presence of an eavesdropper and hence they
abort communication and try again.

The above scenario is oversimplified, and also impractical. In reality there will
always be errors in communication even if there is no eavesdropped, but which result
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from noise in the channel, imperfect detectors etc. Thus we need a more sophisticated
approach: What is the tolerable error rate below which we can in some way distill a
one time pad that will have no errors and will be secure i.e. no third party will have
any information on it. This can be done using classical methods of error correction and
privacy amplification.

8.3 Classical tools

8.3.1 Error correction

Asymptotic considerations. Imagine A and B share correlated bit strings of length
n, where p(A,B) is the probability distribution of the strings. We assume that p(A,B) =
p(a1, b1) · · · · · p(an, bn), which means each pair of bits is independently identically dis-
tributed. From chapter 2 we know that the mutual information I(A : B) = nI(a : b)
where by I(a : b) we mean the mutual information corresponding to single bit random
variables. Error correction is the process in which we allow A and B to exchange addi-
tional m bits of information in order to correct all errors and have perfectly correlated
strings i.e. I ′(A : B) = n. If strings are long we can addapt Shannon typical sequences
technique for proving capacity of noisy channels. If I(A : B) = nI(a : b) it means there
is approximately 2n(1−I(a:b)) typical sequences of B that could in principle have been
created from a given sequence od A and vice versa. Hence in order to identify uniquely
a sequence in B with a sequence in A one needs to send

m = n(1− I(a : b)). (8.4)

In other words one needs n(1 − I(a : b)) additional bits in order to correct all errors.
This is of course a theoretical bound. Real schemes will perform usually worse, yet the
longer is the sequence the closer they can achieve the bound. More explicitly, if q is the
probability of single bit error, then I(a : b) = 1− (−q log2 q) and hence the number of
bits needed to be communicated is:

m = −nq log2 q. (8.5)

Error correction in practice. One grasp the intuition of error correction by con-
sidering the simplest example when n = 2. Let p be the probability that a given bit
of A is the same as the bit of B. Let A take her two bits, calculate XOR function on
them and communicate the result to B. B checks whether the XOR function of A bits
agrees with XOR function of his bits. If this is true they keep their bits unchanged and
if not A send the value of the first bit to B – hence she effectively has sent all two bits.
Notice that the only possibility that bits of A and B disagree is that they were error on
both bits. Hence Hence after this error correction probability that A and B bits agree
is p′ = 1− (1− p)2 = p(2− p) ≥ p (for p ∈ [0, 1]). In this operations A has to send to
B on average: m = 1 + 2p(1− p) bits. This is usually than the theoretical bound.

For larger n one could also use a strategy using pairs of bits but this strategy is
not very efficient – usually to many bits have to be communicated (at least n/2). The
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following strategy is more efficient. Let us denote by q the approximate fraction of errors
between strings of A and B. In QKD e is estimated from the revealed part of shared
bits. Usually before error correction A and B apply a common random permutation of
their bits in order not to distinguish any of them. After that they choose a block length
k such that kq < 1 i.e. such that it will be a very rare case that there is more than one
error in the block, and divide their sequences in blocks of length k. A transmits the
XOR function of bits in each block and communicate this to B. If XOR values of a given
block agrees in A and B sequences they keep them intact. If they differ, they divide
the block by half and A transmits XOR value calculated on subblocks. The subblock in
which XOR values agree they leave it intact and divide by half the subblock in which
XOR values differ, and continue this procedure until errors are localized. Doing so,
sending approximately (n/k) log2 k bits they can correct all errors provided there were
no more than one error in a block of length k. Notice that when kq = 1 the number
of bits communicated in this phase equals the theoretical bound in Eq. 8.5. However,
there still may be errors remaining,due to the fact that there could have been more
than one error in each block. Hence one has to repeat the procedure but this time
with larger blocks k′, since now the probability of an error is smaller q′ < q. A few
repetitions and checking XOR functions should eliminate most errors. When only a few
errors are left dividing into blocks is not particulary effective we simply, take a random
subset and calculate its XOR, if for e.g. 20 random subsets XOR values agree we have
2( − 20) probability that an error is still there.

