
Quantum Measurement and Estimation Theory

Rafaª Demkowicz-Dobrza«ski

April 23, 2021



2



Contents

I Quantum preliminaries 7

1 States, evolution, measurement 9

2 Generalized measurements 11

2.1 Stern-Gerlach experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Post-measurement state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Decoherence and completely positive maps . . . . . . . . . . . . . . . . . . . . . 14

3 Uncertainty relations 17

3.1 Heisenberg-Robertson uncertainty relation . . . . . . . . . . . . . . . . . . . . . 17

3.2 Precision vs. Disturbance uncertainty relation . . . . . . . . . . . . . . . . . . . 17

3.3 Joint measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II Classical estimation theory 23

4 Frequentist approach 27

4.1 Optimal unbiased estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Cramér-Rao bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Multi-parameter case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Maximum likelihood estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Bayesian approach 35

5.1 Optimal Bayesian estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Bayesian Cramér-Rao bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

III Quantum estimation theory 39

6 Quantum frequentist estimation 43

6.1 Quantum Cramér-Rao bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Multi-parameter case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Natural metric in the space of quantum states . . . . . . . . . . . . . . . . . . . 47

6.4 Holevo Cramer-Rao bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3



4 CONTENTS

7 Quantum Bayesian estimation 53

7.1 Quadratic cost problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2 Covariant estimation problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

IV Quantum metrology 63

8 Noiseless quantum metrology 67

8.1 Frequentist approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.1.1 N parallel channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.1.2 General adaptive strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.2 Bayesian approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.2.1 General adaptive strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.3 Phase vs. Frequency estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9 Impact of decoherence 73

9.1 Parallel channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.2 General adaptive protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.3 Constrained protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

10 Practical protocols 79

11 General Markovian noise models 81

12 Quantum error-correction 83

13 Waveform estimation 85

14 Adiabatic quantum metrology 87

V And beyond 89

15 Quantum discrimination 91

16 Quantum communication 93

17 Quantum computing 95

18 Quantum thermodynamics 97



Genesis

Literature:

� C. W. Helstrom, Quantum Detection and

Estimation Theory, (1976)

� A. S. Holevo, Probabilistic and Statistical

Aspects of Quantum Theory, (1982)

� S. M. Kay, Fundamentals of statistical

signal processing (1993)

� R. Demkowicz-Dobrzanski, M. Jarzyna,
J. Kolodynski, Quantum limits in optical

interferometry, Progress in Optics 60, 345
(2015)

5



6 CONTENTS



Part I

Quantum preliminaries

7





Chapter 1

States, evolution, measurement

Pure states, density matrices, reduced den-
sity matrix, unitary evolution, projective mea-
surement

9



10 CHAPTER 1. STATES, EVOLUTION, MEASUREMENT



Chapter 2

Generalized measurements

Figure 2.1: Stern-Gerlach experiment

2.1 Stern-Gerlach experiment

In order to understand the need of introducing
the concept of generalized measurement, let us
start with a detailed analysis of a model of the
Stern-Gerlach experiment, see Fig. 2.2. Con-
sider a spin 1

2 particle, initial state of which is
given by:

|ψ〉 = |s〉 ⊗ |φ〉z, (2.1)

where |s〉 represents a general spin state of the
particle, while |φ〉z is its spatial wave func-
tion, which for the purpose of this model we
restrict to represent solely the z coordinate
degree of freedom. The particle travels in the
x direction (the movement in the x direction
we treat classically) and enters a nonuniform
magnetic �eld at the origin of the coordinate
frame, which can be approximated as 1:

~B ≈ (B0 + kz)êz. (2.2)

The Hamiltonian that describes the interac-
tion of the particle with the magnetic �eld is
given by

H = −µ~σ · ~B, (2.3)

1This is just an approximation, since according
to Maxwell's equations magnetic �eld has to satisfy
~∇ ~B = 0, while these �eld clearly does not satisfy this
condition. In reality we would need to take into ac-
count other magnetic �eld components to satisfy the
divergence-free requirement

where ~σ = [σx, σy, σz]
T is a vector of Pauli ma-

trices. We assume that the interaction lasts
for a short time δt during which the particle
goes through the magnetic �eld. After this
time the interaction is not present anymore.
In order to further simplify the formulas we
will set B0 = 0. Before the interaction takes
place, the initial state of the particle corre-
sponds to

|s〉 = c+|+1
2〉z + c−|−1

2〉z, (2.4)

|φ〉z =
1

4
√

2πσ2

∫
dz e−

z2

4σ2 |z〉, (2.5)

where the general spin state is written in terms
of states with a de�nite spin projection on the
z axis, while the initial spatial wave function
is assumed to be gaussian with a mean devia-
tion σ. In what follows we will for simplicity
denote |±〉 := |±1

2〉z. Let us evolve the state
for time δt under the action of Hamiltonian
H (we ignore particle free evolution, on the
grounds that δt is su�ciently small):

|ψ(δt)〉 = e−
iHδt
~ |ψ〉 =

c+|+〉|φ+〉+ c−|−〉|φ−〉, (2.6)

where

|φ±〉 = 1
4√

2πσ2

∫
dz e−

z2

4σ2±
iµkδt

~ z|z〉. (2.7)

11



12 CHAPTER 2. GENERALIZED MEASUREMENTS

In order to interpret the above states, let us
write them in the momentum representation:

|φ±〉 = 1
4
√

2πσ2
p

∫
dp e

− (p∓δp)2

4σ2
p |p〉, (2.8)

where σp = ~
2σ is the width of the gaussian

wave packet in the momentum representation,
while δp = µkδt represents the momentum
kick experienced by the particle.
We see that as a result of the evolution, the

spin and spatial degrees of freedom become
entangled and the particle experiences a mo-
mentum kick that depends on the projection
of its spin on the z axis. If we now measure
the momentum of the particle we will learn
some information on the spin state
Let us assume we have performed an ideal

projective measurement of the momentum of
the particle 2. The probability of obtaining
result p can be calculated using the following
formula (watch out for a slight abuse of nota-
tion. . . ):

p(p) = 〈ψ(δt)|11⊗ |p〉〈p||ψ(δt)〉, (2.9)

where the identity reminds us that we do not
measure the spin states of the particle directly.
Explicitly it reads:

p(p) = 1√
2πσ2

(
|c+|2e

− (p−δp)2

2σ2
p + |c−|2e

− (p+δp)2

2σ2
p

)
.

(2.10)
We see that the probability distribution is
given solely in terms of the spin degrees of
freedom parameters and the measurement re-
sult p.
The idea of the generalized measurement

formalism is to forget the details of the
whole interaction between the measured sys-
tem (here the spin degree of freedom) and the
measuring device (here the spatial degree of

2In a real Stern-Gerlach experiment, we let the par-
ticle evolve for some time t, and then measure the po-
sition when the particle hits the screen. If the time t
is long enough this will be equivalent to the measure-
ment of the momentum of the particle�see Problem
2.1

Figure 2.2: Conceptual scheme of a general-
ized measurement

freedom), and express the resulting probabil-
ity distribution in the form:

p(p) = 〈s|Πp|s〉, (2.11)

where Πp are the respective measurement op-
erators, which need not in general be projec-
tive operators. Still they need to be positive
(in order for the probaility distribution to be
positive) and sum up to identity

∫
dpΠp = 11.

In our case the corresponding operators are
easy to �nd and read explicitly:

Πp = 1√
2πσ2

 e
− (p−δp)2

2σ2
p 0

0 e
− (p+δp)2

2σ2
p

 (2.12)

when written in the {|+〉, |−〉} basis.
Note that in case δp� σp the measurement

provide us with almost no information, while
in the opposite case the measurement results
are highly informative regarding the spin in-
formation

2.2 Mathematical formulation

Inspired by the Stern-Gerlach example, we are
now ready to present the general formulation
of the concept of generalized measurements.

Consider two quantum systems: the sys-
tem to be measured (S) and the measuring
device (M). The general idea of a general-
ized measurement, is to let the system inter-
act with the measuring device, after which
the measurement device state is read out us-
ing a standard projective measurement. Ini-
tially, the system and the measurement device
are uncorrelated and their state is given by,
ρSM = ρS⊗|0〉〈0|M , where we assumed (with-
out loss of generality, as we may always purify
the measuring device system to a larger space)
that theM is prepared initially in a pure state.
As a result of a unitary interaction of the two
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systems the �nal state reads:

ρ′SM = UρSMU
†. (2.13)

Finally, a measurement, projecting the state
of M onto a {|i〉M} basis (Pi = |i〉〈i|M ) is
performed resulting in the probability distri-
bution:

p(i) = TrSM
(
ρ′SM 11S ⊗ Pi

)
=

= TrSM

(
UρS ⊗ |0〉〈0|MU † 11⊗ |i〉〈i|

)
=

= TrS(ρSΠi), (2.14)

where Πi = M 〈0|U † 11 ⊗ Pi U |0〉M . Πi are
generalized measurement operators, which in
general need not be projective operators. Still
from the above construction if follows that
they satisfy positivity ( Πi ≥ 0) and complete-
ness (

∑
i Πi = 11) conditions.

Any set of operators, {Πi} such that Πi ≥ 0,∑
i Πi = 11 is called a positive operator valued

measure (POVM), since we may regard it as
an operator which when traced with the den-
sity matrix generates a measure in the space
of events i. We have seen above, that the in-
teraction of a quantum system with a measur-
ing system followed by the projective measure-
ment of the latter results in an e�ective de-
scription of the measurement using a POVM.

The question, which is essential for the
whole �eld of quantum estimation theory, is
whether for any given POVM there is a phys-
ical realization, in the sense of a particular
form of interaction between S and M and a
particular measurement that results in the ef-
fective probability distribution described by
this POVM. The answer is yes, and it is known
under the name of Naimark dilation theorem.
We provide the �nite-dimensional case proof
below.

Let {Πi}, i = 1, . . .K be a POVM, Πi ∈
L(Cd). We will show, that there exist a uni-
tary U ∈ L(Cd·K) and a projective measure-

ment Pi on CK such that,

∀ρSTr(ρSΠi) = Tr(UρS ⊗ |0〉〈0|U † 11⊗ Pi).
(2.15)

Let us de�ne

U |ψ〉 ⊗ |0〉 =

K∑
i=1

√
Πi|ψ〉 ⊗ |i〉. (2.16)

Note, that there is no problem in taking a
square root from Πi as it is a positive oper-
ator. Note also, that if this U is a legitimate
unitary operation, then when accompanied by
the projection Pi = |i〉〈i|, realizes the required
POVM. Consider the above operation U act-
ing on two di�erent input states. U preserves
scalar products between the states, as

(∑
i

〈ψ′| ⊗ 〈i|
√

Πi

)∑
j

√
Πj |ψ′〉 ⊗ |j〉

 =

〈ψ′|
∑
i

Πi|ψ〉 = 〈ψ′|ψ〉. (2.17)

The above property is not in itself a su�-
cient condition for unitarity (it is necessary),
since we only de�ned the map on a subset of
state in the whole Hilbert space Cd·K (the sub-
set of states of the form |ψ〉 ⊗ |0〉). In other
words, we have shown, that if we write U as
a matrix, then the d columns are legitimate
columns take from a unitary matrix�they are
orthonormal to each other. As such, we may
always perform a completion of the matrix
to a full unitary matrix by adding additional
orhtogonal vectors until we get all the columns
which constitute the the whole orthonormal
basis. This ends the proof �.

Is U in the above construction unique? No.
We could as well take:

U |ψ〉 ⊗ |0〉 =

K∑
i=1

Vi
√

Πi|ψ〉 ⊗ |i〉, (2.18)

where Vi are unitaries. This unitaries, may
be understood as rotations of the post-
measurement state�they do not a�ect the



14 CHAPTER 2. GENERALIZED MEASUREMENTS

probabilities of obtaining di�erent measure-
ment results.

2.3 Post-measurement state

If instead of just calculating the proba-
bilites, we wanted to write down the post-
measurement state itself, we need to go back
to the representation of the generalized mea-
surement as a subsequent interaction with the
measuring device and a projective measure-
ment on it. Given measurement result i the
joined output state of the S and M subsys-
tems reads:

ρ
′(i)
SM = 11⊗ Pi ρ′SM 11⊗ Pi =

11⊗ |i〉〈i| Uρ⊗ |0〉〈0|U † 11⊗ |i〉〈i|. (2.19)

Tracing out the M subsystem we get the con-
ditional state

ρ
′(i)
S = 〈i|U |0〉ρS〈0|U †|i〉 = KiρK

†
i , (2.20)

where we have introduced the so called Kraus
operators Ki = 〈i|U |0〉 (note that this is a
partial scalar product, that leaves an operator
acting on the S system). This state is subnor-
malized and its trace gives the probability of
obtaining result i:

p(i) = Tr(ρ
′(i)
S ) = Tr(KiρSK

†
i ) =

= Tr(ρSK
†
iKi) = Tr(ρSΠi) = p(i), (2.21)

where we have used the property that Πi =
K†iKi. If we insist on writing a normalized

conditional state, we should write ρ
′(i)
S /pi.

Note, that given Πi the corresponding Ki

are determined only up to a unitary: Ki =
Vi
√

Π, where Vi can be arbitrary unitary. This
represents that fact, that after the measure-
ment result is obtained, one may freely rotate
the state depending on the measurement re-
sults, and this freedom does not appear in the
statistics of the measurement results.

Recalling the example of the Stern-Gerlach
experiment, one can see that in the limit

δp� σp the Πp operators are practically pro-
portional to identity. This implies that the
while we get very little information about the
spin, the spin state is also almost not dis-
turbed at all. We refer to such a regime as
the weak measurement regime. In the oppo-
site case where we obtain a lot of information
but at the same time disturb the state we say
we deal with a strong measurement.

2.4 Decoherence and com-

pletely positive maps

Imagine now a situation in which, in the above
described protocol, we forget to register the
actual measurement result. We can regard
this situation in a spirit, that we simply do
not have access to the readout of the mea-
surement performed on the subsystem M , or
in other words thatM should be treated as in-
accessible environment with which our system
S interacts. In such a situation, the output
state of the system S is obtained by simply
tracing out the joined state of S and M over
subsystem M , and reads:

ρ′S = TrM

(
UρS ⊗ |0〉〈0|U †

)
=
∑
i

KiρSK
†
i .

(2.22)
The above formula has a clear intuitional
meaning. This is a mixture of di�erent condi-
tional states corresponding to di�erent mea-
surement results i, representing the fact that
we have no knowledge of the actual value of i
and hence we are forced to consider the mix-
ture only.

The above formula represents a general
structure of a quantum channel. Kraus op-
erators, Ki, can be arbitrary operators (not
necessary unitary, hermitian,. . . ), but in or-
der to guarantee the trace-preservation con-
dition they need to satisfy:

∑
iK
†
iKi = 11.

Note that, the condition of preservation the
positivity of the density matrix is automati-
cally satis�ed, as for any positve operator P ,
KUK† is positive as well. Hence the above
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transformation is a positive linear map, i.e.
it transforms positive operators into positive
operators. In fact, it is a completely positive

(CP) map, which means that even when the
map is trivially extended to larger space it re-
mains positive.
The evolution of a quantum state described

by Eq. (2.22) is in general no longer unitary,
and may in particular generate mixed states
out of pure input states, and lead to the so
called decoherence of quantum states. To see
it, let us go back to the Stern-Gerlach ex-
ample. Immediately, after the interaction the
output state is given by Eq. (2.6). Let us cal-
culate the corresponding reduced density ma-
trix of the S (spin) system:

ρS(δt) = TrM (|ψ(δt)〉〈ψ(δt)|) =[
|c+|2 c∗+c−〈φ−|φ+〉

c∗−c+〈φ+|φ−〉 |c−|2
]
, (2.23)

where M now corresponds to the spatial de-
gree of freedom, and the reduced density ma-
trix is written in the {|+〉, |−〉} basis. Com-
paring the above formula, with the density
matrix of the input spin state:

|s〉〈s| =
[
|c+|2 c∗+c−
c∗−c+ |c−|2

]
(2.24)

we see that while the diagonal elements re-
main unchanged, the o�-diagonal elements
are being suppressed the more the more or-
thogonal (distinguishable) are states |φ±〉�
the process which we call decoherence. In
other words, the more the environment (in
this case spatial degrees of freedom) get the
information on the spin state of the system
the stronger the resulting decoherence pro-
cess. Note, that decoherence process dis-
tinguishes a preferred basis, of the so-called
pointer states (in this case |±〉 states), which
are not a�ected by the decoherence process,
but superposition of these states are a�ected,
and in the extreme case are transformed into
mixtures of pointer states.
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Problems

Problem 2.1 Reanalyze the Stern-Gerlach experiment as described in Sec. 2.1, but this time allow the
particle to freely evolve, after the interaction with the magnetic �eld, for a time t, after which time the
measurement of position of the particle is performed�assume the standard free evolution of a particle
with mass m under the Hfree = p2/2m hamiltonian. Write the probability distribution for detecting a
particle at a given point z, and derive the corresponding POVM operators for this measurement. Discuss
the limit t → ∞ and compare it with the direct measurement of momentum that was discussed in the
main text.

Problem 2.2 A general state of a two-dimensional quantum system (a qubitu) can be written as:

|ψθ,ϕ〉 = cos(θ/2)|0〉+ exp (iϕ) sin(θ/2)|1〉,

where θ ∈ [0, π], ϕ ∈ [0, 2π] and |0〉, |1〉 form an orthonormal basis. As a result, we can imagine a state
of a qubit as a point on a sphere�the so called Bloch sphere.

Consider the following set of operators, parameterized with θ, ϕ:

Πθ,ϕ = c|ψθ,ϕ〉〈ψθ,ϕ|,

where c is some normalization constant independent of θ, ϕ.

a) Is the set of operators Πθ,ϕ a legitimate POVM? If yes, what is the value of the c constant (assume
a standard integration measure on the sphere dθdϕ sin θ).

b) Apply the above generalized measurement, and calculate the corresponding probability distribution
as a function of (θ, ϕ) if the state that was measured was |0〉. This distribution can be treated as
representation of information on how well we can identify a given a state on the Bloch sphere if we
have one copy at our disposal.

Problem 2.3 Consider the following unitary operation U representing interaction of the qubitu (S) with
�measuring device� (M):

U |m〉S ⊗ |0〉M =
1

2
|m〉S ⊗ |0〉M (

√
2− p+ (−1)m

√
p) +

1

2
|m〉S ⊗ |1〉M (

√
2− p− (−1)m

√
p),

where m = 0, 1, and parameter 0 ≤ p ≤ 1 represents the �strength of the interaction� between S and M .

a) Using Kraus operators, (operators Ki) write down e�ective evolution of a general state of a qubit
S under this interaction, in situation when no particular measurement result is observed in M�we
calculate ρ′S =

∑
iKiρSK

†
i . Interpret the evolution in the language of Bloch sphere transformation,

where the general mixed state of a qubit can be parameterized using a three dimensional vector ~n:
ρ = 1/2(11+ ~σ · ~n), where |~n| ≤ 1, and ~σ is a vector consisiting of Pauli matrices

b) Write down measurement operators Π0, Π1 acting on system S corresponding to projecting the
�measuring device� M on states |0〉M , |1〉M .

c) Consider a general qubit state |ψ〉 parameterized using angles θ, ϕ on the Bloch sphere. Write down
probabilities of obtaining measurement results that correspond to measurement operators Π0, Π1,
and the respective post-measurement states of the qubit S.

