Chapter 7

Quantum Bayesian

In this chapter we will follow the Bayesian
paradigm and develop methods to find op-
timal measurement and estimation strategies
for quantum estimation models. A Bayesian
quantum estimation model consists of the
familiy of states py and the prior distribution
p(#). The goal is to find a measurement {II}
and an estimator A(x) that minimize the av-
erage Bayesian cost:

¢ = [ a020) [ dare(ouiL,)Clp. )
(7.1)
where C(6,6) is the cost function penaliz-
ing for the deviation of the estimator from
the true value. In particular, if we chose
C(6,60) = (f — )% we return to the standard
Bayesian variance cost function.

From chapter 5 we now that once the mea-
surement is fixed and hence we can write the
conditional probability p(z|@) it is clear how
to find the optimal Bayesian estimator. Still,
the issue of determining the optimal measure-
ment remains non-trivial.

Note that we can formally relabel the mea-
surement operators II, to H(;(x), so that in fact
the label represents the estimated value of pa-
rameter, II; = [ dzI1,6(9 — 6(x)). We do not
loose any generality here, but thanks to this
we can combine the double minimization over
the measurement and the estimator to a single

estimation

optimization over the measurements only:
/ doll; =1  (7.2)
C= / d0dop(0)Tr(pell;)C(0,0).  (7.3)

Of course this in general is a untractable
problem, as the space of all allowed gener-
Still, as
demonstrated below with some additional as-
sumptions on the cost function or the set of
states, the problem may be solved. Note
that the above reformulation makes the clas-
sical results on the optimal Bayesian estima-
tion not really very helpful in deriving funda-
mental bounds on precision, as we have in-
corporated the estimator in the labeling of
the measurement operators and hence in some
sense the optimal estimator is given for free
once we solve the above search for the opti-
mal measurement. This is not to say, that
we will never utilize classical results. Quite
contrary, whenever we will desire to provide
a practical protocol that performs optimally
we will eventually be forced to write down
a standard (projective) measurement and the
explicit form of estimator that achieves the
bound derived using formal approach formu-
lated above, and then we will definitely make
use of the optimal Bayesian estimator con-
struction known from classical theory.

alized measurements is enormous.
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7.1 Quadratic cost problems

Let us start by restricting ourselves to the
quadratic cost function C(6,0) = (8 — 6)2.
For simplicity of the formulas that follow we
redefine the parameter 6 so that the expec-
tation value of the prior distribution is zero,
J dop(#)0 = 0. The Bayesian variance to be
minimized takes the form:

A2 = / dfdbp(60) Tr[pell(6 — 0)*] =

/ dop(0)6* + Tr [ / dop(6) py / dgnégz] n

—2Tr [ / d0p(6)6py / déHéé} =

= A% + Tr(pAy) — 2Tx(7'Ay), (7.4)

where we A20 = [dfp(0)0* represents
the variance of the prior distribution, p =
[ d0p(B)py is the average state, p/ =
[dOp(0)fpg and Ay = [dOTIz0%. The fol-
lowing theorem determines the minimum of
the above quantity optimized over all mea-
surements ITj.

Theorem 7.1. Given family of states pg and
the priori distribution p(#) (with expectation
value at § = 0) the minimal Bayesian variance
for estimation of @ is given by:

A20 = A% — Tr (pA?), (7.5)

where A is defined by the following equation:

P = % (Ap+ pA) (7.6)

and p = [ dfp(0)ps, o = [ dOp(6)0py.

