Chapter 3

Uncertainty relations

Figure 3.1: Schemes illustrating different vari-
ants of uncertainty relations

3.1 Heisenberg-Robertson un-
certainty relation

Let us start by recalling the standard for-
mulation of the uncertainty relation that one
may encounter in all quantum mechanics text-
books. Given some observable A one defines
its uncertainty on a given state |¢)) as AA =
V(] A2]¢p) — (| AJp)2. Then one proofs that
for two observables A and B the following in-
equality holds

AAAB > (3.1)

([A. B))|

2 )
which we will refer to as the Heisenberg-
Robertson uncertainty relation. In case of
position and momentum operators the uncer-
tainty relation reduces to

AzAp >

NS

. (3.2)

In order to understand the physical con-
tent of the above inequality, we should keep
in mind that both AA and AB are quanti-
ties that one determines via measurement of
either A or B observables performed on dif-
ferent realizations of state |1)). There is no no-
tion of precision of measuring one observable
vs. disturbance of the other observable on the
same physical system, which was actually the
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main message of the so called Heisenberg mi-
croscope though experiment. Neither there is
any notion of joint measurement of the two
quantities on a given quantum state. Here,
we simply state that the quantum state |¢)
will lead to the following spread of measure-
ment results if observable A or observable B
is measured independently of each other. In
short, this relation reflects the inherent un-
certainty that is present in the quantum state
itself with respect to measuring different phys-
ical quantities.

3.2 Precision vs. Disturbance
uncertainty relation

To understand the difference between the
Heisenberg-Robertson formulation of the un-
certainty relation and the actual Heisenberg
microscope thought experiment, let us recall
the Heiseberg micropscope setting. Consider
a lens with aperture a at a distance [ from the
illuminated object. For simplicty we assume
that the object is imaged using the lens on a
very distant screen, see Fig. 7?7. We can quan-
tify the precision as a minimal size of a light
spot in the object plane that correspond to
light travelling at a given angle to the screen.
From standard optics considerations one can
show, that the precision is then of the order:
or =~ %l. Note that we use a different nota-
tion, namely dz rather than Az, to clearly dis-
criminate between the precision of measure-
ment (dz) vs. the inherent uncertainty of the
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physical quantity in the state itself (Az).

In order to asses the disturbance to the mo-
mentum of the particle, note that when we
collect light arriving at a given angle on the
screen, we cannot say exactly at what angle
the photon has been emitted from the particle,
as ig could travel along different paths through
the lens. The angle spread is roughly ¢ ~ a/1
(we assume the angle is small), and hence the
uncertainty in the z-component of momentum
transfer to the particle is dp ~ %%—note again
a different notation dp for the disturbance. So
finally we can write dxdp 2 h.

As the reader might have noticed the above
reasoning is very qualitative and in fact it
is not an easy task to rigorously define the
concept of disturbance of the observable (see
e.g. a review paper [?]. Moreover, the ap-
proach discussed above, breaks the symmetry
between the x and p quantities, which is not
always desired. Because of this conceptual dif-
ficulties we will not study this approach here
in detail, and will rather focus on a symmet-
ric and easier to study from a quantitative
perspective concept of joint measurement—
see Fig. 3 to see the formal difference between
these three approaches.

3.3 Joint measurement

Within the concept of joint measurement, our
goal is to obtain information on two quanti-
ties in the best possible way even if their cor-
responding observables do not commute. In
particular we will want to obtain a limit on
the possibility of joint measurement of posi-
tion and momentum. Clearly, it will not be
possible to obtain simultanous measurement
of z and p equivalent to sharp measurements
of both quantitites. Still, if we allow for a
compromise of performing ,smeared” position
and momentum measurements we may be able
to construct the corresponding joint measure-
ment protocol.
We start with a general definition.

Definition. 11, and II; POVMs are jointly
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measurable iff there exist a POVM I, ; such
that I, = [ dbIl,p, I, = [dall,p.

Remark. 1If 1I,, II, commute, we simply
take II,, = IL,II,. If not we cannot make
this construction (product will not be hermi-
tian/positive).

In particular, we cannot find a joint mea-
surement operator representing ideal (sharp)
position and momentum measurements. But,
if we consider smeared position and momen-
tum measurements:

i, = / de’ p(z — ')’y (e

I, = /dp’l/(p — )" ) (@'l

(3.3)
(3.4)

where v, i are smearing functions (e.g. gaus-

sians), then maybe it is possible to find ﬁxyp

such that I, = [dpTl,,, [0, = [dz .
Indeed, consider:

~ 1
—D(ZL’, p)HOD(xa p)Ta

5T (3.5)

x,p =

ixPp—ipd

where D(q,p) = e = is the displacement
operator and Il > 0, Trlly = 1. Equivalently:

~ ]_ ipE ixp ixp ipE

Ha;,p =——¢ herllpe” henr,

27th (3.6)