Problem 2.4 Consider a generalization of the Stern-Gerlach experiment model, to the case where
we want to measure a general observable Â of an arbitrary dimensional system, with corresponding
Hilbert space H. We again couple the system to the �measurement� device, states of which we describe
using Hilbert space HM . We assume that initial state of the system+measuring device is given by
|ψ〉 ⊗ |φ〉 ∈ H⊗HM , where |ψ〉 is an arbitrary state, while |φ〉 is a gaussian state of position uncertainty
σ as in the Stern-Gerlach experiment example. We assume that the coupling is described by the following
Hamiltonian: H = gÂ ⊗ p̂δ(t), that acts instantaneously at time t = 0 and where p̂ is the momentum
operator on spaceHM . Evolve the state using the above Hamitlonian, and discuss the e�ects of measuring
the position of the measuring device at times t > 0. Write down the corresponding POVM operators Πx

and describe the conditions of weak vs. strong measurement regime.



Chapter 3

Uncertainty relations

Figure 3.1: Schemes illustrating di�erent vari-
ants of uncertainty relations

3.1 Heisenberg-Robertson un-

certainty relation

Let us start by recalling the standard for-
mulation of the uncertainty relation that one
may encounter in all quantum mechanics text-
books. Given some observable A one de�nes
its uncertainty on a given state |ψ〉 as ∆A =√
〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2. Then one proofs that

for two observables A and B the following in-
equality holds

∆A∆B ≥ |〈[A,B]〉|
2

, (3.1)

which we will refer to as the Heisenberg-
Robertson uncertainty relation. In case of
position and momentum operators the uncer-
tainty relation reduces to

∆x∆p ≥ ~
2
. (3.2)

In order to understand the physical con-
tent of the above inequality, we should keep
in mind that both ∆A and ∆B are quanti-
ties that one determines via measurement of
either A or B observables performed on dif-

ferent realizations of state |ψ〉. There is no no-
tion of precision of measuring one observable
vs. disturbance of the other observable on the
same physical system, which was actually the

main message of the so called Heisenberg mi-
croscope though experiment. Neither there is
any notion of joint measurement of the two
quantities on a given quantum state. Here,
we simply state that the quantum state |ψ〉
will lead to the following spread of measure-
ment results if observable A or observable B
is measured independently of each other. In
short, this relation re�ects the inherent un-
certainty that is present in the quantum state
itself with respect to measuring di�erent phys-
ical quantities.

3.2 Precision vs. Disturbance

uncertainty relation

To understand the di�erence between the
Heisenberg-Robertson formulation of the un-
certainty relation and the actual Heisenberg
microscope thought experiment, let us recall
the Heiseberg micropscope setting. Consider
a lens with aperture a at a distance l from the
illuminated object. For simplicty we assume
that the object is imaged using the lens on a
very distant screen, see Fig. ??. We can quan-
tify the precision as a minimal size of a light
spot in the object plane that correspond to
light travelling at a given angle to the screen.
From standard optics considerations one can
show, that the precision is then of the order:
δx ≈ λ

a l. Note that we use a di�erent nota-
tion, namely δx rather than ∆x, to clearly dis-
criminate between the precision of measure-
ment (δx) vs. the inherent uncertainty of the

17
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physical quantity in the state itself (∆x).
In order to asses the disturbance to the mo-

mentum of the particle, note that when we
collect light arriving at a given angle on the
screen, we cannot say exactly at what angle
the photon has been emitted from the particle,
as ig could travel along di�erent paths through
the lens. The angle spread is roughly ϕ ≈ a/l
(we assume the angle is small), and hence the
uncertainty in the x-component of momentum
transfer to the particle is dp ≈ h

λ
a
l�note again

a di�erent notation dp for the disturbance. So
�nally we can write δxdp & ~.
As the reader might have noticed the above

reasoning is very qualitative and in fact it
is not an easy task to rigorously de�ne the
concept of disturbance of the observable (see
e.g. a review paper [?]. Moreover, the ap-
proach discussed above, breaks the symmetry
between the x and p quantities, which is not
always desired. Because of this conceptual dif-
�culties we will not study this approach here
in detail, and will rather focus on a symmet-
ric and easier to study from a quantitative
perspective concept of joint measurement�
see Fig. 3 to see the formal di�erence between
these three approaches.

3.3 Joint measurement

Within the concept of joint measurement, our
goal is to obtain information on two quanti-
ties in the best possible way even if their cor-
responding observables do not commute. In
particular we will want to obtain a limit on
the possibility of joint measurement of posi-
tion and momentum. Clearly, it will not be
possible to obtain simultanous measurement
of x and p equivalent to sharp measurements
of both quantitites. Still, if we allow for a
compromise of performing �smeared� position
and momentum measurements we may be able
to construct the corresponding joint measure-
ment protocol. We start with a general de�-
nition.

De�nition 3.1. Πa and Πb POVMs are

jointly measurable i� there exist a POVM Πa,b

such that Πa =
∫
dbΠa,b, Πb =

∫
daΠa,b.

Remark. If Πx, Πp commute, we simply
take Πx,p = ΠxΠp. If not we cannot make
this construction (product will not be hermi-
tian/positive).

In particular, we cannot �nd a joint mea-
surement operator representing ideal (sharp)
position and momentum measurements. But,
if we consider smeared position and momen-
tum measurements:

Π̃x =

∫
dx′ µ(x− x′)|x′〉〈x′| (3.3)

Π̃p =

∫
dp′ ν(p− p′)|p′〉〈p′|, (3.4)

where ν, µ are smearing functions (e.g. gaus-
sians), then maybe it is possible to �nd Π̃x,p

such that Π̃x =
∫
dp Π̃x,p, Π̃p =

∫
dx Π̃x,p.

Indeed, consider:

Π̃x,p =
1

2π~
D(x, p)Π0D(x, p)†, (3.5)

where D(q, p) = e
ipx̂−ixp̂

~ is the displacement
operator and Π0 ≥ 0, TrΠ0 = 1. Equivalently:

Π̃x,p =
1

2π~
e−

ipx̂
~ e

ixp̂
~ Π0e

− ixp̂~ e
ipx̂
~ , (3.6)

where we have used eA+B = eAeBe−
1
2

[A,B].
We �rst check whether the above con-

structed Πx,p is a legal POVM. Positivity is
clear, as D(x, p) is unitary and Π0 is positive.
We are therefore left to check the completness
condition. Calculating matrix elements in the
position eigenbasis

1

2π~
〈x′|

∫
dxdpe−

ipx′
~ e

ixp̂
~ Π0e

− ixp̂~ e
ipx′′
~ |x′′〉 =

δ(x′ − x′′)
∫

dx〈x|Π0|x〉 = δ(x′ − x′′), (3.7)

we see that indeed
∫
dxdp Π̃x,p = 11.

Let us now calculate marginal probability
distributions of x and p resulting from appli-
cation of this joint measurement to a general
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state ρ. Writing Π0 =
∫
dx′dx′′(Π0)x

′
x′′ |x′〉〈x′′|

in the position eigebasis, we get

p(x) = Tr

(
ρ

∫
dpΠ̃x,p

)
=

=
1

2π~
Tr

(
ρ

∫
dpdx′dx′′(Π0)x

′
x′′ |x′+x〉〈x′′+x|e

ip(x′′−x′)
~

)
=

Tr(ρ

∫
dx′(Π0)x

′−x
x′−x|x

′〉〈x′|) = Tr(ρΠ̃x),

(3.8)

from which we see that indeed:

Π̃x =

∫
dx′µ(x′ − x)|x′〉〈x′|), (3.9)

where µ(x) = 〈x|Π0|x〉 is the smearing func-
tion. Analogously we can show that the mo-
mentum probability distribution corresponds
to

Π̃p =

∫
dp′ν(p′ − p)|p′〉〈p′|), (3.10)

where µ(p) = 〈p|Π0|p〉.

Notice that in fact Π0 can be regarded as
a state (Π0 ≥ 0, Tr(Π0) = 1.) As such it
must satisfy standard Heisenberg-Roberstson
uncertainty relation: ∆Π0x∆Π0p ≥ ~/2.

What is the uncertainty relation for the ac-
tually measured values of x and p? ∆̃x∆̃p,
where˜should remind us that this are distribu-
tion obtained using the joined measurement.
Using the properties of the convolution we get:

∆̃2x = ∆2
Π0
x+ ∆2x, (3.11)

where ∆2x is the standard variance of sharp
position measurement on ρ. We can write
analogous formula for for the momentum dis-
tribution. Clearly the �nal measurement dis-
tribution is broadened compared to sharp po-

Figure 3.2: Model of joint position and mo-
mentum measurement

sition measurements. Finally we can write

∆̃2x∆̃2p = (∆2
Π0
x+ ∆2x)(∆2

Π0
p+ ∆2p) ≥

~2

4
(∆2

Π0
x+ ∆2x)

(
1

∆2
Π0
x

+
1

∆2x

)
≥ ~2

(3.12)

where we used the standard Heisenberg-
Robertson uncertainty relations for both ρ
and Π0 states, and also the fact that (a +
b)(1/a + 1/b) ≥ 4, for arbitrary a, b ≥ 0. So
�nally, we get

∆̃x∆̃p ≥ ~ (3.13)

and we see that the joint-measurement un-
certainty relation di�ers by a factor of 2
from the standard Heisenberg-Robertson un-
certainty relation. Intuitively, this is due to
the fact that in �nal distribution the inher-
ent uncertainty of state we measure is com-
bined togather with the uncertainty of the
state which is the building block of the mea-
surement itself, and on which we e�ectively
project the measure state.
Moreover, we can interpret, the widths of

the smearing functions ∆Π0 , ∆Π0p as preci-
sions of the actual measurements, and there-
fore write δx = ∆Π0x and hence: δxδp ≥ ~/4,
where now we have a tradeo� between the pre-
cision of measuring x and the precision of mea-
suring p expressed via the familiar uncertainty
relation.

Example 3.1 In order to illustrate the above consid-
erations consider the following model of joint position-
momentum measurement. Consider a particle S trav-
elling in one dimension, with which we associate posi-
tion and momentum operators (dimensionless) x̂S , p̂S ,
satisfying [x̂S , p̂S ] = i. Initially the particle is in state
|ψ〉S . Consider a joint position and momentum mea-
surement where particle S interacts with two �measur-
ing devices� M1 i M2 through a unitary evolution:

|Ψ〉SM1M2 = U |ψ〉S⊗|0〉M1,M2 , U = e−i(x̂S p̂M1
−p̂S x̂M2

),
(3.14)
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where |0〉M1,M2 is the initial state of the measuring
devices. After the action of U , position (xM1) and
momentum (pM2) is measured of respectively systems
M1 andM2 (these measurements commute!). As a re-
sult of measurement we obtain a certain joint probabil-
ity distribution of measuring position and momentum
p(x, p) on state |ψ〉S

We start by evolving x̂1, p̂2 in the Heisenberg pic-
ture:

x̂out1 = x̂s + x̂1 − 1
2
x̂2 (3.15)

p̂out2 = p̂s + p̂2 − 1
2
p̂1, (3.16)

where we have used eABe−A = B + [A,B] +
1
2
[A, [A,B]] + . . . . We can de�ne x̂M = x̂1 − 1

2
x̂2,

p̂M = p̂2 − 1
2
p̂1, since [x̂M , p̂M ] = i~. We assume that

12〈0|x̂M |0〉12 = 0, 12〈0|p̂M |0〉12 = 0 as thanks to this
〈x̂out1 〉 = 〈xS〉, 〈p̂out2 〉 = 〈pS〉. As a result:

∆2xout1 = ∆2x|ψ〉 + ∆2
|0〉12xM (3.17)

∆2pout2 = ∆2p|ψ〉 + ∆2
|0〉12pM (3.18)

and �nally, using the Heisenberg-Robertson uncer-
tainty relations for |ψ〉 and |0〉12 we get the uncertainty
relation for joint measurement of x and p:

∆̃x∆̃p = ∆xout1 ∆pout2 ≥ ~. (3.19)

In order to saturate the above inequality we should
choose a state |0〉12 such that it minimizes the stan-
dard Heisenberg-Robertson uncertainty relation for
the xM and pM quantities.
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Problems

Problem 3.1 Using state |0〉M1,M2 found in the example above, proof that the set of POVM operators
corresponding to the above described model of joint measurements Πx,p [so that the joint distribution of
measuring x and p is given as p(x, p) = Tr(|ψ〉〈ψ|Πx,p)] has the following form:

Πx,p =
1

2π
|(x, p)〉〈(x, p)|, |(x, p)〉 =

1

π1/4

∫
dx′ e

−(x′−x)2
2 eipx′ |x′〉, (3.20)

where |(x, p)〉 is the so called coherent state with mean value of position and momentum equal x and p
respectively. Therefore, we have a nice interpretation of the joined position and momentum measurements
as projections on coherent states:

p(x, p) =
1

2π
|〈ψ|(x, p)〉|2 (3.21)

Remark: in quantum optics, the above probability distribution is called the Hussimi representation.
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Part II

Classical estimation theory
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The main task in classical estimation the-
ory is to �nd the optimal way to determine a
parameter in a statistical model using the ob-
served data. The statistical model is described
via a probability distribution pθ(x) yielding
probability of a given event x that depends
on the value of an unknown parameter θ. This
task is most commonly pursued using two dif-
ferent conceptual frameworks.
In one framework the parameter θ to be es-

timated has a �xed but unknown value. Given
the observed event x, an estimator θ̃(x) as-
cribes a given value of parameter depending
on the observed event. In such a framework
the resulting estimator will be based solely on
the observed data, typically from a series of
repeated experiments. We will refer to this
framework as the frequentist approach, and we
will discuss it in chapter 4.
The alternative, Bayesian approach, treats

the parameter θ itself as a random variable,
with some prior distribution p(θ), while the
statistical model provides us with conditional
probabilty p(x|θ) (notice the change of nota-
tion from pθ(x) to p(x|θ) which re�ects the
fact that θ is now a random variable as well).
The Bayesian approach is preferred in situa-
tions where the experiment is repeated a small
number of times and we have some important
prior information on the parameter that we
want to incorporate in our estimating process.
The Bayesian approach is discussed in chap-
ter 5. Both approaches typically yield equiva-
lent statements in the limit of in�nite number
of repetitions of the experiment.
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Chapter 4

Frequentist approach

We adopt the frequentist approach here,
and consider a family of probability distribu-
tions pθ(x) parameterized by an unknown pa-
rameter θ. For simplicity of presentation we
�rst focus on single-parameter estimation and
will generalize our results to multi-parameter
case in section 4.3.

4.1 Optimal unbiased estima-

tor

In order to provide an intuition into the prob-
lem of determining the optimal estimator let
us start with a simple example.

Example 4.1 Consider N identically and indepen-
dently distributed (i.i.d.) random variables: x =
(x1, . . . , xN ), where xi = θ + wi and wi ∼ N (0, σ2)
is a normally distributed random variable with mean
0 and variance σ2. As a result xi ∼ N (θ, σ2). More
explicitly, we can write the joint probability of observ-
ing measurement events x as

pθ(x) = pθ(x1) · · · · · pθ(xN ), (4.1)

where

pθ(xi) =
1√

2πσ2
e
− (xi−θ)

2

2σ2 . (4.2)

Assume we observe a given sequence of events:
(x1, . . . , xN ). What will be the optimal way to es-
timate θ? Natural guess is that we should take the
average θ̃(x) =

∑
i xi/N , but can we prove this is the

optimal choice?

In what follows, we will quantify the op-
timality of an estimator θ̃ using its mean
squared distance from the true value of the

parameter:

∆2θ̃ =

∫
dx
(
θ̃(x)− θ

)2
pθ(x). (4.3)

Since within the frequentist framework the pa-
rameter θ is unknown but �xed, we have to
specify some constraints on the class of esti-
mators we will be considering. Notice, that
otherwise there is no fundamental limit on
precision of estimator as we might de�ne the
estimator θ̃(x) = θ0 to be a constant function
and if we are lucky and θ0 = θ we have an es-
timator with zero uncertainty. Of course, it is
clear that such estimators are useless in prac-
tice. We will therefore require form our es-
timators to satisfy the unbiasedness condition
which excludes the above mentioned patholog-
ical cases.

De�nition 4.1 (Unbiased estimator). We
say that an estimator θ̃ is unbiased, if and
only if for all θ:

〈θ̃〉 =

∫
dx θ̃(x)pθ(x) = θ, (4.4)

which is equivalent to saying that on average
the estimator returns the true value for all val-
ues of parameter θ.

The goal of estimation theory can now be
formulated as the task of determining the un-
biased estimator that provides the minimum
variance�the minimum variance unbiased es-

timator. Interestingly it might happen that
such an estimator does not exist, in the sense

27
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that there is no single estimator that is opti-
mal for the whole range of parameters θ (see
Problem ??).

Recalling that the frequentist approach as-
sumes a �xed but unknown parameter, it is
typical that we deal with situation where we
known roughly the parameter value to be
around some value θ0 and want to estimate
it precisely staying within some small inter-
val around it. It is therefore useful to in-
troduce a weaker condition of local unbiased-
ness, which will actually be su�cient to derive
all the bounds that will follow, and moreover
there will be no issue of nonexistence of mini-
mal variance locally unbiased estimator.

De�nition 4.2 (locally unbiased estmator).
We say that an estimator θ̃ is locall unbiased
at θ = θ0, if and only if

〈θ̃〉θ=θ0 =

∫
dx θ̃(x)pθ0(x) = θ0, (4.5)

d〈θ̃〉
dθ

∣∣∣∣∣
θ=θ0

=

∫
dx θ̃(x)

dpθ0(x)

dθ

∣∣∣∣
θ=θ0

= 1,

(4.6)

which means that we only expect the esti-
mator to track the true parameter up to the
�rst order around a given value of parameter
θ = θ0.

Example 4.1 (continued) Considering the same
gaussian example as before, we see that indeed the pro-
posed estimator θ̃(x) =

∑
i xi/N is unbiased, whereas

its uncertainty reads:

∆2θ̃ =

〈(
1

N

∑
i

xi − θ

)2〉
=
σ2

N
. (4.7)

The question remains if this is the minimal possible
variance?

4.2 Cramér-Rao bound

We would like now to derive a lower bound
on variance of any unbiased (locally) estima-
tor, the so called Cramér-Rao (CR) bound.
Thanks to this once we are able to show that

a given estimator saturates the bound we will
be sure that it is optimal.

Theorem 4.1 (Cramér-Rao bound). Let
pθ(x) be a family of probability distributions.
Provided pθ(x) satis�es some regularity condi-
tions (see the proof), precision of any locally
unbiased estimator θ̃ is lower bounded by:

∆2θ̃ ≥ 1

F
, F =

∫
dx

ṗθ(x)2

pθ(x)
, (4.8)

where ṗθ(x) = dpθ(x)
dθ , and F is called the

Fisher Information (FI). For simplicity of no-
tation we have replaced θ0 with θ.

Proof. We assume∫
dx θ̃(x)ṗθ(x) = 1, (4.9)∫

dx ṗθ(x) = 0, (4.10)

where the �rst condition is the local unbiasedness con-
dition, while the second is the formal requirement for
regularity of pθ(x) (if pθ(x) is regular we may enter
with the integral under the derivative and trivially sat-
isfy this condition)�see Problem ?? to see an example
of the model where this regularity assumption is not
satis�ed and there is no lower bound on uncertainty
of the estimator.

