Chapter 5

Bayesian approach

In Bayesian approach, we will write p(z|0)
instead of pp(z), which is to reflect the fact
that 6 should be regarded as a random vari-
able itself and not a fixed but unknown param-
eter as in the frequentist approach. Within
the Bayesian approach, apart from p(z|6), we
need to specify prior distribution p(6), which
reflects our knowledge of the parameter which
we have prior to performing any experiment.

In frequentist approach our goal was to
minimize the estimation variance, as given in
Eq. (4.3), with local unbiasedness condition
imposed. In Bayesian approach the goal is to
minimize the average variance:

A2 = /d@p(@)/dx (62) 0 p(alo).
(5.1)
In this case there is no need to impose any
additional requirements such as unbiasedness.
We simply look for an estimator 6 that mini-
mizes the above quantity.

5.1 Optimal Bayesian estima-
tor

Let us rewrite the formula for the average
variance, using the Bayes rule p(x|0)p(0)
p(0|z)p(x), as follows:

- . 2
A2 = /dxp(x)/d@, (e(a;) - 9) p(8]z).
. (5.2)
Since p(z) > 0, and f(x) for different =
can be treated as independent variables, min-
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Figure 5.1: Bayesian update of a prior distri-
bution to a posteriori distribution based on
data obtained

imization over 0 %mounts to minimization
of [de, (5(:6) - 0) p(f]z) quantity indepen-

dently for each z over 6(z). This is a quadratic
function in #(x) and hence minimization is
straightforward, as

4 /de (é( ) 9)2 Olz) =0 (5.3)
_ z) — T) = -
0 (z) b
implies
0(z) = / 0 p(02)0 = )0y (5.4)
Hence the optimal Bayesian estimator corre-
sponds to the the mean of the posteriori dis-

tribution p(|z). The corresponding minimal
cost reads:

A%) = /da:p(:r) /d@, ((0) p(oj2) — 9)2p(9|$) =
= / dzp(z) A0 5 (55)

and amount to the average variance of the pos-
teriori distribution.

It is therefore clear that the fundamental
object in the Bayesian approach is the posteri-
ori distribution p(f|x). This can be calculated
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via Bayes rule:

2y — Pl0)p(0)
p(0]z) )

(5.6)
Note, however, that p(z) is not explicitly
given, and calculating it requires performing
the following integral: p(z) = [ d6 p(z|0)p(6).

p(z) plays a role of a normalization factor
for the distribution, while the # dependence is
determined by the product of p(x|0) and p().
To get a better intuitive understanding of the
Bayesian approach, observe that p(f) repre-
sents just the prior knowledge while all the
information that we get from the data is cap-
tured by p(z|@). Analyzing these two function
one my easily understand what is the relative
role of the prior information vs data. If p(6)
varies much slower with 6 compared to p(z|0)
it means that the prior is largely irrelevant. In
the opposite case the the prior dominates our
inference strategy.

Example 5.1 Let us again reconsider the gaussian
estimation model, where our observations are mod-
eled as N i.i.d. random variables z; ~ N (6, c?), from
which we want to estimate . However, this time we
further assume that we have a gaussian prior distribu-
tion of the # parameter itself & ~ N(ug,03). For the
model presented we want to find the optimal Bayesian
estimator and the resulting estimation uncertainty.
For this model:

O

N
) e 2@ (5
where G (0) = (%2(9 — o) + 25 > (i — 0)%
4

We immediately see that the posteriori distribution
p(0]z) ~ p(x|0)p(P) will also be Gaussian. As a result
we can easily normalize it and arrive at the final form
of the posteriori distribution:

s (0’
|z

plfle) = 7 B . (58

where
A= (N4 L) 59)
Hole = (Z;fi + Z—%) 02/ (5.10)

are respectively the variance and the mean of the pos-
teriori distribution.
The optimal Bayesian estimator which is the mean
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of the posteriori distribution fg|, may be rewritten in
a more appealing form

0(x) = az + (1 — ), (5.11)

where Z =Y, #:/N, o = &/ (U—I\g + ﬁ) The above
form clearly shows that the optimal B:;yesian estima-
tor arises as a result of compromise between what the
data suggest (in this case the mean of observed val-
ues ) and the prior information (in this case the mean
of the prior pp) and « represents the weight of the
information part.