8.3.2 Privacy amplification

In cryptography what we really need to consider is the three party probability
distribution p(A,B,E), where E represents the data acquired by an eavesdropper. After
the error correction procedure A and B have the same sequences i.e. I(A : B) = n,
but most probably E also share some knowledge on them. If, however, E knowledge is
not perfect i.e. I(A : E) < n, and I(B : E) < n then A and B can perform so called
privacy amplification procedure reducing their number of bits from n to n′ but making
them completely unknown for E.

Let us start with the simplest example when n = 2. A and B have two identical bit
sequences of length 2. Let q be the probability of making an error for E when trying to
deduce the value of a bit of A or B. A and B can perform XOR operation on their bits
and keep its value, but unlike in error correction procedure they do not announce it.
In effect they have shortened their sequence to one bit. What is the error probability
q′, E will make when guessing this value. She will not make an error only if she knew
correct values of both bits or made errors in predicting value of both of them, hence:
q′ = 1 − q2 − (1 − q)2 = 2q(1 − q) ≥ q (for q ∈ [0, 1/2]). Hence her knowledge about
bits of A and B will decrease.

In practice when n is large the above strategy will be applied to large blocks. Namely
after assessing q, we take k such that ????k(1−e)??? ' 1, and apply a hashing function
f : {0, 1}n 7→ {0, 1}k (the hashing function takes a binary sequence of length n and
returns a binary sequence of length k, where a bit in the output sequence is a XOR
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function of a random subset of input sequence) to bits of A and B. In this way their
sequences will be shortened from n to k bits but the sequences will become completely
unknown to E. The important question is how large k one can take and still be sure
that E has no information on sequences of A and B. Intuitively of course the larger
is the E information on A and B the smaller has to be k. This intuition is formalized
in the Csiszár-Körner theorem, which combines both privacy amplification and error
correction considerations.

8.3.3 Csiszár-Körner theorem

Using one way error-correction and privacy amplification, the number of secret bits
k, A and B can distill is bounded:

k ≤ max{I(A : B)− I(A : E), I(A : B)− I(B : E)} (8.6)

hence provided that E is less correlated with either A or B than they are with each
other distillation of secret key is possible.

8.4 Attacks on the QKD
In order to apply error correction and privacy amplification we need to know how

much E could have possibly learned about bits of A and B. Judging by the qubit
error rate estimated from the revealed part of the bits A and B should find out what is
the optimal attack E could have performed which allowed her to gain largest possible
amount of information.

At the moment we will restrict ourselves to a simple class of attacks called intercept
and resend attacks, which are not optimal, and hence considering only them does not
guarantee full security, but are often considered since they are the only realistic attacks
under present technology.

8.4.1 Intercept and resend attacks on BB84

In general, in intercept and resend attacks (IRA), E first measures incoming qubit in
some basis and after learning result of the measurement and prepares a corresponding
state which she sends to B. Ideally (for E of course) she would like to learn what state
was sent and resend exactly the same state to B in order not to be detected.

In BB84, two basis are used for communication, basis 1:| ↔〉, | l〉, and basis 2:
|↗↙〉, |↖↘〉. During transmission E does not know which basis she should measure in
since this is revealed only after all qubits has been sent. Consider two strategies she
may choose:

1. Measurement in a randomly chosen basis – with probability 1/2, E measures
either in | ↔〉, | l〉 or in a |↗↙〉, |↖↘〉 basis

39



2. Measurement in an intermediate basis – every time E measures in |22.5◦〉, |112.5◦〉,
which is an basis “in between” two basis used in BB84

Let us calculate what is the information gained by E in each of this attacks and what
disturbance this attacks cause in the data of A and B.

Random basis In half of the cases E will measure in correct basis, hence will learn
the state and transmit the state without any disturbance. In the second half, she will
measure in the wrong basis. Since |〈↔ |↗↙〉2 = |〈↔ |↖↘〉2 = 1/2 and |〈l |↗↙〉2 = |〈l
|↖↘〉2 = 1/2, she will obtain a correct measurement result with probability 1/2. She will
resend, a state in the wrong basis, however, and consequently B has 1/2 probability of
registering an error in communication even though his basis is set according with that
of A. Summarizing B on average will observe qubit error rate (QBER) QBER = 1/4.
Probability that E will measure an incorrect bit sent by A is 1/2 · 1/2 = 1/4, hence
errors will be the same as between A and B (Notice also that E also with probability
1/4 has an error on bit of B). Summarizing:

I(A : B) = 1− h[1/4] ≈ 0.189 (8.7)

where h[x] = −x log2 x−(1−x) log2(1−x) is binary Shannon entropy, and the identical
equation should hold for I(A : E) and I(B : E). However, in the above considerations
we have neglected an important fact, namely after A and B announce basis they have
used, E knows the cases when she measured in the correct basis. When she measured
in the correct basis she has full knowledge on the bit, while when she measured on the
wrong basis she learns nothing, consequently the true mutual information reads:

I(A : E) = I(B : E) = 1/2. (8.8)

Obviously if A and B measure QBER = 1/4 they should abort their communication
since E in principle could have gained more information than they. Let us now consider
a more general situation in which E intercept only r fraction of incoming qubits. In
this case, QBER = r/4, and consequently:

I(A : B) = 1− h[r/4] (8.9)
I(A : E) = I(B : E) = = r/2 (8.10)

For r ' 0.6821 which I(A : B) = I(A : E), this corresponds to QBER = 0.171. This
tells us that if QBER ≥ 0.171, we cannot distill any secret key since an eavesdropper
could have obtained the same amount of information as we have using IRA in random
basis. Taking a positive approach, if we assume an eavesdropper was restricted to
perform IRA in random basis and we detect QBER < 0.171 we can distill some secret
key which maximal length is given by Ciszár-Körner criterion and reads:

k ≤ 1− h[r/4]− r/2 = 1− h[QBER]− 2QBER. (8.11)
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Intermediate basis attack Using intermediate basis, probability that E measures
a wrong bit value is

q = |〈22.5◦| l〉|2 = 1/4(2−
√

2) ' 0.146. (8.12)

Notice that this error is smaller than average error in random basis attack. Such an
attack induces QBER = 2q(1− q) = 1/4:

I(A : B) = 1− h[1/4] ≈ 0.189 (8.13)

Unlike in random basis attack, learning what basis was used in a given run does not
provide E with any additional information, hence

I(A : E) = I(B : E) = 1− h[q] ' 0.399, (8.14)

which is smaller than in random basis attack. Even though average probability of error
is smaller for E in intermediate basis attack the mutual information is smaller due
to lack of certainty in which cases bits were correct and in which they were useless.
Assume again that E intercept only a fraction r of incoming qubits, we get:

I(A : B) = 1− h[r/4] (8.15)
I(A : E) = I(B : E) = r(1− h[q]), (8.16)

When r ' 0.7548, I(A : B) = I(A : E) = I(B : E). This corresponds to QBER =
0.189, so considering intermediate basis attacks we get a bit higher QBER rate thresh-
olds above which we cannot distill secret key. This is due to the fact that intermediate
attacks are less efficient from the point of view of an eavesdropper than random basis
attacks.

8.4.2 Optimal individual attack on BB84

Let us denote the four states used in BB84 protocols |+z〉, |−z〉, |+x〉, |−x〉, where
| ± z〉, | ± x〉 are the eigenstates of σx and σz. A general individual attack on BB84 is a
unitary operation U acting on the space which decribes states of the qubit send by A
to B and the eavesdropper space:

U : | ± k〉B ⊗ |0〉E 7→
√

F | ± k〉B ⊗ |Ψ±k
0 〉E +

√
D| ∓ k〉B ⊗ |Ψ±k

1 〉E (8.17)

where k = x, z represents the basis chosen, D is equal to the QBER, and F = 1 −
D. Since we just have four different input states to consider, we can without loosing
generality limit the E space to 4 dimensions. Let us write the transformation when
acting on the states from the z basis:

U : |+ z〉B ⊗ |0〉E 7→
√

F |+ z〉B ⊗ |Ψ+z
0 〉E +

√
D| − z〉B ⊗ |Ψ+z

1 〉E (8.18)
U : | − z〉B ⊗ |0〉E 7→

√
F | − z〉B ⊗ |Ψ−z

0 〉E +
√

D|+ z〉B ⊗ |Ψ−z
1 〉E (8.19)
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Unitarity implies the following constraint:

〈Ψ+z
0 |Ψ−z

1 〉+ 〈Ψ+z
1 |Ψ−z

0 〉 = 0 (8.20)

We assume the attack is symmetric which means that the output reduced density matrix
has a Bloch vector which is shrinked but not rotated compared with the input one.
Notice that this is not a limitation, since such rotation is useless as it increases the
QBER while not providing any additional information for E, and can always be canceled
by the eavesdropper. This implies that