Consider the following chain of inequalities

∆2θ̃ · F =

∫
dx pθ(x)

(
θ̃(x)− θ

)2

·
∫

dx
ṗθ(x)2

pθ(x)
=

∫
dx
[√

pθ(x)
(
θ̃(x)− θ

)]2
·
∫

dx

(
ṗθ(x)√
pθ(x)

)2
C-S

≥

(∫
dx
(
θ̃(x)− θ

)
ṗθ(x)

)2

= 1, (4.11)

where we have used the Cauchy-Schwarz (C-S) in-
equality and utilized the local unbiasedness and regu-
larity conditions in the last step. �

Remark. One can encounter di�erent but
equivalent formulas for the FI:

F =
〈(

d
dθ log pθ(x)

)2〉
= −

〈
d2

dθ2 log pθ(x)
〉
.

(4.12)

Additivity of FI. The FI is additive for

product distributions. Let p
(12)
θ (x1, x2) =

p
(1)
θ (x1)p

(1)
θ (x2), then F (12) = F (1) + F (2).
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This is the justi�cation for referring to this
quantity as information. In particular, given
N i.i.d. random variables xi, F

(N) = NF ,
where F is the FI for single random variable,
and in such cases the CR bound yields

∆2θ̃ ≥ 1

NF
, (4.13)

showing the expected 1/N decrease in estima-
tion variance as the number of repetitions of
experiment increases.

Example 4.1 (continued) Let us calculate the FI for
the Gaussian example studied in this chapter. Since
we deal with N i.i.d. random variables, we can imme-
diately say that F (N) = NF , where F is the FI for

the Gaussian pθ(x) = 1√
2πσ2

e−(x−θ)2/2σ2

, and equals

F = 1/σ2. Hence we obtain

∆2θ̃ ≥ σ2

N
(4.14)

demonstrating that indeed the estimator considered
before is optimal. In general an estimator that satu-
rates the CR bound is called e�cient.

Condition for saturability of the CR

bound. Recalling the derivation of the CR
bound, we see that the saturation of the
CR bound is equivalent to saturation of the
Cauchy-Schwarz inequality which is equiva-
lent to:

λ(θ)
√
pθ(x)(θ̃(x)− θ) =

ṗθ(x)√
pθ(x)

(4.15)

or equivalently

d

dθ
log pθ(x) = λ(θ)

(
θ̃(x)− θ

)
, (4.16)

where λ(θ) is arbitrary function. One can
check the the above condition indeed holds for
the exemplary Gaussian model we discussed in
this section, provided we set θ̃(x) =

∑
i xi/N ,

λ(θ) = N/σ2.

4.3 Multi-parameter case

We now consider a general situation where
we want to estimate multiple parameters θ =

(θ1, θ2, . . . , θP ). The object which is a natural
generalization of the estimator variance is the
estimator covariance matrix C:

Cij =

∫
dx pθ(x)

(
θ̃i(x)− θi

)(
θ̃j(x)− θj

)
.

(4.17)
Diagonal elements represent the variances of
estimators of a particular parameter, while
o�-diagonal terms represent potential correla-
tions between estimation of di�erent param-
eters. The multi-parameter generalization of
the CR bound is a matrix inequality bounding
the C matrix with the FI matrix.

Theorem 4.2 (Multi-parameter CR bound).

C ≥ F
−1, Fij =

∫
dx

∂ipθ(x)∂jpθ(x)

pθ(x)
,

(4.18)
where F is the FI matrix and ∂i denote di�er-
entiation with respect to θi parameter. The
above matrix inequality should be understood
in the sense that C − F−1 is a positive semi-
de�nite matrix.

Proof. We assume regularity and local unbiasedness
conditions, which in the multiparameter case am-
mount to: ∫

dx θ̃i(x)∂jpθ(x) = δij , (4.19)∫
dx ∂ipθ(x) = 0. (4.20)

Let us choose some vectors w and v of length P and
write

wTCw·vTFv =

∫
dx
∑
ij

wipθ(x)(θ̃i(x)−θ)(θ̃j(x)−θ)wj

·
∫

dx′
∑
i′j′

vi′
∂i′pθ(x′)∂j′pθ(x′)

pθ(x′)
vj′ =

∫
dx
∑
i

wi
√
pθ(x)(θ̃i(x)−θ)

∑
j

√
pθ(x)(θ̃j(x)−θ)wj ·∫

dx′
∑
i′

vi′
∂i′pθ(x′)√
pθ(x′)

∑
j′

∂j′pθ(x′)√
pθ(x′)

vj′

C-S

≥

[∫
dx

(∑
i

wi(θ̃i(x)− θ)

)(∑
i′

vi′∂i′pθ(x)

)]2

=

(wT v)2, (4.21)

where in the last step we have used the local unbi-
asedness as well as regularity conditions. Choosing
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Figure 4.1: Maximum likelihood estimator

w = Fv, we get:

vTFCFv · vTFv ≥ (vTFv)2, (4.22)

vTFCFv ≥ vTFv. (4.23)

Since the above inequality is valid for arbitrary v, this
implies

FCF ≥ F⇒ C ≥ F
−1, (4.24)

where the �nal result we have obtained by acting on
both sides with F−1. �

Remark. From the derived bound it follows
in particular that: ∆2θ̃i ≥ (F−1)ii ≥ (Fii)

−1,
and the last inequality is in general strict
if F contains nonzero o�-diagonal elements.

To see this consider: 1 = eTi
√
F
√
F−1ei

C-S
≤

eTi Feoe
T
i F
−1ei, where ei is the basis vector

with 1 at i-th position and zeros elsewhere.
This inequality leads to (F−1)ii ≥ 1/Fii.

4.4 Maximum likelihood esti-

mator

Typically, we will encounter situations when
there is no unbiased estimator that strictly
saturates the CR bound for the parameter we
want to estimate. We are therefore looking
for some universally applicable recipe to �nd
a good estimator.

De�nition 4.3 (Maximum likelihood (ML)
estimator). Given a probabilistic model,
pθ(x), the ML estimator is de�ned as:

θ̃ML(x) = argmaxθ[lx(θ)], (4.25)

where lx(θ) = pθ(x) is the likelihood function,
for which θ is the argument.

In other words, given observed event x we
look for such a parameter θ for which prob-
ability pθ(x) (or equivalently the likelihood
lx(θ)) is maximal�the event is most likely,
see Fig. ??. The position of the maximum
corresponds to θ̃ML(x).

Remark. In practice, since lx(θ) will often
be represented as product of many terms (as
in e.g. repeated experiment scenarios), it is
much more e�cient and stable numerically to
maximize log[lx(θ)] (the log-likelihood func-
tion), as products will turn into sums, and
since the log function is monotonic the posi-
tion of the maximum will remain unchanged.

Example 4.2 Consider our Gaussian example,

lx(θ) = pθ(x) =
1

√
2πσ2

N

N∏
i=1

e−(xi−θ)/σ2

. (4.26)

For a given x we look for the maximum of l. The
condition

d

dθ
pθ(x) = 0, or equivalently

d

dθ
log pθ(x) = 0

(4.27)
implies:

θ̃ML(x) =
1

N

∑
i

xi. (4.28)

We see that the ML estimator is actually the same
simple estimator we have proven before to be e�cient.

The above apparent coincidence of the ML
estimator and the e�cient estimator is a gen-
eral feature. Note that the CR bound satura-
bility condition (4.16) implies that if we take
θ such that d

dθ log pθ(x) = 0, i.e. extremum
of the log likelihood function, then the actual
e�cient estimator θ̃(x) = θ = θ̃ML(x) (un-
less λ(θ) = 0, which corresponds to a trivial
case of FI equal to zero), so indeed the ML
estimator is the e�cient estimator.

We will now prove the most important the-
orem of classical estimation theory, namely
the asymptotic e�ciency of the ML estima-
tor, which means that the ML estimator will
asymptotically saturate the CR bound in a
model with large number of identical and in-
dependent repetitions of the experiment. We
will need the following Lemma:

Lemma 4.1. Let p1(x), p2(x) be two proba-
bility distributions, then

D(p1|p2) =

∫
dxp1(x) log

p1(x)

p2(x)
≥ 0, (4.29)

where D(p1|p2) is called the relative entropy.
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Proof. The log function is concave, which means that
log(

∑
i witi) ≥

∑
i witi, for wi ≥ 0,

∑
i wi = 1. Set-

ting tx = p2(x)
p1(x)

, wx = p1(x) and utilizing the concavity
of the log function we get∫

dx p1(x) log
p2(x)

p1(x)
≤ log

∫
dx p2(x) = 0, (4.30)

which ends the proof. �

We are now ready to prove the main theo-
rem.

Theorem 4.3. Let

pθ(x) = pθ(x1) · · · · · pθ(xN ), (4.31)

represent the joint probability distribution for
N independent repetitions of an experiment.
The ML estimator will be asymptotically un-
biased and e�cient in the limitN →∞, which
formally means:

θ̃ML ∼ N
(
θ0,

1

FN

)
, (4.32)

where θ0 is the true value of the parameter
and F is the FI corresponding to a single ex-
periment pθ(xi) at θ = θ0.

Proof. We start by making some technical assump-
tions concerning the regularity of pθ(x). We assume
that that log pθ(x) has derivatives up to order 2 and
〈∂θ log pθ(x)〉 = 0. The proof consists of two parts.
First we prove asymptotic unbiasedness and then e�-
ciency.

Asymptotic unbiasedness. Let θ̃ be an estimator.
Let us divide the log-likelihood function at θ̃ by N :

1

N
lx(θ̃) =

1

N
log pθ̃(x) =

1

N

∑
i

log pθ̃(xi). (4.33)

By the law of large numbers, for almost every sequence
x, we get

1

N
lx(θ̃)

N→∞−−−−→
∫

dx pθ0(x) log pθ̃(x) (4.34)

where θ0 is the true value. Using Lemma 4.1 we get∫
dx pθ0(x) log pθ̃(x) ≤

∫
dx pθ0(x) log pθ0(x).

(4.35)
This shows that the argument θ̃ for which we obtain
the maximum of lx(θ), i.e. the ML estimator, in the
asymptotic limit N → ∞ will correspond to the true
value.

Asymptotic e�ciency. We will start by invoking
the mean value theorem, which states that assuming
θ0 < θ̃ (the order here is not important) there exist
θ0 ≤ θ̄ ≤ θ̃ such that:

d log pθ(x)
dθ

∣∣∣
θ=θ̃
− d log pθ(x)

dθ

∣∣∣
θ=θ0

θ̃ − θ0

=
d2 log pθ(x)

dθ2

∣∣∣∣
θ=θ̄

.

(4.36)

If θ̃ = θ̃ML then d log pθ(x)
dθ

∣∣∣
θ=θ̃ML

= 0 therefore we get

d log pθ(x)

dθ

∣∣∣∣
θ=θ0

=
d2 log pθ(x)

dθ2

∣∣∣∣
θ=θ̄

(θ0 − θ̃ML).

(4.37)
Let us now consider:

1

N

d2 log pθ(x)

dθ2

∣∣∣∣
θ=θ̄

=
1

N

∑
i

d2 log pθ(xi)

dθ2

∣∣∣∣
θ=θ̄

.

(4.38)

We know that θ̃ML
N→∞−−−−→ θ0 and hence θ̄

N→∞−−−−→ θ0.
We can therefore write:

1

N

d2 log pθ(x)

dθ2

∣∣∣∣
θ=θ̄

N→∞
=

1

N

∑
i

d2 log pθ(xi)

dθ2

∣∣∣∣
θ=θ0

=〈
d2 log pθ(xi)

dθ2

∣∣∣∣
θ=θ0

〉
= −F. (4.39)

Let us de�ne a random variable ξ, which is a sum of
N i.i.d variables, as follows:

ξ =
1√
N

d log pθ(x)

dθ

∣∣∣∣
θ=θ0

=

1√
N

∑
i

d log pθ(xi)

dθ

∣∣∣∣
θ=θ0

. (4.40)

Note that 〈ξ〉 = 0, while the second moment reads:

〈ξ2〉 =

〈
1

N

(∑
i

d log pθ(xi)

dθ

∣∣∣∣
θ=θ0

)2〉
=

1

N

∑
i

〈(
d log pθ(xi)

dθ

∣∣∣∣
θ=θ0

)2〉
= F. (4.41)

By the central limit theorem this implies that ξ ∼
N (0, F ). As a result

θ̃ML − θ0 =

d log pθ(x)
dθ

∣∣∣
θ=θ0

d2 log pθ(x)

dθ2

∣∣∣
θ=θ̄

∼ N
(

0,
NF

N2F 2

)
(4.42)

so �nally:
θ̃ML ∼ N (θ0, (NF )−1), (4.43)

which shows that asymptotically the maximum likeli-
hood estimator is normally distributed and saturates
the CR bound. A priori, it is not clear, however, how
large N need to be taken to saturate the bound up
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to some give accuracy. This depends on the details of
the model. �
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Problems

Problem 4.1 Consider two random variables x1, x2 distributed according to:

x1 ∼ N (θ, σ2) (4.44)

x2 ∼

{
N (θ, σ2) θ ≥ 0

N (θ, 2σ2) θ < 0
(4.45)

where x ∼ N (θ, σ2) means that x is distributed according to a Gaussian (normal) distribution with mean
θ and variation σ2. Assuming σ is known and the parameter to estimate is θ, try to prove using the
Cramera-Rao bound, that in the region θ ≥ 0 the optimal estimator is θ̃(x1, x2) = 1

2
(x1 + x2), while in

region θ < 0 the optimal estimator is θ̃(x1, x2) = 1
3
(2x1 + x2). In this way you will prove that there is

no single estimator minimizing the variance for all θ.

Problem 4.2 Consider a generalization of the Cramer-Rao bound, where instead of estimating the
parameter θ itself we want to estimate a value of a function g(θ). Prove that that if pθ(x) is a family of
probability distribution then for arbitrary locally unbiased estimator g̃(x), we have

∆2g̃ ≥ g′(θ)2

F
(4.46)

where g′(θ) = dg(θ)
dθ

and F is the Fisher inforomation for pθ(x).

Problem 4.3 We say that pθ(x) belongs to the exponential family of proability distributions if and only
if

pθ(x) = ea(θ)+b(x)+c(θ)d(x) (4.47)

Prove, that in this case, there is always a function g(θ) for which there exist an e�cient estimator�the
estimator that saturates the CR bound. A lot of probability distributions belong to this family (see
ttp://en.wikipedia.org/wiki/Exponential_family ).

Problem 4.4 Consider a probabilistic model where we register values ofN independent random variables
xn, (n = 0, . . . , N − 1), where xn ∼ N (an+ b, σ2) (linear dependence + gaussian noise).

a) Write down the Fisher matrix corresponding to the two-parameter estimation problem of estimating
a and b parameters.

b) Using the CR bound derive a lower bound on the minimal achievable estimation variance of the
two parameters: ∆ã, ∆b̃. Which one is �easier� to estimate.

c) Try to provide estimators saturating the bound�check if by chance these are the same estimators
that one uses in the heuristic minimum squared distance method . . .

Problem 4.5 Consider N i.i.d binary valued random variables xi ∈ {0, 1} (i = 0, . . . , N − 1), where
p(xi = 0) = p, p(xi = 1) = 1 − p. Consider the problem of estimating parameter p. (Hint: To simplify
further calculations, note that what is really relevant in the observed events is the number a zeros and
ones in N realizations and not the order in which they appeared).

a) What does the Cramér-Rao (CR) bound tells us concerning the best achievable precision of esti-
mating p?

b) Is CR bound saturable for �nite N? What is the optimal estimator?

c) Does this family of probability distributions belong to the so called exponential family (see Problem
2 in Problem set 3)?

d) Imagine, that in fact p = sin2(θ/2), where θ ∈ [0, π] and we are actually interested in estimating θ,
and not p itself. Derive the CR bound for estimating θ.



34 CHAPTER 4. FREQUENTIST APPROACH

e) This time, there is no estimator that saturates the CR bound (check it) for �nite N . We can, how-
ever, try to use the maximum-likelihood (ML) estimator in order to estimate θ and check whether
we can approach the CR bound bound in the limit of large number of experiment repetitions.
Proceed as follows:

� Write a program, generating N i.i.d. realizations of random variable xi, such that p(xi =
0) = sin2(θ/2), p(xi = 1) = cos2(θ/2), for some �xed θ (e.g. π/3, π/2, 2/3π) and some
�xed N (e.g. N = 10). Such a sample of N numbers we will call a single realization of the
experiment.

� Generate data for k (k ≈ 1000, or more) experiments

� For each experiment, �nd the ML estimator θ̃ML

� Plot a histogram of obtained values of ML estomator and calculate the spread of the results
(standard deviation)� this will be a good approximation of the esimator uncertainty ∆θ̃.
Compare with the CR bound.

� Repeat above steps for di�erent N , e.g. in the range of 1 to 10000 (of course not for all
N but only some representative ones). Generate a plot: estimator uncertainty vs. N and
compare it with the CR bound to draw a conclusion concerning the regime where we can
claim asymptotic saturation of the CR bound (e.g. you can assume a criterion, that we look
for such an N when we are within 1% from the CR bound). Hint: For clarity, it is better to
plot ∆θ̃

√
N , rather than ∆θ̃, and compare with CR bound for a single realization.



Chapter 5

Bayesian approach

In Bayesian approach, we will write p(x|θ)
instead of pθ(x), which is to re�ect the fact
that θ should be regarded as a random vari-
able itself and not a �xed but unknown param-
eter as in the frequentist approach. Within
the Bayesian approach, apart from p(x|θ), we
need to specify prior distribution p(θ), which
re�ects our knowledge of the parameter which
we have prior to performing any experiment.

In frequentist approach our goal was to
minimize the estimation variance, as given in
Eq. (4.3), with local unbiasedness condition
imposed. In Bayesian approach the goal is to
minimize the average variance:

∆2θ̃ =

∫
dθ p(θ)

∫
dx
(
θ̃(x)− θ

)2
p(x|θ).

(5.1)
In this case there is no need to impose any
additional requirements such as unbiasedness.
We simply look for an estimator θ̃ that mini-
mizes the above quantity.

5.1 Optimal Bayesian estima-

tor

Let us rewrite the formula for the average
variance, using the Bayes rule p(x|θ)p(θ) =
p(θ|x)p(x), as follows:

∆2θ̃ =

∫
dx p(x)

∫
dθ,
(
θ̃(x)− θ

)2
p(θ|x).

(5.2)
Since p(x) ≥ 0, and θ̃(x) for di�erent x
can be treated as independent variables, min-

Figure 5.1: Bayesian update of a prior distri-
bution to a posteriori distribution based on
data obtained

imization over θ̃ amounts to minimization

of
∫
dθ,
(
θ̃(x)− θ

)2
p(θ|x) quantity indepen-

dently for each x over θ̃(x). This is a quadratic
function in θ̃(x) and hence minimization is
straightforward, as

d

dθ̃(x)

∫
dθ
(
θ̃(x)− θ

)2
p(θ|x) = 0 (5.3)

implies

θ̃(x) =

∫
dθ p(θ|x)θ = 〈θ〉p(θ|x). (5.4)

Hence the optimal Bayesian estimator corre-
sponds to the the mean of the posteriori dis-
tribution p(θ|x). The corresponding minimal
cost reads:

∆2θ̃ =

∫
dxp(x)

∫
dθ,
(
〈θ〉p(θ|x) − θ

)2
p(θ|x) =

=

∫
dx p(x) ∆2θ

∣∣
p(θ|x)

(5.5)

and amount to the average variance of the pos-
teriori distribution.