According to (5.5) the resulting cost will be the
average of the posteriori variance. In our model the
variance of the posteriori distribution does not depend
on x and hence we may immediately write:

~ N 1)\ !
A29203‘1:< +7> .

— 12
7t (5.12)

In the limit N — oo the role of the prior becomes
irrelevant and as a result f(x) — z and A%0 — ¢%/N,
which coincides with the results obtained within the
frequentist approach.

5.2 Bayesian Cramér-Rao

bound

Even though, unlike in the frequentist ap-
proach, the recipe for the optimal Bayesian
estimator is explicit, it may still be useful
to have an easily computable lower bound
on achievable estimation uncertainty within
the Bayesian framework in the spirit of the
Cramér-Rao bound derived within the fre-
quentist approach.

Theorem 5.1 (Bayesian Cramér-Rao bound-
—van Trees inequality). Given a Bayesian es-
timation problem with p(f) as priori distri-
bution and p(z|f) as conditional distribution
for observation of an event x, than assuming
standard regularity conditions and vanishing
of the prior on the ends of the interval over
which parameter 6 is considered (6 € [0_,0.]),
the following bound on the average variance
holds irrespectively of the estimator function

chosen
1

+1’
where I = [dOF(f) is the FI aver-
aged with the prior distribution, while I =

A% > (5.13)

S]]
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2
Jde ﬁ <dg7(900> represents the information

contribution coming from the prior distribu-
tion.

Proof. Let us define two functions

10.2) = /o DRO0(x) - ).
1 dplalow
=TT T T

First observe that A%0 = [dfdz f(0,2)?, so
the average variance may be viewed as the
squared norm of the the function f. Further
note:

(5.14)

(5.15)

dé
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we prove the theorem. O

The above inequality clearly illumianates
the role of the data and the prior in Bayesian
inference. The F quantity corresponds to the
information coming from data while I repre-
sents the information due to prior. In the large
number of experiment repetition limit, we ex-
pect I to grow linearly with number of repeti-
tions, while I remains constant. Hence in this
limit we will recover standard CR inequality
as I will be negligible compared to F.

Example 5.1 (continued) For the gaussian Bayesian
model considered before, we may calculate the quanti-
ties appearing in the Bayesian Cramér-Rao inequality.
FI does not depend on 6 and hence F = ]\7/027 while

o = 1/03. We see that the Bayesian Cramer-Rao in-

/dedx 9(0,2)* = /ded ((9) <dp($’9)> equality implies:

10)

p(al6) <dpw>> do(alf) dp(6) _
(@) \ df 40 df
2
/ d0p(0)F(6) + / dep(lg) (dﬁ(;)) _
F+1, (5.16)

where we have used regularltﬁf assumptlons
thanks to which [ dfdz 0.

Moreover:

/ dodz (0, 2)g(0, x) =

_ / d6dz ((z) — G)W _

/dx p(z|)p(0)’ —/deedﬁ(:) _

= —0p(0)ly" + [ a0p(0) =1. (517

where in the last step we performed inte-
gration by parts, and we have used the fact

that p(f1) = p(f—) = 0. Applying now the
Cauchy-Schwarz inequality

/ dfdz £(6,z)? / dg'dz’ g(¢',2")* >
(/ dxdef(e,x)g(e,x)>2, (5.18)

1
A% > (ﬁ+ i) ,

1
7t o (5.19)

which is exactly the precision achieved by the opti-
mal Bayesian estimator. In this case the inequality is
saturated.
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Problems

Problem 5.1 Consider a Bayesian estimation problem, but with a different cost function than the mean
squared error. In case when we want to estimate a phase (or some other angle-like parameter) 6 € [0, 27],

0—6

a more practical cost function is a function of the form C/(6,§) = 4sin? ( 5

), which for small deviations

between 6 and 6 is equivalent to the variance but respects that fact, that the 27 difference is not relevant.
Average cost is then given by:

C= /d@dx 4 sin” <9_Te(x)) p(z|0)p(6). (5.20)
Find the optimal Bayesian estimator for this cost function.

Problem 5.2 Analyze the conditions for saturation of the Bayesian Cramér-Rao inequality and check
if the gaussian model consider during the lecture is the only one for which the inequality is actually
saturated.