〈Ψ±z
0 |Ψ±z

1 〉 = 0. (8.21)

Now we look how the transformation acts on the state from the x basis. Recall that
| ± x〉 = (|+ z〉 ± | − z〉)/√2, hence the transformation reads:

U : |+ x, 0〉 7→
√

F

2
(|+ z, Ψ+z

0 〉+ | − z, Ψ−z
0 〉) +

√
D

2
(| − z, Ψ+z

1 〉+ |+ z, Ψ−z
1 〉) =

=
√

F |+ x〉 ⊗ 1

2
(|Ψ+z

0 〉+

√
D

F
|Ψ−z

1 〉+

√
D

F
|Ψ+z

1 〉+ |Ψ−z
0 〉)+

+
√

D| − x〉 ⊗ 1

2
(

√
F

D
|Ψ+z

0 〉+ |Ψ−z
1 〉 − |Ψ+z

1 〉 −
√

F

D
|Ψ−z

0 〉) =

=
√

F |+ x〉 ⊗ |Ψ+x
0 〉+

√
D| − x〉 ⊗ |Ψ+x

1 〉 (8.22)

and analogously for | − x〉. If the attack must treat the x basis in the same way as the
z basis, we must have

〈Ψ+x
0 |Ψ+x

1 〉 = 0 (8.23)

This implies:

Re〈Ψ+z
0 |Ψ−z

1 〉 − Re〈Ψ+z
1 |Ψ−z

0 〉 = 0 (8.24)√
F

D
Im〈Ψ−z

0 |Ψ+z
0 〉+

√
D

F
Im〈Ψ+z

1 |Ψ−z
1 〉 = 0 (8.25)

Without loosing generality, we can always redefine: |Ψ+z
1 〉 → eiϕ|Ψ+z

1 〉, such that
Im〈Ψ+z

1 |Ψ−z
1 〉 = 0. From Eq. (8.25) it follows that Im〈Ψ+z

0 |Ψ−z
0 〉 = 0. Finally tak-

ing into account Eq. (8.24) together with Eq. (8.20) we arrive at:

〈Ψ+z
0 |Ψ−z

1 〉 = 〈Ψ+z
1 |Ψ−z

0 〉 = 0. (8.26)

As a result without losing generality we can parameterize the states as:

|Ψ+z
0 〉 = [1, 0, 0, 0] (8.27)

|Ψ+z
1 〉 = [0, 1, 0, 0] (8.28)

|Ψ−z
0 〉 = [cosα, 0, sinα, 0] (8.29)

|Ψ−z
1 〉 = [0, cosβ, 0, sinβ] (8.30)
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Moreover, if the quality of the attack is to be the same in the x basis as in the z basis
states |Ψ±x

0 〉, |Ψ±x
1 〉 need to be normalized:

〈Ψ+x
0 |Ψ+x

0 〉 = 〈Ψ+x
1 |Ψ+x

1 〉 = 1 (8.31)
〈Ψ−x

0 |Ψ−x
0 〉 = 〈Ψ−x

1 |Ψ−x
1 〉 = 1 (8.32)

(8.33)

This implies

1 + cos α +
D

F
(cos β + 1) = 2 (8.34)

And finally recalling that D = 1− F , the fidelity F reads:

F =
1 + cos β

2 + cos β − cos α
(8.35)

The attack is thus parameterized with two real parameters α, β.
Let us assume that the z basis was used in a given run of the protocol. The goal

of the eavesdropper is to infer the value of the bit. Notice that the space spanned
by |Ψ+z

1 〉, |Ψ−z
1 〉 is orthogonal to the one spanned by |Ψ+z

0 〉, |Ψ−z
0 〉. This means that by

projecting on one of these subspaces E knows for sure whether he inflicted an error in the
transmission or not. After projecting on the subspaces E has to distinguish between
|Ψ+z

1 〉 and |Ψ−z
1 〉 or between |Ψ+z

0 〉 and |Ψ−z
0 〉. For this purpose E uses the optimal

discrimination of two non-orthogonal states strategy from Sec.5.1.1. The information
she gains can therefore be written in the form

I(A : E) = F

(
1− h

[
1 + sin α

2

])
+ D

(
1− h

[
1 + sin β

2

])
. (8.36)

Fixing F (i.e. fixing the QBER) the above information is maximal for α = β. Finally
we get that depending on α the QBER reads:

QBER =
1− cos α

2
, (8.37)

while the mutual informations:

I(A : B) = 1− h[QBER] (8.38)

I(A : E) = I(B : E) = 1− h

[
1 + sin α

2

]
(8.39)

Notice that I(A : E) = I(B : E) this follows simply from the fact that E always knows
whether he inflicted an error in communication from A to B. Looking for the QBER
for which I(A : B) = I(A : E) we obtain the QBER threshold:

QBERth =
1− 1/

√
2

2
=≈ 14.6%. (8.40)

If the QBER is above this threshold the BB84 protocol is not safe. If it is below, the
protocol is safe against individual attacks.
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8.5 Other QKD protocols

8.5.1 Six state protocol

A natural generalization of BB84 is to use also circularly polarized basis | ©〉, | ª〉.
A send with probability 1/6 one of six states | ↔〉, | l〉, |↖↘〉, |↗↙〉, | ©〉, | ª〉, while B
measures randomly in one of three basis. On average 2/3 of the bits will be discarded in
the sifting phase. This protocol seems more secure than BB84, since it uses 3 different
basis instead of 2, and hence make it harder for an eavesdropper it gain information
under a given QBER. Nevertheless the fact that only 1/3 of bits is kept make this
protocol less useful when one what to achieve higher transmission rates.

Intercept and resend attack on on 6S protocol

If the eavesdropper attack r fraction of the qubits, measures them randomly in one of
three basis and resends the measured state the QBER he inflicts reads: QBER = r/3.
The mutual informations read:

I(A : B) = 1− h[QBER] (8.41)
I(A : E) = r/3 (8.42)

The QBER threshold corresponding to the situation when I(A : B) = I(A : E) reads:
QBER = 22.7%.

Individual attack on 6S using the optimal universal asymmetric cloning

The 6S protocol is easier to investigate in terms of security thanks it its higher sym-
metry, than that of BB84. Apart from “measurement” attacks in which the eavesdrop-
per measure qubits on-the-fly, a more sophisticated attack appear to be more powerful.
Instead of measuring the qubit the eavesdropper can perfrom optimal 1 → 2 cloning op-
eration send one copy to B and keep one for himself. After basis reconciliation process
has taken place the eavesdropper can measure his clone in order to gain information on
transmitted bits.

Let the eavesdropper perform the optimal universal asymmetric cloning described in
Sec. 6.2.1, parameterized by two real parameters a, b subject to normalization constraint
a2 + b2 + ab = 1 (b = (−a +

√
4− 3a2)/2). He keeps the first clone for himself and

send the second one to B. Given that A had sent the state |ψ〉, B and E obtain the
following reduced states:

ρE =

[
(a + b)2

2
+

a2

2

]
|ψ〉〈ψ|+ b2

2
|ψ⊥〉〈ψ⊥| (8.43)

ρB =

[
(a + b)2

2
+

b2

2

]
|ψ〉〈ψ|+ a2

2
|ψ⊥〉〈ψ⊥| (8.44)

This implies that the QBER equals a2/2. The eavesdropped wait until basis are an-
nounced and measures his copy in the correct basis. His probability of error equals
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b2/2. The mutual informations I(A : B), I(A : E) read:

I(A : E) = 1− h[a2/2] (8.45)
I(A : B) = 1− h[b2/2] (8.46)

where h[x] = −x log2 x. The QBER threshold corresponds to the symmetric case
a = b = 1/

√
3, which yields QBER = 1/6 = 16.7%, and I(A : B) = I(A : E) = 0.35.

One can see that this attack is much more powerful than prepare and resend strategy.
There is a subtle issue to be mentioned. In what was said above we have concentrated

only on I(A : B), I(A : E) quantities, ignoring completely I(B : E), which according
to the Csiszar-Korner theorem plays equivalent role to I(A : E). As a result of the
optimal asymmetric cloning attack the two clones are in the state:

ρEB =
1

2

[
(a + b)2|ψ, ψ〉〈ψ, ψ|+ (a|ψ, ψ⊥〉+ b|ψ⊥, ψ〉)(a〈ψ, ψ⊥|+ b〈ψ⊥, ψ|)] (8.47)

After measuring in the correct basis (i.e., |ψ〉, |ψ⊥〉) the mutual information I(B : E)
reads:

I(B : E) = 1− h[(a + b)2/2] (8.48)
One can check that this information is always less then I(A : E), hence strictly speaking
the attack is not that powerful as it might had seemed. Nevertheless it is possible to
modify the cloning procedure in such a way to make it “symmetric” (do not confuse
with symmetric cloning) with respect to I(A : E) and I(B : E), without compromising
clones quality.