It is therefore clear that the fundamental
object in the Bayesian approach is the posteri-
ori distribution p(θ|x). This can be calculated

35
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via Bayes rule:

p(θ|x) =
p(x|θ)p(θ)
p(x)

. (5.6)

Note, however, that p(x) is not explicitly
given, and calculating it requires performing
the following integral: p(x) =

∫
dθ p(x|θ)p(θ).

p(x) plays a role of a normalization factor
for the distribution, while the θ dependence is
determined by the product of p(x|θ) and p(θ).
To get a better intuitive understanding of the
Bayesian approach, observe that p(θ) repre-
sents just the prior knowledge while all the
information that we get from the data is cap-
tured by p(x|θ). Analyzing these two function
one my easily understand what is the relative
role of the prior information vs data. If p(θ)
varies much slower with θ compared to p(x|θ)
it means that the prior is largely irrelevant. In
the opposite case the the prior dominates our
inference strategy.

Example 5.1 Let us again reconsider the gaussian
estimation model, where our observations are mod-
eled as N i.i.d. random variables xi ∼ N (θ, σ2), from
which we want to estimate θ. However, this time we
further assume that we have a gaussian prior distribu-
tion of the θ parameter itself θ ∼ N (µθ, σ

2
θ). For the

model presented we want to �nd the optimal Bayesian
estimator and the resulting estimation uncertainty.

For this model:

p(x|θ)p(θ) = 1√
2πσ2

θ

(
1√

2πσ2

)N
e−

1
2
Gx(θ), (5.7)

where Gx(θ) = 1
σ2
θ

(θ − µθ)2 + 1
σ2

∑
i(xi − θ)

2.

We immediately see that the posteriori distribution
p(θ|x) ∼ p(x|θ)p(θ) will also be Gaussian. As a result
we can easily normalize it and arrive at the �nal form
of the posteriori distribution:

p(θ|x) = 1√
2πσ2

θ|x
e
− 1

2σ2
θ|x

(θ−µθ|x)2

, (5.8)

where

σ2
θ|x =

(
N

σ2
+

1

σ2
θ

)−1

, (5.9)

µθ|x =

(∑
i xi

σ2
+
µθ
σ2
θ

)
σ2
θ|x (5.10)

are respectively the variance and the mean of the pos-
teriori distribution.

The optimal Bayesian estimator which is the mean

of the posteriori distribution µθ|x may be rewritten in
a more appealing form

θ̃(x) = αx̄+ (1− α)µθ, (5.11)

where x̄ =
∑
i xi/N , α = N

σ2 /
(
N
σ2 + 1

σ2
θ

)
. The above

form clearly shows that the optimal Bayesian estima-
tor arises as a result of compromise between what the
data suggest (in this case the mean of observed val-
ues ) and the prior information (in this case the mean
of the prior µθ) and α represents the weight of the
information part.

According to (5.5) the resulting cost will be the
average of the posteriori variance. In our model the
variance of the posteriori distribution does not depend
on x and hence we may immediately write:

∆2θ̃ = σ2
θ|x =

(
N

σ2
+

1

σ2
θ

)−1

. (5.12)

In the limit N → ∞ the role of the prior becomes
irrelevant and as a result θ̃(x)→ x̄ and ∆2θ̃ → σ2/N ,
which coincides with the results obtained within the
frequentist approach.

5.2 Bayesian Cramér-Rao

bound

Even though, unlike in the frequentist ap-
proach, the recipe for the optimal Bayesian
estimator is explicit, it may still be useful
to have an easily computable lower bound
on achievable estimation uncertainty within
the Bayesian framework in the spirit of the
Cramér-Rao bound derived within the fre-
quentist approach.

Theorem 5.1 (Bayesian Cramér-Rao bound-
�van Trees inequality). Given a Bayesian es-
timation problem with p(θ) as priori distri-
bution and p(x|θ) as conditional distribution
for observation of an event x, than assuming
standard regularity conditions and vanishing
of the prior on the ends of the interval over
which parameter θ is considered (θ ∈ [θ−, θ+]),
the following bound on the average variance
holds irrespectively of the estimator function
chosen

∆2θ̃ ≥ 1

F̄ + I
, (5.13)

where F̄ =
∫
dθ F (θ) is the FI aver-

aged with the prior distribution, while I =
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∫
dθ 1

p(θ)

(
dp(θ)
dθ

)2
represents the information

contribution coming from the prior distribu-
tion.

Proof. Let us de�ne two functions

f(θ, x) =
√
p(x|θ)p(θ)(θ̃(x)− θ), (5.14)

g(θ, x) =
1√

p(x|θ)p(θ)
dp(x|θ)p(θ)

dθ
. (5.15)

First observe that ∆2θ̃ =
∫
dθdx f(θ, x)2, so the av-

erage variance may be viewed as the squared norm of
the the function f . Further note:∫

dθdx g(θ, x)2 =

∫
dθdx

p(θ)

p(x|θ)

(
dp(x|θ)
dθ

)2

+

p(x|θ)
p(θ)

(
dp(θ)

dθ

)2

+ 2
dp(x|θ)
dθ

dp(θ)

dθ
=∫

dθp(θ)F (θ) +

∫
dθ

1

p(θ)

(
dp(θ)

dθ

)2

=

F̄ + I, (5.16)

where we have used regularity assumptions thanks to
which

∫
dθdx dp(x|θ)

dθ
dp(θ)
dθ

= 0. Moreover:∫
dθdx f(θ, x)g(θ, x) =

=

∫
dθdx (θ̃(x)− θ)dp(x|θ)p(θ)

dθ
=

=

∫
dx p(x|θ)p(θ)|θ+θ− −

∫
dθ θ

dp(θ)

dθ
=

= −θp(θ)|θ+θ− +

∫
dθ p(θ) = 1, (5.17)

where in the last step we performed integration by
parts, and we have used the fact that p(θ+) = p(θ−) =
0. Applying now the Cauchy-Schwarz inequality∫

dθdx f(θ, x)2

∫
dθ′dx′ g(θ′, x′)2 ≥(∫
dxdθf(θ, x)g(θ, x)

)2

, (5.18)

we prove the theorem. �

The above inequality clearly illumianates
the role of the data and the prior in Bayesian
inference. The F̄ quantity corresponds to the
information coming from data while I repre-
sents the information due to prior. In the large
number of experiment repetition limit, we ex-
pect F̄ to grow linearly with number of repeti-
tions, while I remains constant. Hence in this
limit we will recover standard CR inequality

as I will be negligible compared to F̄ .

Example 5.1 (continued) For the gaussian Bayesian
model considered before, we may calculate the quanti-
ties appearing in the Bayesian Cramér-Rao inequality.
FI does not depend on θ and hence F̄ = N/σ2, while
I = 1/σ2

θ . We see that the Bayesian Cramer-Rao in-
equality implies:

∆2θ̃ ≥
(
N

σ2
+

1

σ2
θ

)−1

, (5.19)

which is exactly the precision achieved by the opti-
mal Bayesian estimator. In this case the inequality is
saturated.

[BAYESIAN MULTI-PARAMETER CR
BOUND] [JEFFREYS PRIOR]
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Problems

Problem 5.1 Consider a Bayesian estimation problem, but with a di�erent cost function than the mean
squared error. In case when we want to estimate a phase (or some other angle-like parameter) θ ∈ [0, 2π],

a more practical cost function is a function of the form C(θ, θ̃) = 4 sin2
(
θ−θ̃

2

)
, which for small deviations

between θ and θ̃ is equivalent to the variance but respects that fact, that the 2π di�erence is not relevant.
Average cost is then given by:

C̄ =

∫
dθdx 4 sin2

(
θ − θ̃(x)

2

)
p(x|θ)p(θ). (5.20)

Find the optimal Bayesian estimator for this cost function.

Problem 5.2 Analyze the conditions for saturation of the Bayesian Cramér-Rao inequality and check
if the gaussian model consider during the lecture is the only one for which the inequality is actually
saturated.



Part III

Quantum estimation theory
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In classical estimation theory, our funda-
mental object was the probabilistic model
given in terms of family of probability dis-
tributions pθ(x) (or conditional probability
p(x|θ) and prior p(θ) in the Bayesian ap-
proach), and the goal was to �nd the opti-
mal inference strategy for θ based on obser-
vations x. In quantum estimation theory our
basic object will be a family of quantum states
ρθ where θ is the parameter we want to esti-
mate. In order to obtain the family of proba-
bility distributions we will additionally need
to choose a measurement. If we choose a
measurement {Πx}, then the resulting fam-
ily of probability distributions are given as
pθ(x) = Tr(ρθΠx) and from now on we can
apply the known tools of classical estimation
theory.
We see that e�ectively quantum estimation

theory amounts to classical estimation theory
+ choice of measurement. It will be important
to know how to choose the optimal measure-
ment since the amount of accessible informa-
tion on θ will strongly depend on this choice.
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Chapter 6

Quantum frequentist estimation

In order to better grasp the intuitions be-
hind the theory that will be developed in this
chapter let us be guided by the following sim-
ple example.

Example 6.1 Consider a single qubit system, and the
family of states

|ψθ〉 =
1√
2

(
|0〉+ eiθ|1〉

)
, (6.1)

parameterized by an angle θ ∈ [0, 2π]. In the Bloch
sphere picture these states correspond to states on the
equator. Assume we are given N copies of the state
so that

ρθ = (|ψθ〉〈ψθ|)⊗N . (6.2)

We want to know how to choose the optimal mea-
surement and estimator in order to estimate θ with
the lowest uncertainty possible. Consider two exem-
plary measurements, corresponding to the following
choices of basis, a) {|0〉, |1〉}, b) {|+〉, |−〉}, where
|±〉 = (|0〉 ± |1〉)/

√
2. In case of measurement a)

we see that pθ(0) = 1/2, pθ(1) = 1/2, so that the
measurements results do not carry any information on
the parameter θ. On the other hand, measurement b)
leads to probability distributions pθ(±) = |〈+|ψθ〉|2 =
1
2
(1± cos θ). which seems much more reasonable. We

can caluclate the correspondin FI for this measure-
ment which yields:

F =
1

pθ(+)

(
dpθ(+)

dθ

)2

+
1

pθ(−)

(
dpθ(−)

dθ

)2

= 1.

(6.3)
As a result given N copies, F (N) = N , and the CR
bound implies that ∆2θ̃ ≥ 1/N .

The question is whether this measurement is opti-
mal, or maybe some other measurement could result
in higher FI? Note that we have just considered mea-
surements on a single qubit, while in principle given
N copies one could consider also collective measure-
ments on all N copies simultaneously. Might that be
helpful? In the following sections we will develop tools
that will allow us to answer these questions.

In this chapter we will pursue the frequen-
tist approach and try to �nd a fundamental
lower bound on achievable estimation uncer-
tainty. The following theorem is a generaliza-
tion of the classical Cramér-Rao bound and
we �rst focus on the single-parameter case.

6.1 Quantum Cramér-Rao

bound

Theorem 6.1 (Quantum Cramér-Rao
bound). Given a family of states ρθ, arbi-
trary measurements and locally unbiased
estimators the estimation variance is lower
bounded by:

∆2θ̃ ≥ 1

FQ
, (6.4)

where FQ is the quantum Fisher information
(QFI) that is de�ned as

FQ = Tr(ρθΛ
2
θ), (6.5)

where Λθ is the symmetric logarithmic deriva-
tive (SLD) operator de�ned implicitly via the
following equation

dρθ
dθ

=
1

2
(Λθρθ + ρθΛθ) . (6.6)

Proof. First note, that the SLD operator de�ned in
the theorem can be written explicitly if one consider
it in the ρθ eigenbasis. Let ρθ =

∑
i λi|ei〉〈ei| then
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according to de�ning equation for SLD we have:

〈ei|
dρθ
dθ
|ej〉 =

1

2
〈ei| (ρθΛθ + Λθρθ) |ej〉 =

=
1

2
(λi〈ei|Λθ|ej〉+ 〈ei|Λθ|ej〉λj) . (6.7)

As a result we get an explicit formula for the SLD
operator:

〈ei|Λθ|ej〉 =
2〈ei|dρθdθ |ej〉
λi + λj

. (6.8)

Since ρθ is hermitian, then from the above formula it in
particular follows that Λθ is also a hermitian operator.

Consider a measurement {Πx} and the correspond-
ing probability distribution pθ(x) = Tr(ρθΠx). We
want to derive an upper bound on the resulting Fisher
information valid for arbitrary measurements:

F =

∫
dx

[
Tr(Πx

dρθ
dθ

)
]2

Tr(Πxρθ)
=

=

∫
dx

[
Tr
[

1
2
Πx(Λθρθ + ρθΛθ)

]]2
Tr(Πxρθ)

. (6.9)

Let us just focus on the term in the enumerator. Since
all ρθ, Πx, Λθ are hermitian we may equivalently write∣∣∣∣Tr [1

2
Πx(Λθρθ + ρθΛθ)

]∣∣∣∣ =

=

∣∣∣∣Tr(1

2
[ΠxΛθρθ + (ΠxΛθρθ)

†]

)∣∣∣∣ =

= |ReTr (ΠxΛθρθ)| ≤ |Tr (ΠxΛθρθ)| . (6.10)

We now make use of the Cauchy-Schwarz inequal-
ity with respect to the Hilbert-Schmidt matrix scalar
product:∣∣∣Tr(AB†)∣∣∣2 ≤ Tr

(
A†A

)
Tr
(
B†B

)
, (6.11)

where we set A =
√

Πx
√
ρθ, B =

√
ΠxΛθ

√
ρθ and

obtain:

|Tr (ΠxΛθρθ)|2 ≤ Tr(ρθΠx)Tr(
√
ρθΛθΠxΛθ

√
ρθ).
(6.12)

Substituting this inequality to (6.10) and (6.9) we �-
nally arrive at:

F ≤
∫

dxTr(ρθΛθΠxΛθ) = Tr(ρθΛ
2
θ) = FQ, (6.13)

where we have made use of the completeness prop-
erty of measurement operators Πx. This way we have
proved that whatever measurement is chosen F ≤ FQ.
Making use of the classical CR bound we therefore
obtain

∆2θ̃ ≥ 1

F
≥ 1

FQ
. (6.14)

�

Remark. Note that in the classical case,

dpθ(x)

dθ
=

d log pθ(x)

dθ
pθ(x) (6.15)

so the object that multiplies the probability
distribution and yields its derivative is the log-
arithmic derivative. The Λθ is therefore the
operator analog of the logarithmic derivative.
Due to non-commutativity this choice is not
unique and hence the name SLD indicates that
we de�ne it in a symmetric way. It is possi-
ble to de�ne e.g. right logarithmic derivative
(RLD) via dρθ

dθ = ρθ(x)ΛRθ , and the derivation
of the CR bound will also be valid. Still in
general the RLD does not exist (notice that
it will only exist if the kernel of dρθ

dθ is the
same as the kernel od ρθ(x)). Moreover, even
if it exists, it may be shown that in the single
parameter case the resulting bound is never
tighter than the one based on the SLD. In
multi-parameter case, however, it might hap-
pen that RLD provides a tighter bound, see
Sec. 6.4 for more information. I do not use
RLD

Additivity of the QFI Similarly to the
FI the QFI is additive. Consider a family of
states of a bipartite system that are products
of states of individual systems:

ρ
(12)
θ = ρ

(1)
θ ⊗ ρ

(2)
θ . (6.16)

Let Λ
(1)
θ , Λ

(2)
θ be SLD operators corresponding

to ρ
(1)
θ and ρ

(2)
θ respectively. Then:

dρ
(12)
θ

dθ
=

dρ
(1)
θ

dθ
⊗ ρ(2)

θ + ρ
(1)
θ ⊗

dρ
(2)
θ

dθ
=

1

2

(
Λ

(1)
θ ρ

(1)
θ + ρ

(1)
θ Λ

(1)
θ

)
⊗ ρ(2)

θ +

ρ
(1)
θ ⊗

1

2

(
Λ

(2)
θ ρ

(2)
θ + ρ

(2)
θ Λ

(2)
θ

)
=

1

2

(
Λ

(1)
θ ⊗ 11 + 11⊗ Λ

(2)
θ

)
ρ

(1)
θ ⊗ ρ

(2)
θ +↔,

(6.17)
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from which we see that the SLD for the joined
state equals

Λ
(12)
θ = Λ

(1)
θ ⊗ 11 + 11⊗ Λ

(2)
θ . (6.18)

Consequently the QFI reads:

F
(12)
Q = Tr(ρ

(12)
θ Λ

(12)2
θ ) =

= Tr(ρ
(1)
θ Λ

(1)2
θ ) + Tr(ρ

(2)
θ Λ

(2)2
θ )+

+ 2Tr(ρ
(1)
θ Λ

(1)
θ ) · Tr(ρ(2)

θ Λ
(2)
θ ) =

F
(1)
Q + F

(2)
Q , (6.19)

where we have used the fact that Tr(ρθΛθ) =
Trdρθ

dθ = 0.

In particular, when we consider N copies
of a quantum state ρ⊗Nθ , the resulting QFI

reads F
(N)
Q = NFQ, where FQ is the QFI cor-

responding to the single state ρθ.

Pure state case Consider a special case
where the states in which the parameter is en-
coded are pure, ρθ = |ψθ〉〈ψθ|. In this case the
SLD operator may be written explicitly as

Λθ = 2
(
|ψ̇θ〉〈ψθ|+ |ψθ〉〈ψ̇θ|

)
, (6.20)

where |ψ̇θ〉 = d|ψθ〉
dθ . Let us check this:

1

2
(Λθ|ψθ〉〈ψθ|+ |ψθ〉〈ψθ|Λθ) =

|ψ̇θ〉〈ψθ|+|ψθ〉〈ψ̇θ|+(〈ψ̇θ|ψθ〉+〈ψθ|ψ̇θ〉)|ψθ〉〈ψθ| =

=
d|ψθ〉〈ψθ|

dθ
, (6.21)

where we have used the identity 0 =
d〈ψθ|ψθ〉

dθ = 〈ψ̇θ|ψθ〉+ 〈ψ̇θ|ψθ〉.
The resulting QFI reads:

FQ = Tr
(
|ψθ〉〈ψθ|Λ2

θ

)
= 〈ψθ|Λ2

θ|ψθ〉 =

= 4
(
〈ψθ|ψ̇θ〉2 + 〈ψ̇θ|ψθ〉2 + 〈ψ̇θ|ψ̇θ〉+ |〈ψθ|ψ̇θ〉|2

)
.

(6.22)

Since 〈ψ̇θ|ψθ〉 + 〈ψ̇θ|ψθ〉 = 0, if we square it,

we obtain the following identity:

〈ψθ|ψ̇θ〉2+〈ψ̇θ|ψθ〉2+|〈ψθ|ψ̇θ〉|2 = −|〈ψ̇θ|ψθ〉|2.
(6.23)

Substituting this to (6.22) we �nally arrive at:

FQ = 4
(
〈ψ̇θ|ψ̇θ〉 − |〈ψ̇θ|ψθ〉|2

)
. (6.24)

The above formula has a very intuitive inter-
pretation. There is more information on the
parameter accessible in the state the bigger is
the derivative |ψ̇θ〉. Still, since states are any-
way normalized, the real change has to hap-
pen in the direction perpendicular to the state
itself, and that is why we need to substitute
the component representing the change in the
direction of the state itself.

Note, that while in the derivation we have
used an explicit formula for the SLD, the SLD
for pure states is not a unique operator. In
general only for full rank state the SLD is
uniquely de�ned via (6.7), otherwise we may
always add terms that are outside of the sup-
port of the ρθ and this will still lead to the
correct formula for the derivative.