1
where we have used eATB = eAeBe 248,

We first check whether the above con-
structed 11, , is a legal POVM. Positivity is
clear, as D(z,p) is unitary and Il is positive.
We are therefore left to check the completness
condition. Calculating matrix elements in the
position eigenbasis

1, B
%Cﬂ/dxdpe

5 — o) / daz(z|To|z) = o(2' — &), (3.7)

ipo:, ixp ixp z‘pa:/, "
h |a’j >=

e h llge ne

we see that indeed [ dzdpIl,, = 1.
Let us now calculate marginal probability
distributions of = and p resulting from appli-

cation of this joint measurement to a general
state p. Writing Tlg = [ da’dz" (I1o)%|2') (z"|
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in the position eigebasis, we get

p(x) ="Tr (p / dpf[x,p) —

1 /
=—Tr (p/dpdm/dx’/(ﬂg)ﬁu|:L’/+x><:v”+:r|e

2mh

Tr(p / da? (o)~ |a") (') = Ta(pIL,),
(3.8)

from which we see that indeed:

f, = / A u(e — )Y ]),  (3.9)

where p(x) = (x|Ip|x) is the smearing func-
tion. Analogously we can show that the mo-
mentum probability distribution corresponds
to

i, — / v — YD), (3.10)

where p(p) = (p|Io|p).

Notice that in fact Il can be regarded as
a state (Ilp > 0, Tr(Ilp) = 1.) As such it
must satisfy standard Heisenberg-Roberstson
uncertainty relation: A xzAg,p > /2.

What is the uncertainty relation for the ac-
tually measured values of z and p? AzAp,
where should remind us that this are distribu-
tion obtained using the joined measurement.
Using the properties of the convolution we get:

A’r = ALz + Az, (3.11)
where A2z is the standard variance of sharp
position measurement on p. We can write
analogous formula for for the momentum dis-
tribution. Clearly the final measurement dis-
tribution is broadened compared to sharp po-
sition measurements. Finally we can write

A?zA%p = (A}, z + Az)(Af,p + A%p) >

LN SN S S T
4 \Co? v A%on A2z | —

(3.12)

_|_
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Figure 3.2: Model of joint position and mo-
mentum measurement

Rdébertgonm uncertainty relations for both p
and ITy states, and also the fact that (a +
b)(1/a + 1/b) > 4, for arbitrary a,b > 0. So
finally, we get

ipwheyi)we used the standard Heisenberg-

AzAp>h (3.13)
and we see that the joint-measurement un-
certainty relation differs by a factor of 2
from the standard Heisenberg-Robertson un-
certainty relation. Intuitively, this is due to
the fact that in final distribution the inher-
ent uncertainty of state we measure is com-
bined togather with the uncertainty of the
state which is the building block of the mea-
surement itself, and on which we effectively
project the measure state.

Moreover, we can interpret, the widths of
the smearing functions Ay, Ap,p as preci-
sions of the actual measurements, and there-
fore write dx = A, and hence: dxdp > h/4,
where now we have a tradeoff between the pre-
cision of measuring x and the precision of mea-
suring p expressed via the familiar uncertainty
relation.

Example. In order to illustrate the above
considerations consider the following model of
joint position-momentum measurement. Con-
sider a particle S travelling in one dimension,
with which we associate position and momen-
tum operators (dimensionless) Zg, pg, satis-
fying [Zg,ps] = i. Initially the particle is in
state |¢)s. Consider a joint position and mo-
mentum measurement where particle S inter-
acts with two “measuring devices” My i Mo
through a unitary evolution:

(0) snaynr, = Ul) s®|0) a1,

(3.14)
where |0) a7, a1, is the initial state of the mea-
suring devices. After the action of U, position

— ,—i(®sPm; —PsTm.
U_e (Sp 1~ Ps 2),
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(zpr,) and momentum (pys,) is measured of
respectively systems Mp and Ms (these mea-
surements commute!). As a result of measure-
ment we obtain a certain joint probability dis-
tribution of measuring position and momen-
tum p(z,p) on state |¢)g

We start by evolving 1, p2 in the Heisen-
berg picture:

M =G+ &1 — 339 (3.15)
P53 = Ps + P2 — 351, (3.16)

where we have used eABe™ = B + [A, B] +
1[A[A,B]] +.... We can define &)y = &1 —
3&2, Par = P2 — P1, since [&ar, pur] = ih. We
assume that 12<0|i‘]\,[|0>12 =0, 12<0|]5M|0>12 =
0 as thanks to this (29") = (xg), (P3") =
(ps). As a result:

A% = APy + ARy Lom (3.17)
AZpG = A2pp + A|20>12pM (3.18)

and finally, using the Heisenberg-Robertson
uncertainty relations for |¢) and [0)12 we get
the uncertainty relation for joint measurement
of z and p:

A Ap = AxS"t APt > B, (3.19)

In order to saturate the above inequality we
should choose a state |0)12 such that it mini-
mizes the standard Heisenberg-Robertson un-
certainty relation for the x; and pys quanti-
ties.