8.5.2 Optimal individual attack on 6S protocol

We can repeat the derivation of the optimal individual attack on BB84 protocol from
Sec. 8.4.2. The only difference is the higher symmetry of the problem which requires
that we need to consider also the attack on | ± y〉 states. This additional constraint
leads to setting the parameter β = π/2. Hence the QBER as a function of α reads:

QBER =
1− cos α

2− cos α
(8.49)

And the mutual informations:

I(A : B) = 1− h[QBER] (8.50)

I(A : E) = I(B : E) = 1− 1

2− cos α
h

[
1 + sin α

2

]
(8.51)

Notice that because β = π/2 then if E learned that he inflicted a mistake in the
transmission he knows for sure what is the bit value (|Ψ+z

1 〉 is orthogonal to |Ψ−z
1 〉).

Otherwise he performs the optimal two state discrimination. The QBER threshold
corresponding to α = 0.618686, equals

QBERth = 15.6% (8.52)

Obviously it is larger that the one for BB84, since the 6 state protocol is more difficult
to eavesdrop due to more states present.
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Relation to the optimal asymmetric cloning

Notice that the result seems to indicate that the previously consider optimal uni-
versal symmetric cloning attack is not optimal, as it yielded higher QBER threshold.
The reason for this is that we chose the symmetric cloning as the one where we expect
the mutual information I(A : E) and I(A : B) to be equal. However, we only equalized
probabilities of errors i.e. clones qualities. From the present analysis we see that com-
paring error probabilities and informations is not equivalent, since there are two cases,
either error was inflicted in A to B transmission and E knows the bit perfectly, or E
has to perform discrimination.

Let us take the optimal asymmetric universal cloning machine parameterized with
a, b (b = (−a+

√
4− 3a2)/2). Using such a cloning we can obtain the following mutual

informations

I(A : E) =
b2

2
+

(
1− b2

2

)(
1− h

[
1− a2/2− b2/2

1− b2/2

])
(8.53)

I(A : B) = 1− h[b2/2] (8.54)

where b2

2
is the probability of E inflicting an error in A to B transmission (QBER), in

which case E learns the bit perfectly otherwise with probability (1 − b2/2) he learns
the correct bit only with probability 1−a2/2−b2/2

1−b2/2
— on average the success probability of

guessing the value of the bit is 1− a2/2 which is in agreement with the cloning fidelity.
Looking for the QBER threshold when I(A : B) = I(A : E) we get: a = 0.595275,
b = 0.559238. Notice that this is asymmetric cloning — we need to give B a copy of a
bit higher quality, in order that out informations are equal. The corresponding QBER

QBERth = 1− b2

2
= 15.6%, (8.55)

Which proves that using the optimal universal cloning in a proper way is equivalent to
the optimal eavesdropping.

8.5.3 B92

A natural question arises, if two nonorthogonal states cannot be perfectly distin-
guished, then maybe one can construct a QKD protocol using only two states instead
of four as used in BB84. Amazingly this is indeed possible. A sends either | ↔〉, or
|↗↙〉. B measures either in | ↔〉, | l〉 or in |↗↙〉, |↖↘〉 basis. Unlike in BB84 he does
not communicate the basis he used, but rather informs A about the cases in which he
measured | l〉 or |↖↘〉 (without specifying which of them). This is an information that
tells A that in this run B had a basis incompatible with the one she used. Hence if
she denotes by 0 and 1 the cases when she sends | ↔〉 and |↗↙〉 respectively, and B
denotes by 0 and 1 the cases when he used basis |↗↙〉, |↖↘〉 and | ↔〉, | l〉, they will have
perfectly correlated bits at this positions. Notice also that there was no information
revealed to an eavesdropper when B informed A about positions at which he measured
| l〉 or |↖↘〉. Moreover non perfect distinguishability of nonorthogonal states forces E
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to induce errors whenever she wants to learn something and thus makes the protocol
secure.

47



Chapter 9

Great unification

1. Asymptotic cloning is state estimation 2. Optimal individual eavesdropping is
cloning + optimal discrimination
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