Remark (Time-Energy uncertainty relation).
Consider the problem of estimating the time
of evolution of a quantum state evolving under
a known Hamitonian. Formally consider the
family of states:

|ψt〉 = e−iHt/~|ψ〉, (6.25)

where now it is time t which is the parameter
to be estimated. As this is a pure state model
we can easily calculate QFI using [?] and get

FQ =
4

~2

(
〈ψt|H2|ψt〉 − |〈ψ(t)|H|ψ(t)〉|2

)
,

(6.26)
which is proportional to the variance of the
Hamiltonian on the state. The QCR bound
now takes the form

∆2t̃∆2H ≥ ~2

4
, (6.27)

which may be viewed as a formal statement
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of the time-energy uncertainty relation. The
fact that there is no time operator in quantum
mechanics does not cause any problem here,
since ∆2t̃ is the variance of an estimator and
not of an operator.

Example 6.1 (continued) Let us calculate the QFI
information for the qubit model. First note that
|ψ̇θ〉 = ieiθ|1〉/

√
2, hence

FQ = 4

(
1

2
− 1

4

)
= 1. (6.28)

Given N copies the QFI equals F
(N)
Q = N , and hence

the QCR bound implies that ∆2θ̃ = 1/N . Note that
this is the same value we have obtained, when we
calculated FI for the measurement in |±〉 basis. It
implies that this measurement is indeed optimal (one
can check that actually any measurement in the basis
where vectors lie in the equatorial plane of the Bloch
sphere will be optimal, so this choice was not unique).

This observation has some far reaching conse-
quences. As a by product we have also proven, that
collective measurements are not necessary to achieve
the optimal precision�note that QFI for N copies
ρ⊗Nθ is just N times QFI for a single copy, and hence
we can �nd a measurement on a single copy that makes
the corresponding FI equal to QFI of the state, it im-
plies that if we repeat the measurement on N copies
we will get N times larger FI, and as result the same
value as QFI for the N copy state�note that that the
derivation of the quantum CR bound allowed for arbi-
trary measurements, so when considered for the ρ⊗N

we have taken into account the possibility of collective
measurements.

Saturability of the quantum CR bound

In the single qubit example from previous sec-
tion we have seen that there was a simple mea-
surement for which the corresponding FI was
equal to the QFI. Inspecting the derivation of
the QCR bound, we see that in order to sat-
urate the Cauchy-Schwarz inequality we need
to satisfy√

Πx
√
ρθ = λx

√
ΠxΛθ

√
ρθ, (6.29)

where λx is some proportionality constant.
Moreover, i� λ is real then inequalitiy (6.10)
will also be saturated. This can be seen as

follows:

|ReTr(ΠxΛθρθ)| = |ReTr(
√
ρθ
√

Πx

√
ΠxΛθ

√
ρθ)| =

|ReλxTr(
√
ρθΛθΠxΛθ

√
ρθ)|. (6.30)

Note that the operator under the trace is her-
mitian so the trace is real. Hence if and only
if λ ∈ R we can remove Re without changing
the value of the expression.

Let Λθ =
∑

x lx|x〉〈x| be the eigendecom-
position of Λθ so that |x〉 form orthonormal
eigenbasis. Now, let us consider a measure-
ment which corresponds to a projection mea-
surement in the eigenbasis of the SLD oper-
ator: Πx = |x〉〈x|. Note that since this is a
projective measurement

√
Πx = Πx. We have:

|x〉〈x|Λx
√
ρθ = lx|x〉〈x|

√
ρθ, (6.31)

and hence indeed we satisfy all saturability
conditions provided we set λx = 1/lx.

Remark. Even though we have proven that
there always exist a projective measurement
for which FI equals to QFI, we need to keep
in mind that we still need to satisfy the clas-
sical requirement of existence of the estimator
that satis�es the classical CR bound in order
to claim that actually the QCR bound is sat-
urated. In particular even if there is a sin-
gle copy measurement for which FI equals the
QFI it does not mean we can saturate QCR
bound using single copy measurements. We
may still need in general to have many repeti-
ions of the experiment (many copies of a quan-
tum state) to really be sure that the estimator
that asymptotically saturates the CR bound
(e.g. max-likelihood estimator) exists.

6.2 Multi-parameter case

Let us now consider a multi-parameter esti-
mation problem, where the family of states
ρθ is parametrized by K real parameters θ =
{θ1, . . . , θK}. Similarly as in the classical case
the following multiparameter generalization of
the CR bound holds.
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Theorem 6.2 (Multiparameter quantum
Cramér-Rao bound). Given a family of states
ρθ, θ = {θ1, . . . , θK}, the following matrix in-
equality holds:

C ≥ F
−1
Q , (6.32)

where C is the K ×K covariance matrix cor-
responding to estimation involving any locally
unbiased estimators and arbitrary measure-
ments and FQ is the QFI matrix de�ned as:

(FQ)ij =
1

2
Tr [ρθ(Λθ,iΛθ,j + Λθ,jΛθ,i)] ,

(6.33)
where Λθ,i is the SLD corresponding to pa-
rameter θi:

dρθ
dθi

=
1

2
(ρθΛθ,i + Λθ,iρθ) . (6.34)

Proof. The proof utilizes the same steps that could
be found in earlier derivations of the single param-
eter quantum CR bound and multiparameter classi-
cal CR bound. We provide the proof below, without
comments as we basically repeat the steps that were
employed in the earlier proofs:

vTFv =

∫
dx

[∑
i viReTr(ΠxΛθ,iρθ)

]2
TrρθΠx

≤∫
dx

∣∣Tr(∑i viΠxΛθ,iρθ)
∣∣2

TrρθΠx
≤

∫
dx

Tr(ρθΠx)Tr
(∑

ij vivj
√
ρθΛθ,i

√
Πx

√
ΠxΛθ,j

√
ρθ
)

Tr(ρθΠx)
=

=
∑
ij

viTr (ρθΛθ,iΛθ,j) vj =

= vTFQv. (6.35)

�

Remark. In the multiparameter case the
QCR is not in general saturable. This is due
to the fact that di�erent SLDs corresponding
to di�erent parameters might not commute,
so it is not clear whether there exist a sin-
gle measurement that provides the optimal FI
for all the parameters simultaneously. In fact,
tighter bounds exist that are more informa-
tive and take into account the necessary trade-
o�s due to incompatibility of measurements
which are optimal for di�erent parameters, see

Sec. 6.4.

Remark. In order to meanigfully speak
about the optimal multi-parameter estimation
scenario it is natural to de�ne a scalar cost
function via C = TrCG, where G is some pos-
tive semide�nite cost-matrix, which encodes
the relative weights we ascribe to uncertain-
ties of d�erent parameters (or combination of
parameters) that we include in the �nal cost
function. Note that the QCR bound implies
TrCG ≥ TrFQG.

6.3 Natural metric in the

space of quantum states

Bures metric Since the QFI is a measure
of distinguishability of quantum states we may
employ it as a natural measure of distance be-
tween quantum states. Let us de�ne in�nites-
imal distance between states ρ and ρ+ dρ as:

dB(ρ, ρ+ dρ)2 =
1

4
Tr(ρ dΛ2), (6.36)

where dΛ is de�ned via:

dρ =
1

2
(dΛ ρ+ ρ dΛ). (6.37)

dB is called the Bures distance and the result-
ing metric in the space of quantum states is
called the Bures metric. When restricted to
pure states, the Bures metric is refered to as
the Fubini-Study metric.

Fidelity In quantum information theory a
commonly used measure of similarity of two
quantum states is the so called �delity. Given
two pure states |ψ1〉, |ψ2〉 the �delity is de�ned
as:

F(|ψ1〉, |ψ2〉) = |〈ψ1|ψ2〉|2 (6.38)

and may be interpreted as the probability of
observing state |ψ1〉 as state |ψ2〉 or vice versa.
Fidelity is generalized to mixed states using
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the following formula:

F(ρ1, ρ2) = max
|ψ1〉,|ψ2〉

|〈ψ1|ψ2〉|2, (6.39)

where |ψi〉 ∈ H⊗HE are puri�cations of states
ρi: ρi = TrE |ψi〉〈ψi|, where E represents an-
cillary Hilbert space used for puri�cation.

Theorem 6.3 (Uhlman theorem). An ex-
plicit formula for the �delity between two
mixed states reads:

F(ρ1, ρ2) = (Tr|√ρ1
√
ρ2|)2, (6.40)

where |A| =
√
A†A.

Proof. Let |ψi〉 ∈ HS ⊗ HE be puri�cations of ρi.
We can rewrite each |ψi〉 as a matrix Ai, such that
(Ai)

k
l = ψi,kl, were k, l represent indices corresponding

to spaces H and HE . Then ρi = TrE |ψi〉〈ψi| = AiA
†
i .

Now,

F(ρ1, ρ2) = max
A1,A2

|Tr(AB†)|2, ρi = AiA
†
i . (6.41)

Note that changing a puri�cation for a given ρ corre-
sponds to replacing A → AU , where U is a unitary.
Let us now consider the polar decomposition of Ai,
Ai =

√
ρiUi, and observe that

|Tr
(
A1A

†
2

)
| = |Tr

(√
ρ1U1U

†
2

√
ρ2

)
| =

|Tr
(√

ρ2
√
ρ1U1U

†
2

)
| ≤ Tr|√ρ1

√
ρ2|. (6.42)

Note that the above inequality can be saturated if we
choose puri�cations such that U1U

†
2 = 11.

In the above derivation we have used the prop-
erty that for any hermitian matrix A and unitary U ,
|Tr(AU)| ≤ Tr|A|. This can be seen as follows. Let
A =

∑
i ai|i〉〈i| be eigendecomposition of A. Since

trace is basis independent we can perform it using the
basis |i〉: |Tr(AU)| = |

∑
i ai〈i|U |i〉|. Absolute value

of any matrix element of a unitray matrix is smaller
or equal to 1. Hence |

∑
i ai〈i|U |i〉| ≤ |

∑
i ai| ≤∑

i |ai| = Tr|A|. �

Relation between the Fidelity and the

QFI We now prove a theorem that provides
a link between the �delity and the QFI, by
showing that in�nitesimal change in the �-
delity when a quantum state is changed is pro-
portional to the QFI.

Theorem 6.4. For two in�nitesimally close
states ρθ, ρθ+dθ,

F(ρθ, ρθ+dθ) = 1− 1

4
FQ(ρθ)dθ

2 +O(dθ3).

(6.43)

Proof. Consider:√
F(ρθ, ρθ+dθ) = Tr [

√
ρθ (ρθ + ρ̇θdθ)

√
ρθ]) =

= Tr
[
ρ2
θ +
√
ρθρ̇θ
√
ρθdθ

]
, (6.44)

where we have made a replacement ρθ+dθ = ρθ+ ρ̇θdθ.
We now want to expand the above quantity up to the
second order in dθ. Since we deal with operators we
have to be careful. We write:

Tr
[
ρ2
θ +
√
ρθρ̇θ
√
ρθdθ

]
= ρθ +Adθ +Bdθ2 +O(dθ3),

(6.45)
where A and B are operators we want to determine
now. Let us take square of the both sides of the above
equations and compare terms in the leading orders in
dθ. As a result we obtain the following equations:

ρθA+Aρθ =
√
ρθρ̇
√
ρθ (6.46)

A2 + ρθB +Bρθ = 0. (6.47)

Solving the above equations in the eigenbasis of ρθ =∑
i pi|i〉〈i| we get:

Aij =

√
pipj

pi + pj
ρ̇θ,ij → Tr(A) = 0, (6.48)

while

Bij = −
∑
k AikAkj

pi + pj
=

− 1

pi + pj

∑
k

√
pipj

pi + pk

√
pkpj

pk + pj
ρ̇θ,ikρ̇θ,kj . (6.49)

As a result

TrB = −
∑
ik

pk
2(pi + pk)

|ρ̇θ,ik|2. (6.50)

Note that from the de�nition of the SLD, ρ̇θ,ik =
1
2
Λθ,ik(pi+pk), and hence TrB = − 1

2
TrρθΛ

2
θ = − 1

8
FQ.

So we get√
F(ρθ, ρθ+dθ) = 1− 1

8
FQdθ

2 +O(dθ3) (6.51)

which yields the desired theorem when squared. �

Remark. Combining the claims of Theorems
6.3, ?? it immediately follows that

FQ(ρθ) = min
|ψθ〉

FQ(|ψθ〉), (6.52)

where minimization is performed over all pu-



6.4. HOLEVO CRAMER-RAO BOUND 49

ri�cations of the mixed states ρθ.

6.4 Holevo Cramer-Rao

bound

Below we present Holevo Cramer-Rao bound
for multiparameter estimation, which is
tighter than the QFI one, but unfortunately
also harder to be applied, since we will not be
able to completely get rid of the problem of
optimization over the measurements.

Theorem 6.5 (Holevo Cramér-Rao bound).
Given a family of states ρθ, θ = {θ1, . . . , θK},
then for any locally unbiased measure-
ment/estimation strategy and any cost matrix
G the following bound on the estimation cost
holds:

Tr(G·C) ≥ min
Xi∈L(H)

Tr(G·ReV )+||
√
G·ImV

√
G||1,

(6.53)
where || · ||1 is the trace norm (||A||1 :=
Tr
√
AA†), Vij := Tr(ρθXiXj) and Xj are her-

mitian matrices satisfying Tr(dρθ
dθi
Xj) = δij .

Proof. For any measurement Πx and estimator θ̃(x)
we may de�ne

Xi :=
∑
x

(θ̃i(x)− θi)Πx. (6.54)

Therefore minXi in (6.53) corresponds to optimization
over measurements. Since we work in the frequentist
approach, we as usual impose the local unbiasedness
condition:

d

dθj

∑
x

Tr (ρθΠx) θ̃i(x) = δij , (6.55)

which when written in terms of Xi implies

Tr

(
dρθ
dθi

Xj

)
= δij . (6.56)

For simplicity of notation let us focus on estimation
around θ = 0. First, we proof matrix inequality C ≥ V
(for any set of Xi). To do that we introduce following
matrix, acting on CK ⊗ H (where CK is an abstract
K-dimensional Hilbert space, where K is the number

of parameters in the problem):

∑
x

 θ̃1(x)−X1

...

θ̃K(x)−XK

Πx

[
· · · , θ̃i(x)−Xi, · · ·

]
≥ 0.

(6.57)
As any x element of this sum is positive-de�ned and
hence is the whole matrix. After transferring all terms
with Xi to the right side, substituting (6.54) in proper
places, using

∑
j Πj = 11 and applying TrH(ρθ· ) we

arrive at
C ≥ V. (6.58)

Note, that this inequality holds on a complex space
CK and, as it may happen that ImV 6= 0, the resulting
inequality is stronger than simply Tr(G·C) ≥ Tr(G·V )
and stronger bounds may in principle be derived.

Thanks to the fact that C is a symmetric matrix,
from C ≥ V we also have C ≥ V T . Taking into ac-
count that the V matrix is hermitian, we may there-
fore write:

(C− ReV ) ≥ iImV,
(C− ReV ) ≥ −iImV,

(6.59)

Introducing the eigenbasis of iImV =
∑
l λl|l〉〈l|, the

two above inequalities are equivalent to:

(C− ReV ) ≥
∑
l

|λl||l〉〈l| = Abs(ImV ). (6.60)

where Abs(A) represents a matrix with the same
eigenvectors as A but with all eigenvalues replaced
with their absolute values. Analogously, since G is
positive we may multiply both sides (6.59) by

√
G

without a�ecting the validity of inequalities and ar-
rive at:
√
G(C−ReV )

√
G ≥ Abs(

√
GImV

√
G) = |

√
GImV

√
G|,

(6.61)
where |A| =

√
A†A and we have used the fact that

Abs(A) = |A| for unitary diagonalizable matrixes (i.e.
normal matrices� here

√
GImV

√
G is anti-hermitian

and hence normal). Finally tracing the above inequal-
ity we get

Tr(G · C) ≥ Tr(G · ReV ) + ||
√
G · ImV

√
G||1. (6.62)

The above inequality holds for any measurement
(which de�nes Xi matrices simultaneously) and we
may tighten it by choosing a set Xi which the min-
imizes the right-hand side for given cost function G
(without bothering if there exists corresponding mea-
surement). In this way we arrive at (6.53). �

Note, that for projective measurements (i.e.
ΠxΠx′ = δx,x′Πx) inequality C ≥ V becomes
equality C = V and that automatically im-
plies ImV = 0. As any POVM on the H may
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be modeled as a projective measurement on
H ⊕ HM , another version of above theorem
may be formulated:

Theorem 6.6 (Matsumoto Cramér-Rao
bound). Given a family of states ρθ, θ =
{θ1, . . . , θK}, then for any locally unbiased
measurement/estimation strategy and any
cost matrix G the following bound on the es-
timation cost holds:

Tr(G · C) ≥ min
Xi∈L(H⊕CK): ImV=0

Tr(G · V ),

(6.63)
where Vij := Tr(ρθXiXj) and Xj are her-

mitian matrices and satisfy Tr(dρθ
dθi
Xj) = δij .

This bound is exactly equivalent to the Holevo
Cramér-Rao bound

Proof. It is enough to prove the equivalence with the
Holevo Cramér-Rao bound. Let us decompose Xi ∈
L(H ⊕ CK) into Xi = Yi + Zi, where PHY PH = Y
and PHZPH = 0 (PH is projection onto H here). We
de�ne matrices VX , VY , VZ as (VX)ij = Tr(ρθXiXj)
etc. To prove equivalence between the Matsumoto and
the Holevo Cramér-Rao bound, we show that for any
�xed VY the following equation holds:

min
Zi:ImVX=0

Tr(G · VX) = Tr(G · ReVY ) + ||G · ImVY ||1.

(6.64)
Directly from the de�nition of Yi, Zi we have Vx =
Vy + Vz. After substituting it to the above equation
the whole problem simpli�es to:

min
Zi:ImVZ=−ImVY

Tr(G · ReVZ) = ||G · ImVY ||1. (6.65)

First, since
√
GVZ

√
G ≥ 0 we have Tr(G · ReVZ) ≥

||G · ImVZ ||1 = ||G · ImVY ||1. The only thing left to
do is to show that this inequality is saturable.

Let us take VZ = Abs(ImVY ) − iImVY . Such a Vz
is positive, saturates the above inequality and as a
result there exists a corresponding set of Zi for which
the equality (6.64) holds. �

Remark. To compare the Holevo CR bound
with the standard QFI based CR bound, let
us come back to the weaker bound which ap-
peared in the �rst proof, Tr(G·C) ≥ Tr(G·V ).
We show below by using the Lagrange multi-
plier method, that

min
Xi

Tr(G · V ) = Tr(G · F−1
Q ). (6.66)

and hence this weaker inequality corresponds
to the standard multi-parameter CR bound.

Proof. Keeping in mind the local unbiasedness con-
straint:

Tr

(
dρθ
dθi

Xj

)
=

1

2
Tr(ρϕ{Xi, Lj}) = δij . (6.67)

let us write the solution to the minimization problem
of the r.h.s of Eq. (6.66) explicitly using the Lagrange
multiplier method. Introducing Lagrange multipliers
λij we need to minimize

1

2

∑
ij

GijTr(ρϕ{Xi, Xj})−λij [δij−
1

2
Tr(ρϕ{Xi, Lj})]

(6.68)
over Hermitian Xi. Each n-dimensional Hermitian
matrixXi may be parametrized by n2 real parameters.
Taking the derivatives over each of these produces a
set of matrix equations,

∀i
∑
j

Gij{ρϕ, Xj} − λij{ρϕ, Lj} = 0. (6.69)

Taking

Xi =
∑
j

(G−1Λ)ijLj . (6.70)

where by Λ we denote the matrix of Lagrange mul-
tipliers (Λ)ij = λij it is clear that Eq. (6.69)
is satis�ed. Moreover, the constraint condition
1
2
Tr({Xi, Lj}ρϕ) = δij reads:

1

2
(G−1Λ)ikTr({Lk, Lj}ρϕ) = δij . (6.71)

This implies that the Lagrange multiplier matrix must
be chosen so that:

G−1ΛFQ = 11. (6.72)

As a result the solution to the minimization problem
reads

Xi =
∑
j

(FQ
−1)ijLj (6.73)

and utilizing the fact that QFI matrix is symmetric
we get

Tr(G · ReV ) = Tr(GFQ
−1FQF

−1
Q ) = Tr(GF−1

Q ),
(6.74)

which ends the proof. �

Even though the Holevo CR bound is
tighter than the QFI one, there is still no guar-
antee for saturability. Note, that while any
measurement with estimator de�ne Xi, there
is no guarantee that for any set of Xi there ex-
ist proper Πx and θ̃(x) satisfying (6.54). How-
ever, it may be proved that they exist when
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we consider pure states: ρθ = |ψθ〉〈ψθ|.

