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Abstract—The Heun functions satisfy linear ordinary differential equations of second order with
certain singularities in the complex plane. The first order derivatives of the Heun functions satisfy
linear second order differential equations with one more singularity. In this paper we compare these
equations with linear differential equations isomonodromy deformations of which are described by
the Painlevé equations PII − PV I .
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1. INTRODUCTION

The general Heun equation is the most general second order linear Fuchsian ordinary differential
equation with four regular singular points in the complex plane [2–5]. Although it is a genaralization of
the well-studied Gauss hypergeometric equation with three regular singularities, it is much more difficult
to investigate properties of the Heun functions. The additional singularity causes many complications
in comparison with the hypergeometric case (for instance, the solutions in general have no integral
representations involving simpler mathematical functions). There also exist confluent Heun equations
(see [3, 4]) which have irregular singularities. There are many studies on the properties of solutions of
the Heun equations from different perspectives (see, for instance, [6–17] and the references therein).
The Heun functions (and their confluent cases) appear extensively in many problems of mathematics,
mathematical physics, physics and engineering (e.g., [18–20]). An extensive bibliography can be found
at [1].

The general Heun equation is given by the following equation:

d2u

dz2
+

(
γ

z
+

δ

z − 1
+

ε

z − t

)
du

dz
+

αβz − q

z(z − 1)(z − t)
u = 0, (1.1)

where the parameters satisfy the Fuchsian relation

1 + α+ β = γ + δ + ε. (1.2)

This equation has four regular singular points at z = 0, 1, t and ∞. Its solutions, the Heun functions,
are usually denoted by u = H(t, q;α, β, γ, δ; z) assuming that ε is obtained from (1.2). The parameter q
is referred to as the accessory parameter.

It is well-known that the derivative of the hypergeometric function 2F1 is again a hypergeometric
function with different values of the parameters. However, for the Heun function it is generally not the
case. The first order derivative of the general Heun function satisfies a second order Fuchsian differential
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equation with five regular singular points [7, 8, 12]. It can be verified by direct computations that the
function v(z) = du/dz, where u = u(z) is a solution of (1.1), satisfies the following equation:

d2v

dz2
+

(
γ + 1

z
+

δ + 1

z − 1
+

ε+ 1

z − t
− αβ

αβz − q

)
dv

dz
+

f(z)

z(z − 1)(z − t)(αβz − q)
v = 0, (1.3)

where f(z) = z(αβz − 2q)(αβ + γ + δ + ε) + (q2 + q(γ + t(γ + δ) + ε)− αβγt). We see that an addi-
tional singularity at z = q/(αβ) involving the accessory parameter is added.

It is known that in some cases equation (1.3) reduces to a Heun equation (1.1) with altered
parameters [8]. Indeed, we can observe that in four cases when q = 0, q = αβ, q = αβt and αβ = 0
the additional singularity in (1.3) disappears and we obtain the Heun equation (1.1) with different
parameters [8]. The equation for the derivatives of the Heun functions allows one to construct
several new expansions of solutions of the Heun equations in terms of various special functions (e.g.,
hypergeometric functions) [7]. Similar results hold for confluent cases [12].

This paper is organized as follows. In Section 2 we give a list of all confluent Heun equations together
with linear second order equations for the derivatives of the Heun functions. In Section 3 we briefly
describe the theory of isomonodromy deformations of linear equations and show how the famous Painlevé
equations appear in this context. Next, in Section 4 we present our main results. In particular, we
will compare linear equations for the Heun derivatives with linear differential equations, isomonodromy
deformations of which are described by the Painlevé equations.

2. CONFLUENT HEUN EQUATIONS AND EQUATIONS FOR DERIVATIVES
OF CONFLUENT HEUN FUNCTIONS

The general Heun equation is given by (1.1) together with (1.2) and the linear equation for the
derivative of the Heun functions is (1.3).

