Quantum Estimation and Measurement Theory

Problem set 3

return on 26.10.2018

Problem 1 Consider a generalization of the Cramer-Rao bound, where instead of estimating the parameter θ itslef we want to estimate a value of a function $g(\theta)$. Prove that that if $p_{\theta}(x)$ is a family of probability distribution then for arbitrary locally unbiased estimator $\tilde{g}(x)$, we have

$$\Delta^2 \tilde{g} \ge \frac{g'(\theta)^2}{F} \tag{1}$$

where $g'(\theta) = \frac{\mathrm{d}g(\theta)}{\mathrm{d}\theta}$ and F is the Fisher information for $p_{\theta}(x)$.

Problem 2 We say hthat $p_{\theta}(x)$ belongs to the exponential family of proability distributions if and only if

$$p_{\theta}(x) = e^{a(\theta) + b(x) + c(\theta)d(x)} \tag{2}$$

Prove, that in this case, there is always a function $g(\theta)$ for which there exist an efficient estimator the estimator that saturates the CR bound. A lot of probability distributions belong to this family (see http://en.wikipedia.org/wiki/Exponential_family).

Problem 3 Consider a probabilistic model where we register values of N independent random variables x_n , (n = 0, ..., N - 1), where $x_n \sim \mathcal{N}(an + b, \sigma^2)$ (linear dependence + gaussian noise).

- a) Write down the Fisher matrix corresponding to the two-parameter estimation problem of estimating a and b parameters.
- b) Using the CR bound derive a lower bound on the minimal achievable estimation variance of the two parameters: $\Delta \tilde{a}$, $\Delta \tilde{b}$. Which one is "easier" to estimate.
- c) Try to provide estimators saturating the bound—check if by chance these are the same estimators that one uses in the heuristic minimum squared distance method ...