Theorem 6.7 (Saturability of the Holevo
and Matsumoto Cramér-Rao bound for pure
states). Given a family of pure states ρθ =
|ψθ〉〈ψθ|, θ = {θ1, . . . , θK} and demanding
the measurement/estimation strategy to be
locally unbiased, we have that for any cost
matrix G:

min
Πx,θ̃(x)

Tr(G · C) =

= min
Xi∈L(H⊕CK): ImV=0

Tr(G · V )

= min
Xi∈L(H)

Tr(G · ReV ) + ||G · ImV ||1,

(6.75)

where Vij := Tr(ρθXiXj) and Xj satisfy

Tr(dρθ
dθi
Xj) = δij .

Proof. We will prove the �rst equality (the second one
comes directly from theorem 6.6).

As we deal only with pure states, let us introduce
simpli�ed notation: |xi〉 := Xi|ψθ〉 (and then Vij =
〈xi|xj〉). Note, that |xi〉 which minimize the above
expression, always satisfy ∀i〈ψθ|xi〉 = 0 (as adding
|x′i〉 = |xi〉+ αi|ψθ〉 may only increase Vij and it does
not a�ect the constraint Tr(dρθ

dθi
Xj) = δij).

As ∀i〈ψθ|xi〉 = 0 and ∀ij〈xi|xj〉 ∈ R we may choose
a basis {|bi〉} of span{|ψθ〉, |x1〉, ..., |xK〉} satisfying:
∀i〈ψθ|bi〉 ∈ R\0 and ∀ij〈xi|bj〉 ∈ R.

Then we can de�ne a projective measurement:

Πj = |bj〉〈bj | (j = 1, ...,K+1), Π0 = 11−
K+1∑
j=1

|bj〉〈bj |

(6.76)
with estimator:

θ̃i(j) =
〈bj |xi〉
〈bj |ψθ〉

+ θi (j = 1, ...,K + 1), θ̃i(0) = 0

(6.77)
which is locally unbiased and satis�es

|xi〉 =

K+1∑
j=1

(θ̃i(j)− θ̃i)Πi|ψθ〉. (6.78)

Therefore, by virtue of theorems 6.5 and 6.6, the thesis
is proved. �

In case of mixed states the bound in not
always saturable. However, it is always sat-
urable in the asymptotic limit of many copies

ρ
(N)
θ = ρ⊗Nθ in the sense that:

lim
N→∞

N min
Πx,θ̃(x)

Tr (G · C) =

min
Xi∈L(H)

Tr(G · ReV ) + ||
√
G · ImV

√
G||1.

(6.79)

where in the above formula the left-hand side
minimum reference to minimization over all
measurement and estimation strategies on N -

copy state ρ
(N)
θ , while when calculating the

Holevo CR bound on the right-hand side we
take a single copy stateρθ. This is the conse-
quence of the quantum local asymptotic nor-
mality theorem and the fact that Holevo CR
bound is saturable for gaussian states models.
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Problems

Problem 6.1 Consider the following family of qubit states:

|ψϕ〉 = cos(θ/2)|0〉+ sin(θ/2) exp(iϕ)|1〉, (6.80)

where parameter θ we regard as known while our goal is to estimate ϕ.

a) What does quantum Cramer-Rao bound tell us about achievable estimation precision if we were
given N copies of the above state: |ψϕ〉⊗N

b) What would be the optimal measurement that guarantees saturation of the Cramer-Rao bound for
large N�does the measurement depend on the value of estimated parameter ϕ?

c) Repeat the above points, in case where instead of N copies of the pure state |ψϕ〉 we get N noisy
copies each described by the following mixed state: ρϕ = p|ψϕ〉〈ψϕ| + (1 − p)11/2, where p is a
known parameter.

d) Consider multiparameter estimation case, where we assume that apart from ϕ also θ and p are
unknown parameters to be estimated. Write down the QFI matrix and try to conjecture whether
there is measurement that allows to saturation of the CR bound for all parameters simultaneously.

Problem 6.2 We have introduced the Bures metric, where the distance element is de�ned through:

d2
Bρ =

1

4
Tr(ρ dΛ2), dρ =

1

2
(dΛρ+ ρdΛ). (6.81)

Prove that in case of a qubit, for which a general state is parameterized as:

ρ =
1

2
(11+ ~r · ~σ), ~r = (r sin θ cosϕ, r sin θ sinϕ, r cos θ), (6.82)

Bures metric takes the form:

d2
Bρ =

1

4

[
d2r

1− r2
+ r2(d2θ + sin2 θd2ϕ)

]
. (6.83)

Hint: Start by parameterizing the state using Cartesian coordinates (x,y,z) and try to �nd Λ from
condition (6.81)�remember that Λ is hermitian which means that it can be written asΛ =

∑3
i=0 λiσi,

where λi ∈ R, and σ0 = 11.

Problem 6.3 Some problem for Holevo.



Chapter 7

Quantum Bayesian estimation

In this chapter we will follow the Bayesian
paradigm and develop methods to �nd op-
timal measurement and estimation strategies
for quantum estimation models. A Bayesian
quantum estimation model consists of the
familiy of states ρθ and the prior distribution
p(θ). The goal is to �nd a measurement {Πx}
and an estimator θ̃(x) that minimize the av-
erage Bayesian cost:

C̄ =

∫
dθ p(θ)

∫
dxTr(ρθΠx)C[θ, θ̃(x)],

(7.1)
where C(θ, θ̃) is the cost function penaliz-
ing for the deviation of the estimator from
the true value. In particular, if we chose
C(θ, θ̃) = (θ − θ̃)2 we return to the standard
Bayesian variance cost function.

From chapter 5 we now that once the mea-
surement is �xed and hence we can write the
conditional probability p(x|θ) it is clear how
to �nd the optimal Bayesian estimator. Still,
the issue of determining the optimal measure-
ment remains non-trivial.

Note that we can formally relabel the mea-
surement operators Πx to Πθ̃(x), so that in fact
the label represents the estimated value of pa-
rameter, Πθ̃ =

∫
dxΠxδ(θ̃− θ̃(x)). We do not

loose any generality here, but thanks to this
we can combine the double minimization over
the measurement and the estimator to a single

optimization over the measurements only:

min
{Πθ̃}

C̄, Πθ̃ ≥ 0,

∫
dθ̃Πθ̃ = 11 (7.2)

C̄ =

∫
dθdθ̃p(θ)Tr(ρθΠθ̃)C(θ, θ̃). (7.3)

Of course this in general is a untractable
problem, as the space of all allowed gener-
alized measurements is enormous. Still, as
demonstrated below with some additional as-
sumptions on the cost function or the set of
states, the problem may be solved. Note
that the above reformulation makes the clas-
sical results on the optimal Bayesian estima-
tion not really very helpful in deriving funda-
mental bounds on precision, as we have in-
corporated the estimator in the labeling of
the measurement operators and hence in some
sense the optimal estimator is given for free
once we solve the above search for the opti-
mal measurement. This is not to say, that
we will never utilize classical results. Quite
contrary, whenever we will desire to provide
a practical protocol that performs optimally
we will eventually be forced to write down
a standard (projective) measurement and the
explicit form of estimator that achieves the
bound derived using formal approach formu-
lated above, and then we will de�nitely make
use of the optimal Bayesian estimator con-
struction known from classical theory.

53
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7.1 Quadratic cost problems

Let us start by restricting ourselves to the
quadratic cost function C(θ, θ̃) = (θ − θ̃)2.
For simplicity of the formulas that follow we
rede�ne the parameter θ so that the expec-
tation value of the prior distribution is zero,∫
dθp(θ)θ = 0. The Bayesian variance to be

minimized takes the form:

∆2θ̃ =

∫
dθdθ̃p(θ)Tr[ρθΠθ̃(θ − θ̃)

2] =∫
dθp(θ)θ2 + Tr

[∫
dθp(θ)ρθ

∫
dθ̃Πθ̃θ̃

2

]
+

− 2Tr

[∫
dθp(θ)θρθ

∫
dθ̃Πθ̃θ̃

]
=

= ∆2θ + Tr(ρ̄Λ2)− 2Tr(ρ̄′Λ1), (7.4)

where we ∆2θ =
∫
dθ p(θ)θ2 represents

the variance of the prior distribution, ρ̄ =∫
dθ p(θ)ρθ is the average state, ρ̄′ =∫
dθ p(θ)θρθ and Λk =

∫
dθ̃Πθ̃θ̃

k. The fol-
lowing theorem determines the minimum of
the above quantity optimized over all mea-
surements Πθ̃.

Theorem 7.1. Given family of states ρθ and
the priori distribution p(θ) (with expectation
value at θ = 0) the minimal Bayesian variance
for estimation of θ is given by:

∆2θ̃ = ∆2θ − Tr
(
ρ̄Λ̄2

)
, (7.5)

where Λ̄ is de�ned by the following equation:

ρ̄′ =
1

2

(
Λ̄ρ̄+ ρ̄Λ̄

)
(7.6)

and ρ̄ =
∫
dθ p(θ)ρθ, ρ̄

′ =
∫
dθ p(θ)θρθ.

Proof. Let us �rst prove that if a given POVM mea-
surement {Πx̃} is optimal, then we may �nd a pro-
jective measurement yielding the same cost. Let us
perform eigen-decomposition of Λ1 operator:

Λ1 =

∫
dθ̃Πθ̃ θ̃ =

∑
i

θ̃i|θ̃i〉〈θ̃i|. (7.7)

Consider now the following inequality:∫
dθ̃(θ̃ − Λ1)Πθ̃(θ̃ − Λ1) ≥ 0, (7.8)

which is true since Πθ̃ ≥ 0 while Λ1 is hermitian. This
implies: ∫

dθ̃Πθ̃ θ̃
2 + Λ2

1 − 2Λ2
1 ≥ 0 (7.9)

and hence
Λ2 ≥ Λ2

1. (7.10)

Let us now replace the measurement {Πθ̃} with
the projective measurement, corresponding to the pro-
jection on the eigenbasis |θ̃i〉 of Λ1. For this choice
Λ2 = Λ2

1, which according to (7.10) is the smallest op-
erator possible. Inspecting (7.4) we see that we want
the term Tr(ρ̄Λ2) to be as small as possible, and hence
it is always optimal to choose the projective measure-
ment in the eigenbasis of Λ1.

Assuming the measurement i projective, we may
now introduce a single operator variable write Λ̄ =
Λ1, Λ2 = Λ̄2 and the optimization problem amounts
to minimization of the following cost function over a
single hermitian operator Λ̄:

∆2θ̃ = ∆2θ − Tr(ρ̄Λ̄2)− 2Tr(ρ̄′Λ̄). (7.11)

Since the above formula is quadratic in matrix Λ̄, the
minimization can be performed explicitly and the con-
dition for fanishing �rst derivative amounts to the fol-
lowing linear equation:

Λ̄ρ̄+ ρ̄Λ̄− 2ρ̄′ = 0. (7.12)

Multiplying the above equality by Λ̄ and taking the
trace of both sides we get that Tr(ρ̄′Λ̄) = Tr(ρ̄Λ̄2)
and therefore we arrive at the formula stated in the
theorem. �

Gaussian prior distribution. Equations
(7.5,7.6) remind of formulas used for calcu-
lation of the QFI. The main di�erence is that
instead of the derivative of the state on the
left hand side of (7.6) there appear the ρ̄′ op-
erator. In order to establish a closer relation
between these two approaches consider a gaus-

sian prior distirbution pθ0 = 1√
2πσ2

e−
(θ−θ0)2

2σ2 ,

where θ0 is a free parameter determining the
center of the prior. We will consider the e�ect
of variation of the center of the prior around
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θ0 = 0. We now have:

ρ̄′
∣∣
θ0=0

=

∫
dθ pθ0=0(θ)θρθ =∫

dθ
dpθ0(θ)

dθ0

∣∣∣∣
θ0=0

ρθσ
2 =

d

dθ0

∫
dθ pθ0(θ)ρθ

∣∣∣∣
θ0=−

= σ2 dρ̄θ0
dθ0

∣∣∣∣
θ0=0

=

∆2θ
dρ̄θ0
dθ0

∣∣∣∣
θ0=0

. (7.13)

From the above formula we see that for Gaus-
sian prior ρ̄′ is proportional to the derivative of
the averaged state ρ̄ with respect to the shift
of the prior distribution and the proportional-
ity constant is the prior variance. Therefore:

1

2

(
ρ̄Λ̄ + Λ̄ρ̄

)
= ∆2θ

dρ̄θ0
dθ0

(7.14)

and consequently Λ̄ = Λ∆2θ, where Λ is
the standard SLD for the QFI estimation ap-
proach where using ρ̄θ0 we want to estimate
changes in the center of the prior θ0 around
point θ0 = 0. As a result: Tr(ρ̄Λ̄2) =
(∆2θ)2FQ(ρ̄θ0). Finally we can write:

∆2θ̃ = ∆2θ
[
1−∆2θFQ(ρ̄θ0)

]
, (7.15)

and we have arrived at the relation between
the cost in the quantum Bayesian estimation
and the QFI of the corresponding problem of
estimating the prior from the averaged state
ρ̄θ0 .

7.2 Covariant estimation

problems

Even though the previous section has provided
us with a general recipe how to �nd the opti-
mal Bayesian strategy for quadratic cost func-
tions this is not always enough in practical
problems. Note, that unlike in the frequen-
tist approach where we in fact work in the
paradigm of small �uctuations of parameter
value around a known value, in the Bayesian

approach we are typically faced with priors
which are by no mean narrow and hence the
approximation of arbitrary cost function to be
locally quadratic is no longer justi�ed.
This is especially pronounced in quantum

estimation theory where we face problems
where angle-like parameters, or more gener-
ally rotations are to be estimated. In such
cases theory restricted to quadratic cost func-
tion is not really helpful. Unfortunately, if
in the consideration from the previous chap-
ter we replace the quadratic cost with some
other cost function arbitrary one in general
will not be able to provide a closed solution to
the problem of determining the optimal mea-
surement and hence the minimal cost.
Fortunately, as we show below if the prob-

lem enjoys certain symmetry, we may utilize
some powerful methods based on group the-
ory considerations and attack the problem of
determining the optimal Bayesian estimation
strategy from another perspective. We will
refer to these class of estimation problems as
covariant with respect to representation of a
certain group.

De�nition 7.1 (Covariant estimation prob-
lem). Let G be a a Lie group where the group
element g ∈ G is is the estimation parameter
in our problem. Let Ug be a unitary repre-
sentation of the group in some Hilbert space,
Ug1Ug2 = Ug1g2 . We say that the Bayesian es-
timation problem is covariant with respect to
Ug if and only if the following conditions are
satis�ed:

a) The parameter to be estimated is an ele-
ment of the group g ∈ G

b) The family of states is generated by the
action of the group representation ρg =

UgρeU
†
g�is the orbit of the group.

c) The cost function is left invariant with
respect to the action of the group:
∀g1,g2,h∈GC(hg1, hg2) = C(g1, g2).

d) The prior distribution is invariant with
respect to the action of the group:
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dgp(g) = d(hg)p(hg)�the prior is uni-
form with respect to the Haar measure
on the group.

Even though the above conditions appear
quite restrictive they are nevertheless satis�ed
in a number of important quantum estimation
problem, and in particular the phase estima-
tion example we have been studying in the
previous chapter.

Example 7.1 Consider the estimation problem,
where the family of states

ρϕ = |ψϕ〉〈ψϕ|, |ψϕ〉 =
1√
2

(|0〉+ eiϕ|1〉) (7.16)

and we want to estimate ϕ given �at prior distribu-
tion p(ϕ) = 1

2π
. Note that the �at prior is a natural

least informative choice for such a problem, and hence
the issue of choosing the right prior that haunts the
Bayesian approach is not relevant here. In order to
formulate the complete model we need to choose a
cost function. Note that the standard squared dis-
tance cost function is not a sensible choice as we are
not working in the local phase estimation approach
and hence the di�erences between the estimated and
the real phase may be signi�cant. Therefore, we want
to use a cost function that takes into account the pe-
riodic nature of the phase parameter and does not pe-
nalizes us if the phase di�erence is a multiple of 2π.
One natural choice is C(ϕ, ϕ̃) = 4 sin2

(
ϕ−ϕ̃

2

)
�it re-

duces to the standard squared error for small phase
deviations, takes maximum value for ϕ − ϕ̃ = π and
re�ects the periodic nature of the phase parameter.

This problem is indeed an example of a covariant es-
timation problem, where the group behind is the U(1)

group, with the representation Uϕ = e
i

[
1 0
0 0

]
ϕ
in

the qubit space. The family of states forms indeed an
orbit, where |ψϕ〉 = Uϕ|ψ0〉, |ψ0〉 = (|0〉 + |1〉)/

√
2.

Finally, the prior as well as the cost function are in-
variant under the action of the group, as it amounts
to simple phase addition.

For covariant estimation problems the
Bayesian cost is given by:

C̄ =

∫
dg dg̃Tr(UgρeU

†
g Πg̃)C(g, g̃), (7.17)

where we assume that dg is the normalized
Haar measure on the group,

∫
dg = 1, with

respect to which the prior is trivial p(g) = 1.

De�nition 7.2 (Covariant measurement).
{Πg̃} is called a covariant measurement with

respect to an action of group representation
Ug if and only if

∀g̃,hUhΠg̃U
†
h = Πhg̃. (7.18)

Remark. In particular for a covariant mea-
surement

Πg̃ = Ug̃ΠeU
†
g̃ , (7.19)

so that all measurement operators are deter-
mined by a single seed operator Πe.

Theorem 7.2 (Optimality of covariant
measurements). For the covariant estimation
problem, the optimal measurement can be
found within the class of covariant measure-
ments.