The confluent Heun equation is written as

d2u

dz2
+

(
γ

z
+

δ

z − 1
+ ε

)
du

dz
+

αz − q

z(z − 1)
u = 0 (2.1)

and the linear equation for the function v = du/dz is given by

d2v

dz2
+

(
γ + 1

z
+

δ + 1

z − 1
+ ε− α

αz − q

)
dv

dz
+

g(z)

z(z − 1)(αz − q)
v = 0, (2.2)

where g(z) = (α+ ε)(αz2 − 2qz) + (q2 − (γ + δ − ε)q + αγ).
The double-confluent Heun equation is

d2u

dz2
+

(
γ

z2
+

δ

z
+ ε

)
du

dz
+

αz − q

z2
u = 0 (2.3)

and the linear equation for the function v = du/dz is given by

d2v

dz2
+

(
γ

z2
+

δ + 2

z
+ ε− α

αz − q

)
dv

dz
+

h(z)

z2(αz − q)
v = 0, (2.4)

where h(z) = (α+ ε)(αz2 − 2qz) + (q2 − δq − αγ).
The bi-confluent Heun equation is

d2u

dz2
+

(γ
z
+ δ + εz

) du

dz
+

αz − q

z
u = 0 (2.5)

and the linear equation for the function v = du/dz is given by

d2v

dz2
+

(
γ + 1

z
+ δ + εz − α

αz − q

)
dv

dz
+

k(z)

z(αz − q)
v = 0, (2.6)

where k(z) = (α+ ε)z(αz − 2q) + (q2 − δq − αγ).
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The tri-confluent Heun equation is

d2u

dz2
+

(
γ + δz + εz2

) du
dz

+ (αz − q)u = 0 (2.7)

and the linear equation for the function v = du/dz is given by

d2v

dz2
+

(
γ + δz + εz2 − α

αz − q

)
dv

dz
+

p(z)

(αz − q)
v = 0, (2.8)

where p(z) = (α+ ε)(αz2 − 2qz) + (q2 − δq − αγ).

3. ISOMONODROMIC DEFORMATIONS OF LINEAR EQUATIONS
AND THE PAINLEVÉ EQUATIONS

In this section we briefly review the theory of isomonodromic deformations of linear second order
differential equations following [21–23]. We shall use notation similar to [22].

The isomonodromic deformations of linear second order differential equations of the form

d2v

dz2
+ p1(z)

dv

dz
+ p2(z)v = 0, (3.1)

with p1, p2 being rational functions of z and parameters of deformation t1, . . . , tn, are governed by a
completely integrable Hamiltonian system of partial differential equations with respect to the param-
eters. When there is one parameter of deformation, t, the Painlevé equations PI − PV I appear as the
compatibility condition of the extended linear system consisting of equation (3.1) and equaton

∂v

∂t
= a(z, t)

∂v

∂z
+ b(z, t)v. (3.2)

The Painlevé equations PI − PV I are nonlinear second order differential equations with the so-called
Painlevé property. They have many interesting properties and appear in many areas of mathematics.
See, for instance, [24, 25, 21] and numerous references therein. The completely integrable Hamiltonian
system is then equivalent to a Painlevé equation for one of the variables. Below we shall present
necessary formulas for equations PII − PV I .

To get the sixth Painlevé equation one chooses

p1(z, t) =
1− κ0

z
+

1− κ1
z − 1

+
1− θ

z − t
− 1

z − λ
, (3.3)

p2(z, t) =
κ

z(z − 1)
− t(t− 1)HV I

z(z − 1)(z − t)
+

λ(λ− 1)μ

z(z − 1)(z − λ)
, (3.4)

where

t(t− 1)HV I = λ(λ− 1)(λ− t)μ2

− {κ0(λ− 1)(λ− t) + κ1λ(λ− t) + (θ − 1)λ(λ− 1)}μ + κ(λ− t).

Then the compatibility between (3.1) and (3.2) with certain a(z, t) and b(z, t) (see [21–23] for details)
leads to the Hamiltonian system

dλ

dt
=

∂HV I

∂μ
,

dμ

dt
= −∂HV I

∂λ

and by eliminating the function μ one can get the sixth Painlevé equation

d2λ

dt2
=

1

2

(
1

λ
+

1

λ− 1
+

1

λ− t

)(
dλ

dt

)2

−
(
1

t
+

1

t− 1
+

1

λ− t

)
dλ

dt

+
λ(λ− 1)(λ − t)

t2(t− 1)2

(
α6 + β6

t

λ2
+ γ6

t− 1

(λ− 1)2
+ δ6

t(t− 1)

(λ− t)2

)
, (3.5)
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where

α6 =
1

2
κ2∞, β6 = −1

2
κ20, γ6 =

1

2
κ21, δ6 =

1

2
(1− θ2)

and

κ =
1

4
(κ0 + κ1 + θ − 1)2 − 1

4
κ2∞.

