Quantum Estimation and Measurement Theory

Problem set 4

return on 9.11.2018

Problem 1 Consider N i.i.d binary valued random variables $x_i \in \{0, 1\}$ (i = 0, ..., N - 1), where $p(x_i = 0) = p$, $p(x_i = 1) = 1 - p$. Consider the problem of estimating parameter p. (Hint: To simplify further calculations, note that what is really relevant in the observed events is the number a zeros and ones in N realizations and not the order in which they appeared).

- a) What does the Cramér-Rao (CR) bound tells us concerning the best achievable precision of estimating p?
- b) Is CR bound saturable for finite N? What is the optimal estimator?
- c) Does this family of probability distributions belong to the so called exponential family (see Problem 2 in Problem set 3)?
- d) Imagine, that in fact $p = \sin^2(\theta/2)$, where $\theta \in [0, \pi]$ and we are actually interested in estimating θ , and not p itself. Derive the CR bound for estimating θ .
- e) This time, there is no estimator that saturates the CR bound (check it) for finite N. We can, however, try to use the maximum-likelihood (ML) estimator in order to estimate θ and check whether we can approach the CR bound bound in the limit of large number of experiment repetitions. Proceed as follows:
 - Write a program, generating N i.i.d. realizations of random variable x_i , such that $p(x_i = 0) = \sin^2(\theta/2)$, $p(x_i = 1) = \cos^2(\theta/2)$, for some fixed θ (e.g. $\pi/3$, $\pi/2$, $2/3\pi$) and some fixed N (e.g. N = 10). Such a sample of N numbers we will call a single realization of the experiment.
 - Generate data for $k \ (k \approx 1000, \text{ or more})$ experiments
 - For each experiment, find the ML estimator $\tilde{\theta}_{\rm ML}$
 - Plot a histogram of obtained values of ML estomator and calculate the spread of the results (standard deviation)— this will be a good approximation of the esimator uncertainty $\Delta \tilde{\theta}$. Compare with the CR bound.
 - Repeat above steps for different N, e.g. in the range of 1 to 10000 (of course not for all N but only some representative ones). Generate a plot: estimator uncertainty vs. N and compare it with the CR bound to draw a conclusion concerning the regime where we can claim asymptotic saturation of the CR bound (e.g. you can assume a criterion, that we look for such an N when we are within 1% from the CR bound). Hint: For clarity, it is better to plot $\Delta \tilde{\theta} \sqrt{N}$, rather than $\Delta \tilde{\theta}$, and compare with CR bound for a single realization.