Proof. Let us first prove that if a given POVM mea-
surement {Ilz} is optimal, then we may find a pro-
jective measurement yielding the same cost. Let us
perform eigen-decomposition of A; operator:

A = /déng—é = Zéi|éi><6}|. (7.7)

Consider now the following inequality:

/dé(é — A0 — Ay) >0, (7.8)
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which is true since II; > 0 while A1 is hermitian. This
implies:

/dénéé’z + A7 —2A7 >0 (7.9)

and hence

Ax > AL (7.10)

Let us now replace the measurement {II;} with
the projective measurement, corresponding to the pro-
jection on the eigenbasis \éz) of A;. For this choice
As = A%, which according to (7.10) is the smallest op-
erator possible. Inspecting (7.4) we see that we want
the term Tr(pA2) to be as small as possible, and hence
it is always optimal to choose the projective measure-
ment in the eigenbasis of A;.

Assuming the measurement i projective, we may
now introduce a single operator variable write A =
A1, A2 = A? and the optimization problem amounts
to minimization of the following cost function over a
single hermitian operator A:

A20 = A%0 — Tr(pA%) — 2Te(7'A). (7.11)

Since the above formula is quadratic in matrix A, the
minimization can be performed explicitly and the con-
dition for fanishing first derivative amounts to the fol-
lowing linear equation:

Ap+pA—2p =0. (7.12)

Multiplying the above equality by A and taking the
trace of both sides we get that Tr(7’A) = Tr(pA?)
and therefore we arrive at the formula stated in the
theorem. W

Gaussian prior distribution. Equations
(7.5,7.6) remind of formulas used for calcu-
lation of the QFI. The main difference is that
instead of the derivative of the state on the
left hand side of (7.6) there appear the p’ op-
erator. In order to establish a closer relation

between these two approaches consider a gaus-
(6—60)2
1 —_ U7

€ 202
. V2mwo? o
where 6y is a free parameter determining the

center of the prior. We will consider the effect
of variation of the center of the prior around

sian prior distirbution py, =



7.2. COVARIANT ESTIMATION PROBLEMS

0y = 0. We now have:

o = [ 60,0(0)00 =

/ 10 dpe, (0) ppo? =
dbo |g,—o

d dpg

— [ dfpy. (0 = g2 20 =

d90/ Do, (0)po . 7 36, -
dpe

A?p 0 (7.13)

dbo |9, —o

From the above formula we see that for Gaus-
sian prior g’ is proportional to the derivative of
the averaged state p with respect to the shift
of the prior distribution and the proportional-
ity constant is the prior variance. Therefore:

L x5 dpe
~(pA + Ap) = A%9—2 7.14
5 (PA+4p) % (7.14)
and consequently A = AAZ%0, where A is
the standard SLD for the QFI estimation ap-
proach where using pg, we want to estimate
changes in the center of the prior 6y around
point fy = 0. As a result: Tr(pA2%) =
(A20)2Fg(pg, ). Finally we can write:

A2 = A?0[1 - A%0Fg(pg,)] . (7.15)
and we have arrived at the relation between
the cost in the quantum Bayesian estimation
and the QFI of the corresponding problem of
estimating the prior from the averaged state

Poq-

7.2 Covariant estimation

problems

Even though the previous section has provided
us with a general recipe how to find the opti-
mal Bayesian strategy for quadratic cost func-
tions this is not always enough in practical
problems. Note, that unlike in the frequen-
tist approach where we in fact work in the
paradigm of small fluctuations of parameter
value around a known value, in the Bayesian

93

approach we are typically faced with priors
which are by no mean narrow and hence the
approximation of arbitrary cost function to be
locally quadratic is no longer justified.

This is especially pronounced in quantum
estimation theory where we face problems
where angle-like parameters, or more gener-
ally rotations are to be estimated. In such
cases theory restricted to quadratic cost func-
tion is not really helpful. Unfortunately, if
in the consideration from the previous chap-
ter we replace the quadratic cost with some
other cost function arbitrary one in general
will not be able to provide a closed solution to
the problem of determining the optimal mea-
surement and hence the minimal cost.

Fortunately, as we show below if the prob-
lem enjoys certain symmetry, we may utilize
some powerful methods based on group the-
ory considerations and attack the problem of
determining the optimal Bayesian estimation
strategy from another perspective. We will
refer to these class of estimation problems as
covariant with respect to representation of a
certain group.