To get the fifth Painlevé equation, one chooses

p1(z, t) =
1− κ0

z
+

ηt

(z − 1)2
+

1− θ

z − 1
− 1

z − λ
, (3.6)

p2(z, t) =
κ

z(z − 1)
− tHV

z(z − 1)2
+

λ(λ− 1)μ

z(z − 1)(z − λ)
, (3.7)

where

tHV = λ(λ− 1)2μ2 − {κ0(λ− 1)2 + θλ(λ− 1)− ηtλ}μ + κ(λ− 1).

Then similarly to the previous case the corresponding Hamiltonian system with the Hamiltonian HV

leads to the fifth Painlevé equation

d2λ

dt2
=

(
1

2λ
+

1

λ− 1

)(
dλ

dt

)2

− 1

t

dλ

dt
+

(λ− 1)2

t2

(
α5λ+

β5
λ

)

+ γ5
λ

t
+ δ5

λ(λ+ 1)

λ− 1
, (3.8)

where

α5 =
1

2
κ2∞, β5 = −1

2
κ20, γ5 = (1 + θ)η, δ5 =

1

2
η2

and

κ =
1

4
(κ0 + θ)2 − 1

4
κ2∞.

To get the fourth Painlevé equation, one chooses

p1(z, t) =
1− κ0

z
− z + 2t

2
− 1

z − λ
, (3.9)

p2(z, t) =
1

2
θ∞ − HIV

2z
+

λμ

z(z − λ)
, (3.10)

where

HIV = 2λμ2 − (λ2 + 2tλ+ 2κ0)μ + θ∞λ.

Then the corresponding Hamiltonian system with the Hamiltonian HIV leads to the fourth Painlevé
equation

d2λ

dt2
=

1

2λ

(
dλ

dt

)2

+
3

2
λ3 + 4tλ2 + 2(t2 − α4)λ+

β4
λ
, (3.11)

where

α4 = −κ0 + 2θ∞ + 1, β4 = −2κ20.

The standard third Painlevé equation is given by

d2λ

dt2
=

1

λ

(
dλ

dt

)2

− 1

t

dλ

dt
+

α3λ
2 + β3
t

+ γ3λ
3 +

δ3
λ
. (3.12)
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However, for our purpose it is more convenient to consider an equation which can be obtained from (3.12)
by changing λ(t) → λ(t2)/t and by renaming the new variable τ = t2 as t again. This equation is
given by

d2λ

dt2
=

1

λ

(
dλ

dt

)2

− 1

t

dλ

dt
+

α3λ
2 + γ3λ

3

4t2
+

β3
4t

+
δ3
4λ

. (3.13)

Equation (3.13), which will be denoted by P ′
III , appears in the result of isomonodromic deformations of

the linear equation (3.1) with

p1(z, t) =
η0t

z2
+

1− θ0
z

− η∞ − 1

z − λ
, (3.14)

p2(z, t) =
η∞(θ0 + θ∞)

2z
− tH ′

III

z2
+

λμ

z(z − λ)
, (3.15)

where

tH ′
III = λ2μ2 − {η∞λ2 + θ0λ− η0t}μ +

1

2
η∞(θ0 + θ∞)λ

and the parameters are related by

α3 = −4η∞θ∞, β3 = 4η0(1 + θ0), γ3 = 4η2∞, δ3 = −4η20 .

Finally, the second Painlevé equation

d2λ

dt2
= 2λ3 + tλ+ α2 (3.16)

appears in the result of isomonodromic deformations of the linear equation (3.1) with

p1(z, t) = −2z2 − t− 1

z − λ
, (3.17)

p2(z, t) = −(2α2 + 1)z − 2HII +
μ

z − λ
, (3.18)

where

HII =
1

2
μ2 −

(
λ2 +

1

t

)
μ−

(
α2 +

1

2

)
λ. (3.19)

4. MAIN RESULTS

In this section we compare equations for the derivatives of the Heun functions with the linear
differential equations whose isomonodromy deformations are governed by the Painlevé equations PII −
PV I .