Proof. Let Πopt
g̃ be the optimal measurement minimz-

ing C̄:

C̄opt =

∫
dg dg̃Tr(Πopt

g̃ ρg)C(g, g̃). (7.20)

Let us de�ne

Πcov
g̃ =

∫
dg′ U†g′Π

opt

g′g̃Ug′ . (7.21)

This is indeed a covariant measurement, since:

UhΠcov
g̃ U†h =

∫
dg′ Uhg′−1Πg′g̃Ug′h−1 =

g′→g′h
=

∫
dg′ U†g′Π

opt

g′hg̃Ug′ = Πcov
hg̃ . (7.22)

Moreover, the corresponding cost:

C̄cov =

∫
dg dg̃Tr

(
Πcov
g̃ ρg

)
C(g, g̃) =∫

dg dg̃Tr

(∫
dg′ U†g′Π

opt

g′g̃Ug′UgρeU
†
g

)
C(g, g̃) =∫

dg dg̃ dg′ Tr
(
U†g′gΠ

opt

g′g̃Ug′gρe
)
C(g, g̃) =

g→g′−1g

g̃→g′−1g̃
=

∫
dg dg̃ dg′ Tr

(
U†gΠopt

g̃ Ugρe
)
C(g′−1g, g′−1g̃) =∫

dg dg̃ dg′ Tr
(
Πopt
g̃ ρg

)
C(g, g̃) = C̄opt. (7.23)

So is equal to the optimal minimal cost. �

Thanks to the above theorem, the problem
of identifying the optimal estimation strat-
egy may be signi�cantly simpli�ed. Note that
thanks to the covariance property of the mea-
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surement we have:

C̄ =

∫
dg dg̃Tr (Πg̃ρg)C(g, g̃) =

=

∫
dg dg̃Tr

(
U †
g̃−1g

ΠeUg̃−1gρe

)
C(g, g̃) =

g→g̃g
=

∫
dg dg̃Tr

(
U †gΠeUgρe

)
C(g, e) =

=

∫
dgTr (Πeρg)C(g, e). (7.24)

The whole problem now amounts to mini-
mization of the above quantity over a sin-

gle operator Πe with constraints Πe ≥ 0,∫
dg UgΠeU

†
g = 11. This is a huge simpli�-

cation of the original problem and often the
optimal operator Πe may be found analyti-
cally, as is demonstrated in the examples that
follow.

Example 7.2 (Phase estimation on product qubit
states) Let us consider the problem of estimating the
phase ϕ given N qubits:

ρ(N)
ϕ = U⊗Nϕ |ψ0〉〈ψ0|⊗NU†⊗N , |ψ0〉 = (|0〉+|1〉)/

√
2,

(7.25)

where Uϕ = e
i

[
1 0
0 0

]
ϕ
. We assume the �at prior

p(ϕ) = 1/2π, and the cost function C(ϕ, ϕ̃) =
4 sin2

(
ϕ−ϕ̃

2

)
. The goal is to maximize

C̄(N) =
2

π

∫ 2π

0

dϕTr
(

Π
(N)
0 ρ(N)

ϕ

)
sin2 ϕ (7.26)

over Π
(N)
0 , such that Π

(N)
0 ≥ 0,

∫
dϕ
2π
U⊗Nϕ Π

(N)
0 U†⊗Nϕ =

11.
Let us �rst solve the N = 1 case:

C̄(1) =
1

π
Tr

(
Π

(1)
0

∫ 2π

0

dϕ sin2 ϕ

[
1 e−iϕ

eiϕ 1

])
.

(7.27)
Taking into account that sin2 ϕ = 1

2
− 1

4
eiϕ− 1

4
e−iϕ and

performing the integral in the above formula yields:

C̄(1) = Tr

(
Π

(1)
0

[
1 − 1

2

− 1
2

1

])
. (7.28)

We need to minimize the above quantity over Π
(1)
0 ,

keeping in mind that Π
(1)
0 ≥ 0,

∫
dϕ
2π
UϕΠ

(1)
0 U†ϕ = 11.

The completness condition imply that:

Π
(1)
0 =

[
1 a
a∗ 1

]
(7.29)

where a is an arbitrary complex number. However, the
positivity condition further implies that |a| ≤ 1. We

therefore need to perform the following minimization:

min
|a|≤1

Tr

([
1 a
a∗ 1

] [
1 − 1

2

− 1
2

1

])
=

= min
|a|≤1

(2− Rea) = 1 (7.30)

for a = 1. This means that the optimal seed measure-
ment

Π
(1)
0 =

[
1 1
1 1

]
= 2|+〉〈+|. (7.31)

Note that Π
(1)
ϕ = 2|ψϕ〉ψϕ so the optimal measure-

ment corresponds to POVM spanning all equatorial
states. The resulting cost equals:

C̄(1) = 1. (7.32)

One can check, that even though we have achieved
the minimal cost using covariant measurement, the
same cost would be obtained in this case using the
simplest possible projective measurement with Π0 =
|+〉〈+|, Π1 = |−〉〈−| and the corresponding estimated
values of the phase equal to ϕ̃(0) = 0, ϕ̃(1) = π.

We now move on to solve the general case N > 1.
First of all note that |ψϕ〉⊗N ∈ H⊗NS , where H⊗NS is
the fully symmetric (bosonic) subspace of the space
of N qubits. Therefore without loosing generality we
may restrict ourselves to this subspace. This space
is N + 1 dimensional so it signi�cantly reduces the
size of the considered Hilbert space. Let us denote by
|n〉 (n = 0, . . . , N) symmetric states with n qubits in
states |1〉 and N − n qubits in state 0:

|n〉 =
1√(
N
n

) ∑
perm

| 0, . . . , 0︸ ︷︷ ︸
N−n

, 1, . . . , 1︸ ︷︷ ︸
n

〉, (7.33)

where the sum is performed over all non-trivial per-
mutations. Then

|ψϕ〉 =
1√
2N

√√√√(N
n

)
einϕ|n〉. (7.34)

After the integration over ϕ is performed the formula
for the cost to be minimized reduces to

C̄(N) =
1

2N−1
Tr
(

Π
(N)
0 A

)
, (7.35)

where A is the following N + 1 × N + 1 tridiagonal
matrix

A =

N∑
n=0

(
N

n

)
|n〉〈n|+

− 1

2

N∑
n=1

√√√√(N
n

)(
N

n− 1

)
(|n〉〈n− 1|+ |n− 1〉〈n|) .

(7.36)

Within the symmetric subspace the group representa-
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tion acts according to USϕ =
∑
n e

inϕ|n〉〈n|. The com-
pleteness condtion (restrcited to the symmetric sub-

space) implies that (Π
(N)
0 )nn = 1, while o�-diagonal en-

tries are arbitrary. Still, positivity condition requires
that all o�-diagonal elements have absolute values less
or equal 1. Since o�-diagonal terms in A will all con-
tribute negaitvely to the �nal cost it is optimal to
choose all o� diagonal elements in the Π

(N)
0 operator

to be 1. Hence the optimal

Π
(N)
0 =

(
N∑
n=0

|n〉

)(
N∑
m=0

〈m|

)
(7.37)

and the resulting cost:

C̄(N) =
1

2N−1

 N∑
n=0

(
N

n

)
−

N∑
n=1

√√√√(N
n

)(
N

n− 1

) =

= 2− 1

2N−1

N∑
n=1

√√√√(N
n

)(
N

n− 1

)
. (7.38)

One can check that in the limit of large N , C̄(N) → 1
N
,

see Problem 7.2, and hence we recover the identical
asymptotic result as obtained within the frequentist
approach.

Example 7.3 (Estimation of a completely unknown
qubit state) We consider a model in which are given
N copies of a completely unknowns qubit state and
our goal is to estimate it. Formally the state reads:

ρ
(N)
ψ = |ψ〉〈ψ|⊗N , |ψ〉 = cos

θ

2
|0〉+ eiϕ sin

θ

2
|1〉,
(7.39)

where we parameterize the state of a qubit using Bloch
sphere spherical angles. In order to think of this prob-
lem as a covariant estimation problem we may view |ψ〉
as obtained by rotating a �xed state |0〉 be a represen-
tation of the SU(2) group. More precisely, since the
initial state |0〉 will not change under rotations around
the z axis, the relevant group will be G = SU(2)/U(1).

|ψ〉 = Uψ|0〉 = eiϕσz/2eiθσy/2|0〉. (7.40)

The Haar measure in this case corresponds to the nat-
ural measure on the sphere so we will integrate over
the states using

dψ =
1

4π
dθdϕ sin θ (7.41)

As a cost function we choose:

C(ψ, ψ̃) = 4(1− |〈ψ|ψ̃〉|2). (7.42)

Note that this represents a distance derived from the
�delity measure, and for in�tesimally close states will
reduce to standard squared distance on the sphere, see
Problem.... We have now formulated our problem as

a covariant estimation problem. Using (7.24) we have

C̄(N) =

∫
dψTr

(
Πe|ψ〉〈ψ|⊗N

)
4(1 − |〈ψ|0〉|2),

(7.43)

which we need to minimize over Πe, keeping in mind
Πe ≥ 0,

∫
dψ U⊗Nψ ΠeU

†⊗N
ψ = 11. Let us rewrite the

expression for the cost

C̄(N) = 4

1−
∫

dψTr
(

Πe|ψ〉〈ψ|⊗N
)
|〈ψ|0〉|2︸ ︷︷ ︸

F

 ,
(7.44)

where we have introduced F which may be viewed
as the �delity of estimation, which needs to be maxi-
mized. We can equivalently write F as:

F =

∫
dψTr

(
Πe ⊗ |0〉〈0| |ψ〉〈ψ|⊗N+1

)
, (7.45)

where we have formally extended the space to N + 1
qubit space in order to incorporate the cost function
inside the trace operator. Note that

F = Tr

Πe ⊗ |0〉〈0|
∫

dψ|ψ〉〈ψ|⊗N+1︸ ︷︷ ︸
A

 . (7.46)

Let us study the properties of the A operator. This
operator clearly is suported on the fully symmetric
subspace of N + 1 qubits and has trace 1. Moreover,
this operator is invariant under the action of U⊗N+1

ψ ,
and since the fully-symmetric subspace carries the ir-
reducible representation of the U⊗N+1

ψ representation
(with total angular momentum j = (N + 1)/2), then
by Schur lemma this operator must be proportional to
identity on this subspace. The fully symmetric sub-
space of N + 1 qubits has dimension N + 2 and as a
result:

A =
1

N + 2
11H⊗N+1

S
. (7.47)

We now need to �nd Πe such that

Tr
(

Πe ⊗ |0〉〈0| 11H⊗N+1
S

)
is maximal. We may

restrict the Πe operator to act solely on the sym-
metric subspace H⊗NS as this the subspace where

states |ψ〉⊗N live. Let us denote U
j=N/2
ψ to be the

irreducible representation of SU(2) acting on this
subspace. Taking into account the completeness
condition for Πe:∫

dψU
j=N/2
ψ ΠeU

j=N/2†
ψ = 11H⊗N

S
(7.48)

we see that TrΠe = N + 1. It is clear that in order
to have the largest overlap between Πe ⊗ |0〉〈0| and
11H⊗N+1

S
, we would like to have Πe ⊗ |0〉〈0| operator

fully supported on H⊗N+1
S . This will be so provided
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we choose
Πe = |0〉〈0|⊗N (N + 1). (7.49)

As a result we get F = N+1
N+2

and �nally

C̄(N) = 4

(
1− N + 1

N + 2

)
(7.50)
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Problem 7.1 Consider a qubit as a model of a two-level atom, where |0〉, |1〉 are respectively ground
and excited state. Let us assume that we want to estimate transition frequency ω between the levels.
We prepare the atom in state |ψ〉 = (|0〉+ |1〉)/

√
2 and evolve it subsequently for a known time t. As a

result we obtain the state:
|ψω〉 = eiωtσz/2|ψ〉. (7.51)

We assume that the prior distribution representing our prior knowledge about the frequency is gaussian:

p(ω) =
1√

2π∆2ω
e−(ω−ω0)2/2∆2ω, (7.52)

where ω0 and ∆2ω are the mean and the variance of the distribution respectively.

a) Find the formula for the minimal Bayesian cost in this problem as a function of time of evolution
t. Plot ∆2ω̃/∆2ω as a function of t, which will show relative reduction of uncertainty as a result
of the estimation procedure. Hint: In order to reduce you e�ort try to make use of the relation
between the Bayesian cost and the Fisher information so you can use some of the results from the
previous problem set.

b) Determine the optimal evolution time for which the Bayesian cost is the lowest possible.

c) For the optimal time provide the measurement and the values of estimated frequencies that result
in the optimal estimation strategy.

d) What would happen of somebody focused just on the quantum Fisher information of the state |ψω〉
in equation (7.51). At what conclusions he/she would arrive regarding the optimal evolution time
using just the concept of Fisher information. Would these conclusions be sensible.

Problem 7.2 Prove that

lim
N→∞

N · 1

2N−1

 N∑
n=0

(
N

n

)
−

N∑
n=1

√√√√(N
n

)(
N

n− 1

) = 1. (7.53)

Hint: Note that we can rewrite the left hand side as:

lim
N→∞

2N
∑
n

1

2N

(
N

n

)(
1−

√
n

N − n+ 1

)
. (7.54)

Now approximate the binomial distribution using a gaussian with mean 〈n〉 = N/2 and ∆2n = N/4.
Introduce a new variable x = n−N/2 and expand the function to be averaged with the gaussian around

x = 0. We know that x will be of order
√
N , so keep orders consistent while expanding

(
1−

√
n

N−n+1

)
up to orders 1/N (which means keeping also terms x2/N2).

Problem 7.3 In this chapter, it was proven that optimal Bayesowska strategy of estimating ϕ using N
copies of state |ψϕ〉 = 1√

2
(|0〉+ exp(iϕ)|1〉) and assuming the �at prior leads to the following formula for

the minimal cost:

C̄
(N)
opt = 2− 1

2N−1

N∑
n=1

√√√√(N
n

)(
N

n− 1

)
, (7.55)

where the cost function was chosen to be C(ϕ, ϕ̃) = 4 sin2[(ϕ− ϕ̃)/2].
Since the optimal strategy in general requires application of collective measurements on many particles,

we would like to compare it with the performance of a simply single particle measurement and simple
estimation based on the maximum likelihood estimator. Consider the following estimation strategy:

a) We perofme a measurement on a single particle described using 4 measurement operators: Π0 =
1
2
|+〉〈+|, Π1 = 1

2
|−〉〈−|, Π2 = 1

2
| + i〉〈+i|, Π3 = 1

2
| − i〉〈−i|, where |±〉 = (|0〉 ± |1〉)/

√
2, | ± i〉 =

(|0〉 ± i|1〉)/
√

2,. One can equivalently think about this measurement as a performing a projective
measurement in basis |+〉, |−〉 with probability 1/2 and with probability 1/2 measuring in the |+i〉,
| − i〉 basis. The measurement is performed subsequently on N particles. This way we obtain a
sequence of measurement results ~x = (x1, . . . , xN ), where xi ∈ {0, 1, 2, 3}.
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b) Based on results ~x we estimate phase ϕ̃ using the maximum likelihood estimator.

c) We want to compare e�ciency of this strategy with the optimal strategy. In order to do so, we �x
some true value ϕ, and repeat the above steps approx 1000 times. For each realization we calculate
the cost C(ϕ, ϕ̃). Since we want to compare the performance with the one optimal for the �at prior
we repeat this procedure for di�erent values of ϕ (e.g. 30 di�erent values) uniformly placed within
the interval [0, 2π]. We calculate the average cost C(N).

d) We repeat the above strategy for di�erent N and observe when we observe convergence to the
value of the optimal Bayesian cost. We expect this to happen, since asymptotically the optimal
cost behaves like 1/N and this we know we should be able to saturate using simple measurements.
It will be instructive to identify N for which the advantage of the optimal strategy is the largest
compared with the simple strategy, i.e. when C(N)/C

(N)
opt will be the largest
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Part IV

Quantum metrology
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Quantum metrology is the �eld of research
where one aims at utilizing non-classical prop-
erties of light and atoms such as quantum co-
herence or entanglement in order to enhance
the sensitivity of measuring devices. From a
mathematical point of view quantum metrol-
ogy represents next step in the quantum esti-
mation theory as we will be e�ectively solving
the problem of quantum channel estimation.
Consider a general quantum channel repre-

senting evolution of a quantum system, that
depends on some unknown parameter θ:

Eρ(ρ) =
∑
i

Kθ
i ρK

θ†
i = ρθ, (7.56)

where we have used the Kraus representation
form, where Kθ

i are Kraus oeprators. Given
such a model, the goal is not only to �nd the
optimal measurement Πx and estimatotr θ̃(x),
that allows us to extract information on pa-
rameter θ from quantum state ρθ, but also to
�nd the optimal input state ρ that maximizes
the information that is available for extrac-
tion. In this sense we are adding one more el-
ement in the optimization task. Our goal will
be to derive either strict limits or at least use-
ful bounds on the achievable precision in such
tasks. As before we will analyze the prob-
lem from two di�erent perspectives: frequen-
tist and Bayesian.
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Chapter 8

Noiseless quantum metrology

We will start with the noiseless case �rst
where the channel considered is unitary:

ρθ = UθρU)θ†, Uθ = eiθH (8.1)

where H plays a role of the generator of the
transformation Uθ and θ is the evolution pa-
rameter. In particular has we chose H to be
the Hamiltonian of the system, the problem
will be equivalent to the problem of estimat-
ing time of evolution of the quantum system.

It should be clear that without the loss of
generality we may always restrict ourselves
to pure state inputs. Any mixed state can
be regardes as probabilistic mixtures of pure
states, and it will never perform better than
the best pure state that enters in the mixture.
Moreoverm since we consider noiseless evolu-
tion the pure state will ramain pure and hence
we can restrict our conderations to pure states
throughout this chapter:

|ψθ〉 = eiHθ|ψ〉. (8.2)

8.1 Frequentist approach

Following the frequentist approach the natural
way to identify the optimal protocols is to look
for the input state |ψ〉 that yields the largest
possible QFI of the output state |ψθ〉. Since

˙|ψθ〉 = iH|ψθ〉 then using (6.22) QFI reads:

FQ = 4
(
〈ψθ|H2|ψθ〉 − |〈ψθ|H|ψθ〉|2

)
=

4
(
〈ψ|H2|ψ〉 − |〈ψ|H|ψ〉|2

)
= 4∆2H, (8.3)

where we have used the fact that H commutes
with Uθ. In order to �nd the bound on preci-
sion we therefore need to �nd the input state
|ψ〉 for which the variance of the generator H
is the largest possible.

Theorem 8.1 (The state maximizing QFI).
Given the unitary parameter esitmation prob-
lem, where |ψθ〉 = eiHθ|ψ〉, the input state
that maiximizes the QFI of the output state
is:

|ψ〉 =
1√
2

(|λmin〉+ |λmax〉) , (8.4)

where |λmin〉, |λmax〉 are eigenvectors ofH cor-
responding to the minimal and maximal eigen-
values (λmin, λmax) respectively. The resulting
maximal QFI reads:

FQ = (λmax − λmin)2. (8.5)

Proof. Let H =
∑
i λi|λi〉 be the eigen-decomposition

of H. First of all, notice that the variance is inviariant
with respect to the shift of all H eigenvalues by the
same amount or in other words when we add to it
something proportional to the identity: H̃ = H+µ11 =∑
i λ̃i|λ̃i〉. Let us therefore assume that we have chose

µ so that for the new H̃ λ̃min = −λ̃max�the maximum
and minimum eigenvalues are opposite to each other.
This implies that ∀i|λ̃i| ≤ |λ̃max| = |λ̃min| = λ̃. Let
|ψ〉 =

∑
i ci|λ̃i〉 be arbitrary state. According to (8.3)

we can write the corresponding QFI:

FQ = 4

(∑
i

|ci|2λ̃2
i − (

∑
i

|ci|2λ̃i)2

)
. (8.6)

Consider now the following chain of inequalities:

FQ ≤ 4
∑
i

|ci|2λ̃2
i ≤ 4

∑
i

|ci|2λ̃2 ≤ 4λ̃2. (8.7)
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The above inequalities are saturated if and only if we
choose |ψ〉 = (|λ̃max〉 + eiξ|λ̃min〉)/

√
2 = (|λmax〉 +

eiξ|λmin〉)/
√

2, where eiξ is an arbitrary phase factor.
Note also that λ̃ = (λ̃max− λ̃min)/2 = (λmax−λmin)/2
which is a way to write the QFI in terms of eigenvalues
of the original H. As a result we arrive at the optimal
QFI as stated in the theorem. �

8.1.1 N parallel channels

[FIGURE] We now move on to consider one
of the most important questions in quantum
metrology. Consider a situation where we deal
with N channels that they can act in parallel
on N probe systems via

U⊗Nθ = eiθ
∑N
k=1H

(k)
, (8.8)

where by H(k) denotes an operator that acts
as H on the k-th probe system and as iden-
tity on all the others. Clearly, we can send
into this setupN probes prepared in a product
state |Ψ〉 = |ψ〉⊗N . If additionally we choose
|ψ〉 to be the state that maximizes the QFI
in the single channel model, by additivity of
the QFI we get the maximal QFI that can be
achieved using prdocut input states:

F product
Q = N(λmax − λmin)2, (8.9)

where as before λmax, λmin are maximal and
minimal eigenvalues of H.