Definition 7.1 (Covariant estimation prob-
lem). Let G be a a Lie group where the group
element g € GG is is the estimation parameter
in our problem. Let U, be a unitary repre-
sentation of the group in some Hilbert space,
UgUg, = Uyg,4,- We say that the Bayesian es-
timation problem is covariant with respect to
Uy if and only if the following conditions are
satisfied:

a) The parameter to be estimated is an ele-
ment of the group g € G

b) The family of states is generated by the
action of the group representation p, =

ngeUg—is the orbit of the group.

c) The cost function is left invariant with
respect to the action of the group:

vgl,gz,hGGC(hgla th) = C(gl, 92)-

d) The prior distribution is invariant with
respect to the action of the group:
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dgp(g) = d(hg)p(hg)—the prior is uni-
form with respect to the Haar measure
on the group.

Even though the above conditions appear
quite restrictive they are nevertheless satisfied
in a number of important quantum estimation
problem, and in particular the phase estima-
tion example we have been studying in the
previous chapter.

Example 7.1 Consider the estimation problem,
where the family of states

1
W’@ = ﬁ

and we want to estimate ¢ given flat prior distribu-
tion p(¢p) = 5-. Note that the flat prior is a natural
least informative choice for such a problem, and hence
the issue of choosing the right prior that haunts the
Bayesian approach is not relevant here. In order to
formulate the complete model we need to choose a
cost function. Note that the standard squared dis-
tance cost function is not a sensible choice as we are
not working in the local phase estimation approach
and hence the differences between the estimated and
the real phase may be significant. Therefore, we want
to use a cost function that takes into account the pe-
riodic nature of the phase parameter and does not pe-
nalizes us if the phase difference is a multiple of 2.
One natural choice is C(p,$) = 4sin® (£52)—it re-
duces to the standard squared error for small phase
deviations, takes maximum value for ¢ — @ = 7 and
reflects the periodic nature of the phase parameter.
This problem is indeed an example of a covariant es-
timation problem, where the group behind is the U(1)

| | {3 9
group, with the representation U, = el ¢ 0 in
the qubit space. The family of states forms indeed an
orbit, where [¢:,) = Uylt), [tbo) = (I0) + [1))/V2.
Finally, the prior as well as the cost function are in-
variant under the action of the group, as it amounts
to simple phase addition.

P = 1) (sl (I0) +€*|1))  (7.16)

For covariant estimation problems the
Bayesian cost is given by:

C—/@@ﬁ@m@%W%@,ﬁm

where we assume that dg is the normalized
Haar measure on the group, [dg = 1, with
respect to which the prior is trivial p(g) = 1.

Definition 7.2 (Covariant measurement).
{Il;} is called a covariant measurement with

respect to an action of group representation
Uy if and only if

Vo nUnIlgU = Thg. (7.18)
Remark. In particular for a covariant mea-
surement

I = UIL.U}, (7.19)

so that all measurement operators are deter-
mined by a single seed operator Il,.

Theorem 7.2 (Optimality of covariant
measurements). For the covariant estimation
problem, the optimal measurement can be
found within the class of covariant measure-
ments.

Proof. Let ngt be the optimal measurement minimz-

ing C:
¢t = [dgdg e p,)Cla.0) (720
Let us define
5 = / dg' Ul TI%PLU,,. (7.21)
This is indeed a covariant measurement, since:
U I U = / dg' U111y 5U, 1 =
g'20'h / dg' ULTISR Uy = T (7.22)

Moreover, the corresponding cost:
¢ = [ dgdgTe (157 ;) (o) =
[ asaa ([ ag vj g, i 0)) o) -
/dg dgdg’ Tr (U;,gng?gUg/gpe) Clg,9) =

—g

1
’ 1£~]
e /dgdédg’Tr (U3 Ugp. ) Clg' 9.9 19)