Let us consider the equation for the derivative of the general Heun function (1.3). By choosing
parameters

αβ = κ0 + κ1 + θ + κ, β =
1

2
(±κ∞ − 1− κ0 − κ1 − θ),

γ = −κ0, δ = −κ1, ε = −θ, q = αβλ,

we can calculate that the resulting equation is the same as equation (3.1) with (3.3), (3.4) and the
expression for HV I provided that

μ =
κ0
λ

+
κ1

λ− 1
+

θ

λ− t
.

If now λ and μ are viewed as functions of t, substituting this condition into the Hamiltonian system
leading to the sixth Painlevé equation, we find that λ satisfies the Riccati equation

dλ

dt
=

κ0t− (1 + κ0 + (κ0 + κ1)t+ θ)λ+ (1 + κ0 + κ1 + θ)λ2

t(t− 1)
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and κ0 + κ1 + θ + κ = 0. This gives classical solutions of the sixth Painlevé equation provided that
κ0 = ±κ∞ − θ − κ1 − 1. However, with this additional condition on the parameters we have αβ = 0
and q = 0.

In the equation for the derivative of the confluent Heun function (2.2) we first make the change of
variables v(z) → (1− z/(z − 1))σv(z/(z − 1)), renaming the new independent variable as z again, then
put

γ = −κ0, δ = κ0 + θ + 2σ, ε = −tη,

σ = −1

2
(κ0 ± κ∞ + θ), q =

αλ

λ− 1
, α =

1

2
tη(2 + κ0 ± κ∞ + θ).

The resulting equation is the same as equation (3.1) with (3.6), (3.7) and the expression for HV provided
that

μ =
κ0
λ

− tη

(λ− 1)2
+

θ − κ0 ± κ∞
2(λ− 1)

.

Substituting this condition into the Hamiltonian system leading to the fifth Painlevé equation, we see
that λ satisfies the Riccati equation

t
dλ

dt
± κ∞λ2 − (±κ∞ − κ0 − tη)− κ0 = 0

and η(2 + κ0 ± κ∞ + θ) = 0. Again, with this additional condition on the parameters we have α = 0
and q = 0.

In the equation for the derivative of the bi-confluent Heun function (2.6) we take

γ = −κ0, δ = −t, q = αλ, α =
θ∞ + 1

2
, ε = −1

2
.

The resulting equation is the same as equation (3.1) with (3.9), (3.10) and the expression for HIV

provided that

μ = t+
κ0
λ

+
λ

2
.

Substituting this condition into the Hamiltonian system leading to the fourth Painlevé equation, we find
that λ satisfies the Riccati equation

dλ

dt
= λ2 + 2tλ+ 2κ0

and θ∞ + 1 = 0. Again, with this additional condition on the parameters we have α = 0 and q = 0.
In the equation for the derivative of the double-confluent Heun function (2.6) we take

γ = tη0, δ = −1− θ0, q = αλ, α =
1

2
η∞(θ0 + θ∞ + 2), ε = −η∞.

The resulting equation is the same as equation (3.1) with (3.14), (3.15) and the expression for H ′
III

provided that

μ = η∞ − tη0
λ2

+
θ0 + 1

λ
.

Substituting this condition into the Hamiltonian system leading to the modified third Painlevé equation
P ′
III , we find that λ satisfies the Riccati equation

t
dλ

dt
= η∞λ2 + (θ0 + 2)λ− tη0

and η∞(θ0 + θ∞ + 2) = 0. Again, with this additional condition on the parameters we have α = 0 and
q = 0.

In the equation for the derivative of the tri-confluent Heun function (2.8) we take

γ = −t, δ = 0, q = αλ, α = 1− 2α2, ε = −2.
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The resulting equation is the same as equation (3.1) with (3.17), (3.18) and the expression for HII

provided that

μ = 2λ2 + t.

Substituting this condition into the Hamiltonian system leading to the second Painlevé equation, we see
that λ satisfies the Riccati equation

2
dλ

dt
= 2λ2 + t

and 2α2 = 1. Again, with this additional condition on the parameters we have α = 0 and q = 0.
Hence, we see that in all cases we can reduce equations for the derivatives of the Heun functions to

certain linear equations, isomonodromy deformations of which lead to the Painlevé equations with an
additional constraint on λ and μ. However, in order to get classical solutions of the Painlevé equations
we need an additional constraint on the parameters. Therefore, those linear equations isomonodromy
deformations of which are described by classical solutions of the Painlveé equations cannot be obtained
from the equations for the derivatives of the Heun functions.
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