We now ask whether we can increase the
QFI by considering entanged states at the in-
put, and what is the maximal value of QFI
in this case. To answer this question we see
that we simply need to identify the optimal
state realizing that the e�ective generator of
the evolution is H =

∑
kH

(k). The maximal

and minimal eigenvalues are simply λ
(N)
max =

Nλmax, λ
(N)
min = Nλmin, while the correspond-

ing eigenvectors are |λmax〉⊗N , |λmin〉⊗N . As
a result the optimal state is

|ψ〉 =
1√
2

(
|λmax〉⊗N + eiξ|λmin〉⊗N

)
,

(8.10)
where eiξ is an arbitrary phase factor, whereas

the corresponding QFI reads:

F entangled
Q = (Nλmax−Nλmin)2 = N2(λmax−λmin)2,

(8.11)
and therefore is N time larger than in the
product case. The resulting scaling of pre-
cision:

∆ϕproduct ≥ 1√
N |λmax − λmin|

, (8.12)

∆ϕentangled ≥ 1

N |λmax − λmin|
(8.13)

are often refered to as the standard (shot
noise) and the Heisenberg scaling respectively.

In a special case, when we consider opti-
cal interferometry, we can think of N pho-
tons traveling through an inteferometer as if
through N inependent qubit channels, where

H(k) = ϕσ
(k)
z /2. In this case The optimally

entangled state correspond to an equal super-
position of N photons going one or another
arm of the interferometer, which when written
in photon number mode occupation notation
reads:

|ψ〉 = (|N, 0〉+ |0, N〉)/
√

2 (8.14)

and is commonly refered to as the N00N state.
The corresponding product and N00N state
precision bounds read:

∆ϕproduct ≥ 1√
N
, ∆ϕN00N ≥ 1

N
. (8.15)

8.1.2 General adaptive strategy

8.2 Bayesian approach

Identifying the optimal protocol within the
Bayesian approach is much more challenging
so let us restrict ourselves to phase estimation
example. As usual, we assume �at prior dis-
tribution p(ϕ) = 1/2π, and the cost function
C(ϕ, ϕ̃) = 4 sin2[(ϕ − ϕ̃)/2]. Consider a gen-
eral N -photon two-mode input state

|ψ〉 =
∑
n

cn|n〉|N − n〉 =:
∑
n

cn|n〉, (8.16)
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that after being sent through the phase im-
printing operation Uϕ reads:

|ψϕ〉 = Uϕ|ψ〉 =
∑
n

cne
inϕ|n〉. (8.17)

Our goal is to minimize the Bayesian cost:

C̄ =

∫
dϕ

2π

∫
dϕ̃

2π
〈ψϕ|Πϕ̃|ψϕ〉C(ϕ, ϕ̃) (8.18)

over the choice of input state |ψ〉 and mea-
surement {Πϕ̃}. Since this is an example of
a covariant estimation problem we known we
can assume that Πϕ̃ = Uϕ̃Π0U

†
ϕ̃ and the cost

can be written e�ectively as:

C̄ =
2

π
〈ψ|
∫

dϕU †ϕΠ0Uϕ sin2 ϕ

2
|ψ〉. (8.19)

The measurement completeness condition∫
dϕ̃

2π
Uϕ̃Π0U

†
ϕ̃ = 11, (8.20)

implies that again diagonal elements of Π0

need to be 1. Similarly as in the phase es-
timation problem on product states |ψ〉⊗N , it
can be shown that without loss of optimality
(see Problem ???), the optimal Π0 can be cho-
sen to be a matrix with all entries equal 1:

Π0 = |e〉〈e|, |e〉 =

N∑
n=0

|n〉. (8.21)

Consequently:

C̄ =
2

π
〈ψ|
∫

dϕ
∑
n,n′

ei(n−n
′)|n〉〈n′|

(
1

2
− 1

4
eiϕ − 1

4
e−iϕ

)
|ψ〉 = 2〈ψ|A|ψ〉,

(8.22)

where A is a N +1×N +1 tridiagonal matrix

Aij =


1 i = j

−1
2 |i− j| = 1

0 otherwise

. (8.23)

The eigendecomposition of this matrix can
be determined analytically (see Problem ???)
and its the minimum eigenvalue (which yields
the minimal cost) and the corresponding
eigenvector (the optimal state) read:

C̄ = 2

[
1− cos

(
π

N + 2

)]
N→∞
≈ π2

N2

(8.24)

|ψ〉 =

√
2

N + 2

∑
n

sin

[
(n+ 1)π

N + 2

]
. (8.25)

Interstingly, that we do not recover the fre-
quentist solution in the asymptotic limit N →
∞. The cost is by π2 factor larger than in the
frequentist approach and the character of the
state is completely di�erent than that of the
N00N state. Note that the N00N state with its
2π/N periodicity is completely useless for es-
timation unless we know apriori we are within
an parameter interval of the size ∼ π/N . Had
we used the N00N state in the Bayesian ap-
proach the e�ective cost would be identical
to the one corresponding to random phase
guessing! This is were the advantage of the
Bayesian approach manifest itself. The π2/N2

is actually the true Heisenberg limit, i.e. the
one that can be in principle reached if we are
given N photons on which we want to run
a quantum metrological scheme. The use of
N00N states is not practical as for meaningful
estimation we need to have prior knowledge
on the order of π/N and hence be already in
the Heisenberg limit regime!. Therefore, the
conclusions of the frequentist approach are on
valid under unrealistic requirements concern-
ing prior knowledge about the parameter. Of
course if we were allowed to repeat the esti-
mation process many times this the frequen-
tist approach would be more meanigful, but
note that repeating experiment k times, we
could expect to reach the variance 1/(N2k)
using the total of kN photons, which will not
correspond to the actual Heisenberg scaling
1/(kN)2 in terms of the total number of pho-
tons used.
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8.2.1 General adaptive strategy

8.3 Phase vs. Frequency esti-

mation
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Problem 8.1 Consider the Mach-Zehnder interferometer, in which two single photons are simultaneously
sent into the two input ports. After traveling through the �rst beam splitter the state becomes |ψ〉 =
(|2, 0〉 + |0, 2〉)/

√
2 (Hong-Ou-Mnadel interference) which is a superposition of two photons going the

upper or the lower arm. The relative phase ϕ, related with interferometer arms di�erence, is then
imprinted on the state, resulting in |ψϕ〉 = (e2iϕ|2, 0〉+ |0, 2〉)/

√
2.

Try to �nd out what is the sensing potential of the |ψϕ〉 state following two alternative approaches:

a) Use the Quantum Cramer-Rao bound to provide the bound on maximal achievable precision of
estimainng ϕ.

b) Apply the Bayesian approach, assuming �at prior distibution 1/(2π) and the cost function C(ϕ, ϕ̃) =
4 sin2[(ϕ− ϕ̃)/2] to �nd the minimal Bayesian cost.

c) Compare the above two cases and draw conclusions

Problem 8.2 Kitaev
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Chapter 9

Impact of decoherence

In previous chapters, while deriving funda-
mental precision limits in quantum metrol-
ogy, we have restricted our attention to ideal
decoherence-free models. In this chapter we
want to understand the impact of decoherence
on the achievable precision and in particular
whether the Heisenberg scaling can be secured
in presence of noise. Some of the physically
relevant scenarios where methods will in par-
ticulary �nd applications are optical interfer-
ometry in presence of losses and atomic inter-
ferometry in presence of dephasing.

Consider a quanutm channel (CP map) Λθ,
where θ is the parameter we want to estimate.
Without loss of generality we may assume the
input state to be pure (a mixture of states
cannot perform better than the best state in
the mixture) |ψ〉. However, the output state:

ρθ = Λθ(|ψ〉〈ψ|) =
∑
i

Kθ
i |ψ〉〈ψ|K

θ†
i , (9.1)

will in generally be mixed due to potentially
non-unitary evolution encoded in Λθ�Kθ

i are
Kraus operators, which all may in principle
depend on θ. This makes the whole task
of quantum metrology much more di�cult as
we cannot e.g. write simple formulas for the
QFI of the output state not to mention op-
timize it analytically. For small dimensional
systems, when trying to optimize input probe
states, measurements and estimators we may
of course resort to numerics. If, however, we
want to derive e�ciently computable bounds
for parallel channel models involving many

particles or more generally adaptive schemes
we have to invent ways to e�ciently derive
useful bounds even though exact optimization
may not be possible.

In this chapter we will mainly follow the fre-
quentist approach as it will be more e�ective
in deriving the bounds, and typically will lead
to results that are equivalent to the Bayesian
ones in the limit of large number of probe sys-
tems. First, recall that QFI for a mixed state
may be equivalently written as minimization
over all puri�cations, see (6.52). [FIGURE -
SCHEME] We may equivalently think of the
puri�cation of our quantum channel Λθ, so
that

ρθ = TrE

(
Vθ |ψ〉〈ψ| ⊗ |0〉〈0|V †θ

)
, (9.2)

where Vθ is the unitary acting on extended
HS⊗HE system + environment space. There-
fore

|Ψθ〉 = Vθ|ψ〉 ⊗ |0〉 (9.3)

is a puri�cation of ρθ. Minimization over
puri�cation corresponds to minimzation over
equivalent unitary operations Vθ which may
di�er by an arbitrary unitary Wθ on E:

Ṽθ = 11⊗Wθ · Vθ. (9.4)

Kraus operators may written in terms of Vθ
in a standard way (see Chapter...) as Ki

θ =

E〈i|Vθ|0〉E and hence di�erent puri�cations
may be viewed as inducing di�erent equiva-

73
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lent Kraus representations:

K̃θ
i =

∑
j

(Wθ)ijK
θ
j . (9.5)

As will become clear further on, the key fea-
ture is that the unitary matrix Wθ is parame-
ter dependent in general. We may now write
the puri�cation in terms of a given Kraus rep-
resentation:

|Ψθ〉 =
∑
i

Kθ
i ⊗ 11 |ψ〉 ⊗ |i〉 (9.6)

and calculate the corresponding QFI:

FQ(|Ψθ〉) = 4

(
〈Ψ̇θ|Ψ̇θ〉 −

∣∣∣〈Ψ̇θ|Ψθ〉
∣∣∣2) =

4

〈ψ|∑
i

K̇θ†
i K̇

θ
i |ψ〉 −

∣∣∣∣∣∑
i

〈ψ|K̇θ†
i K

θ
i |ψ〉

∣∣∣∣∣
2
 ≤

4〈ψ|
∑
i

K̇θ†
i K̇

θ
i |ψ〉, (9.7)

where ˙ denotes the derivative with respect to
θ. Since the above inequality is valid for any
purifcation (equivalent Kraus representation)
we can write:

FQ(ρϕ) ≤ 4 min
{Kθ

i }
〈ψ|
∑
i

K̇θ†
i K̇

θ
i |ψ〉. (9.8)

Finally, we may bound the QFI optimized over
input states as:

max
|ψ〉

FQ(ρϕ) ≤ 4 max
|ψ〉

min
{Kθ

i }
〈ψ|
∑
i

K̇θ†
i K̇

θ
i |ψ〉 ≤

≤ 4 min
{Kθ

i }
max
|ψ〉
〈ψ|
∑
i

K̇θ†
i K̇

θ
i |ψ〉 =

= 4 min
{Kθ

i }
‖
∑
i

K̇θ†
i K̇

θ
i ‖, (9.9)

where ‖ · ‖ is the operator norm, and in the
above we have used the max-min inequality.
As a result, we have bounded the achievable
QFI on the output state using the objects
de�ning the quantum channel itself. The util-
ity of the above bound is not yet clear, unless

we are able to easily �nd Kraus representa-
tions that provide us with informative bounds.

9.1 Parallel channels

Let us now consider the parallel channel
model, see Figure [FIGURE], where N par-
ticles prepared in a general, possibly entan-
gled, state go throught N independent chan-
nels Λθ, so that the total evolution is described
by Λ⊗Nθ . Physically, this represents the as-
sumption that noise acting on each particel is
uncorrelated and the parameter is encoded in
the same way on each of the particles. When
written in terms of Kraus operators the action
if such a channel reads:

Λ⊗Nθ (·) =
∑

i1,...,iN

Kθ
i1⊗· · ·⊗K

θ
iN

(·)Kθ†
i1
⊗· · ·⊗Kθ†

iN
.

(9.10)
Our goal is now to bound the QFI of the out-
put state of N articles ρϕ and try to cap-
ture the conditions under which the bound
allows the QFI to scale likr N2 (Heisenberg
scaling) or implies standard N scaling. The
following theorem provides an e�ciently com-
putable bound that addresses this question.

Theorem 9.1. Given N parallel channels Λθ,
where each channel is described using the set
of Kraus operators Kθ

i , the QFI of the output
state with respect to estimating the parameter
θ for aribtrary input states of N partciles is
upper bounded as:

max
|ψ〉

FQ(ρθ) ≤ 4 min
{Kθ

i }

(
N‖α‖+N(N − 1)‖β‖2

)
,

(9.11)
where the minimization is performed over all
equivalent Kraus representations of Λθ, ‖·‖ de-
notes the operator norm and α =

∑
i K̇

θ†
i K̇

θ
i ,

β =
∑

i K̇
θ†
i K

θ
i .

Proof. Using the bound (9.9) we can write:

max
|ψ〉

FQ(ρθ) ≤ 4 min
Kθi

‖
∑

i1,...,iN

(
˙Kθ

i1
⊗ · · · ⊗Kθ

iN

)†
(

˙Kθ
i1
⊗ · · · ⊗Kθ

iN

)
‖. (9.12)
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Note that the minimization is perofrmed over Kraus
representations of a single channel. In principle
we could assume more general Kraus representation
where the channel independence property is not re-
spected on the level of their puri�cations, but such a
more general approach would not allow us to obtain ef-
�ciently computable bounds. Note, that restriction to
subclass of puri�cations (Kraus representations) doe
not invalidate the bound but only involves the risk
that the resulting bound may not be tight. Taking
the derivative of the tensor product of Kraus oper-
ators we will get N terms where the derivative hits
a given particle. We may then combine the resulting
terms according to whether the derivative on the same
particle in both parenthesis in the above expression or
on di�erent ones. Doing so we arrive at:

max
|ψ〉

FQ(ρθ) ≤

4

∥∥∥∥ ∑
i1,...,iN

N∑
k=1

Kθ†
i1
Kθ
i1⊗· · ·⊗K̇

θ†
ik
K̇θ
ik⊗· · ·⊗K

θ†
iN
Kθ
iN+

∑
k 6=l

Kθ†
i1
Kθ
i1⊗· · ·⊗K̇

θ†
ik
Kθ
ik⊗· · ·⊗K

θ†
il
K̇θ
il⊗· · ·⊗K

θ†
iN
Kθ
iN

∥∥∥∥.
(9.13)

Using the trace preservation condition
∑
iK

θ†
i K

θ
i = 11

we may perform the sum whenever there is no deriva-
tive. Moreover, using the triangle inequality for the
operator norm we arrive at:

max
|ψ〉

FQ(ρθ) ≤

4 min
{Kθi }

(
N‖
∑
i

K̇θ†
i K̇

θ
i ‖+N(N − 1)‖

∑
i

K̇θ†
i K

θ
i ‖2
)
,

(9.14)

which ends the proof. �

The above theorem has profound conse-
quences. Whenever we �nd a Kraus repre-
sentation for which β = 0 this automatically
implies that QFI cannot scale better than lin-
early with N and that the Heisenberg scaling
is impossible.

Recall that di�erent Kraus representations
are de�ned via a unitary Wθ, see (??). Note
also, that any parameter independent unitary
will not a�ect the trace norms, as in this case
dotted Kraus transform in the same way as
undotted ones and the above expression is in-
variant under such a transformation. More-
over, since only �rst derivatives with respect
to θ around some �xed point θ0 are relevant

we may assume without loss of generality that
our Wθ = Zθ0e

ihθ, where h is some hermitian
matrix, and Zθ0 is some �xed unitary which
does not in�uence the bound and may be set
to 11. The formula for the bound may be there-
fore written in a more explicit form:

max
|ψ〉

FQ(ρθ) ≤ 4 min
h

(
N‖α‖+N(N − 1)‖β‖2

)
,

(9.15)
where

α =
∑
i

( ~Kθ + h ~Kθ)†( ~Kθ + h ~Kθ) (9.16)

β =
∑
i

( ~Kθ + h ~Kθ)† ~Kθ (9.17)

where ~Kθ is the vector of Kraus operators(
~Kθ
)
i

= Kθ
i .

Example 9.1 (Atomic interferometry in the presence
of dephasings) Consider a phase estimation model us-
ing N two-level atoms that experience decoherence in
the form of uncorrelated dephasing. In other words,
we consider an aribtrary N -qubit state that is acted
upon by Λ⊗Nϕ , where Λϕ(·) = Λ(Uϕ · U†ϕ), Uϕ =
exp(iϕ/2)|0〉〈0| + exp(−iϕ/2)|1〉〈1| is unitary phase
imprinting operations while Λ is the pure dephasing
process that can be written using two Kraus opera-
tors: K0 = 11

√
(1 + η)/2, K1 = σz

√
(1− η)/2�the

single qubit Bloch sphere is being shrinked in the xy
plane by a factor of η.

Let us consider the following equivalent Kraus rep-
resentation:

K̃ϕ
0 = cos(χϕ)K0Uϕ − i sin(χϕ)K1Uϕ, (9.18)

K̃ϕ
1 = cos(χϕ)K1Uϕ − i sin(χϕ)K0Uϕ (9.19)

parameterized by χ. For this Kraus representation α
and β operators read respectively:

α =
11
4

(
1 + χ2 + χ

√
1− η2

)
(9.20)

β = σz

(
1

2
+ χ

√
1− η2

)
. (9.21)

We see that we can to set β = 0 by choosing χ =

− 1

2
√

1−η2
and as a result α = 11 η2

4(1−η2)
. This implies

the bound:

FQ ≤
Nη2

1− η2
, ∆ϕ ≥ η√

(1− η2)N
. (9.22)

This can be compared with the performance when us-
ing optimal product states |ψ〉 = [(|0〉 + |1〉)/

√
2]⊗N
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which gives FQ = Nη2 (see Problem). While the
Heisenberg scaling is not possible to be protected in
presence of decoherence there is a chance for a con-
stant factor improvement of estimation precision given
by
√

1− η2. As will be deminstrated in Cha pter ??

this enhancement is indeed possible to obtain.

9.2 General adaptive proto-

cols

9.3 Constrained protocols
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Problem 9.1 Optimal product state in presence of dephasing.

Problem 9.2 Interferometer with losses. ∆ϕ ≥
√

1−η
ηN

.
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