—

[ dodgag 1 (17p,) Cla.5) = 0. (729

So is equal to the optimal minimal cost. l

Thanks to the above theorem, the problem
of identifying the optimal estimation strat-
egy may be significantly simplified. Note that
thanks to the covariance property of the mea-
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surement we have:
C= /dgdgT.r(ngg)C(g,é) =
- /dgdgTr (Ug_lgHeUg—lgpe) C(g,9) =
9299 /dg dg Tr (U Il nge) C(g,e) =
~ [T (tLp,) Clg.). (72)

The whole problem now amounts to mini-
mization of the above quantity over a sin-
gle operator Il with constraints II. > 0,
[dgU,I,U; = 1. This is a huge simplifi-
cation of the original problem and often the
optimal operator II, may be found analyti-
cally, as is demonstrated in the examples that
follow.

Example 7.2 (Phase estimation on product qubit
states) Let us consider the problem of estimating the
phase ¢ given N qubits:

= U™ [0} (%o

(N) |®NUT®N7

(10)+[1))/v2,
(7.25)

[Y0) =

71 0
where U, = ez[ o0 ](P We assume the flat prior
p(p) = 1/2m, and the cost function C(p,p) =

4 sin? (£5%). The goal is to maximize

27
cN — g/ dep Tr (HéN)ppr)) sin® o (7.26)
™ Jo
(])Iver 1§, such that 1Y) > 0, [ g—foNHémU;@N =
Let us first solve the N = 1 case:

2m —1ip
~1) _ 1 (1) .2 1 e
C _7rTr<HO /0 dep sin Lp{ew 1 ])
(7.27)
Taking into account that sin® ¢ = £ —1e’?—1e™* and

performing the integral in the above formula yields:

([ )

We need to minimize the above quantity over H((JD,
keeping in mind that T1§"” > 0, [ 2y n{"vl = 1.
The completness condition imply that:

1 1 a
Hé):{a* 1]

where a is an arbitrary complex number. However, the
positivity condition further implies that |a| < 1. We

cW =Tr (7.28)

(7.29)

therefore need to perform the following minimization:

(e VL 7))

= min (2 — Rea 1
I\S( )=

=

(7.30)

for a = 1. This means that the optimal seed measure-

ment
i) = [ bt (7.31)

R !

Note that prl) = 2[¢)y)?, so the optimal measure-
ment corresponds to POVM spanning all equatorial
states. The resulting cost equals:

c®=1. (7.32)

One can check, that even though we have achieved
the minimal cost using covariant measurement, the
same cost would be obtained in this case using the
simplest possible projective measurement with Iy =
|[4+)(+|, II; = |—)(—| and the corresponding estimated
values of the phase equal to $(0) =0, (1) =

We now move on to solve the general case N > 1.
First of all note that [1,)®" € HEYN, where HEY is
the fully symmetric (bosonic) subspace of the space
of N qubits. Therefore without loosing generality we
may restrict ourselves to this subspace. This space
is N + 1 dimensional so it significantly reduces the
size of the considered Hilbert space. Let us denote by
[n) (n =0,...,N) symmetric states with n qubits in
states |1) and N — n qubits in state O:

( pzm |0, . Lot 1), (7.33)

where the sum is performed over all non-trivial per-
mutations. Then

1 N ing|,
|¢w>:ﬁq <n>6 In)

After the integration over ¢ is performed the formula
for the cost to be minimized reduces to

w%’[‘r (m§4),

(7.34)

oW = (7.35)

where A is the following N 4+ 1 x N + 1 tridiagonal

matrix
N
Z( >n (n]+

1 & N N
5; <n> <n_ 1> (In)(n — 1] +|n —1)(n]).

(7.36)

Within the symmetric subspace the group representa-
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tion acts according to US = Y, €""?|n)(n|. The com-
pleteness condtion (restrcited to the symmetric sub-
space) implies that (HéN))Z = 1, while off-diagonal en-
tries are arbitrary. Still, positivity condition requires
that all off-diagonal elements have absolute values less
or equal 1. Since off-diagonal terms in A will all con-
tribute negaitvely to the final cost it is optimal to
choose all off diagonal elements in the HéN) operator
to be 1. Hence the optimal

") = (f} |n>> <i<m|> (7.37)

n=0 m=0

and the resulting cost:

st (S0 LY
()(.Y)- e

One can check that in the limit of large N, ) — L,
see Problem 7.2, and hence we recover the identical
asymptotic result as obtained within the frequentist
approach.

I

2o

I
o
2=
(1=

n=1

Example 7.3 (Estimation of a completely unknown
qubit state) We consider a model in which are given
N copies of a completely unknowns qubit state and
our goal is to estimate it. Formally the state reads:
() _ &N = cos? io o 9
P = [W) I, [9) = cos £10) + € sin £ |1),
(7.39)
where we parameterize the state of a qubit using Bloch
sphere spherical angles. In order to think of this prob-
lem as a covariant estimation problem we may view [¢)
as obtained by rotating a fixed state |0) be a represen-
tation of the SU(2) group. More precisely, since the
initial state |0) will not change under rotations around
the z axis, the relevant group will be G = SU(2)/U(1).
1) = Uy |0) = e"¢7=/2¢107u/2|0). (7.40)
The Haar measure in this case corresponds to the nat-
ural measure on the sphere so we will integrate over
the states using

1 .
dy = Edﬂdgo sin @ (7.41)
As a cost function we choose:
C(h,¥) = 4(1 — [(®|) ). (7.42)

Note that this represents a distance derived from the
fidelity measure, and for infitesimally close states will
reduce to standard squared distance on the sphere, see
Problem.... We have now formulated our problem as

a covariant estimation problem. Using (7.24) we have

¢ = [ aw T (o)) 40 - (I,
(7.43)

which we need to minimize over Il., keeping in mind
I. >0, [dy Uf’NHeUJ)@N = 1. Let us rewrite the
expression for the cost

¢ = |1 [awme () =) [l |

F

(7.44)
where we have introduced F which may be viewed
as the fidelity of estimation, which needs to be maxi-
mized. We can equivalently write F as:

F=[awn (e ool @), (1.4

where we have formally extended the space to V + 1
qubit space in order to incorporate the cost function
inside the trace operator. Note that

F=Tc | ®0)0| / Aly) Y| (7.46)

—_— —
A
Let us study the properties of the A operator. This
operator clearly is suported on the fully symmetric
subspace of N + 1 qubits and has trace 1. Moreover,
this operator is invariant under the action of U, ff’N +1
and since the fully-symmetric subspace carries the ir-
reducible representation of the USN*! representation
(with total angular momentum j = (N + 1)/2), then
by Schur lemma this operator must be proportional to
identity on this subspace. The fully symmetric sub-
space of N + 1 qubits has dimension N 4 2 and as a

result:
1

=—1 . 7.47

N2 HEVH (7.47)

We now mneed to find Il such that

Tr(ne®|0><o\ ]1H®N+1) is maximal. We may
S

restrict the II. operator to act solely on the sym-
metric subspace H?N as this the subspace where
states [))®" live. Let us denote Uj}:N/Q to be the
irreducible representation of SU(2) acting on this
subspace. Taking into account the completeness
condition for Il.:
j=N/2 i=N/2

/dszfp PIUS;N = 1 en (7.48)

we see that TrIl. = N + 1. It is clear that in order

to have the largest overlap between II. ® |0)(0| and
1,,¢~+1, we would like to have IT. ® [0)(0] operator
S

fully supported on H?NH. This will be so provided
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we choose
IL. = [0)(0|®N (N + 1). (7.49)
As a result we get F = %—i; and finally

. N+1
CcN) =4 (1 -~ j: 2) (7.50)
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