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We consider second-quantized homogeneous Bose gas in a large cubic box with
periodic boundary conditions at zero temperature. We discuss the energy-
momentum spectrum of the Bose gas and its physical significance. We review
various rigorous and heuristic results as well as open conjectures about its proper-
ties. Our main aim is to convince the readers, including those with mainly math-
ematical background, that this subject has many interesting problems for rigorous
research. In particular, we investigate the upper bound on the infimum of the energy
for a fixed total momentum k given by the expectation value of one-particle exci-
tations over a squeezed states. This bound can be viewed as a rigorous version of
the famous Bogoliubov method. We show that this approach seems to lead to a
�nonphysical� energy gap. The variational problem involving squeezed states can
serve as the preparatory step in a perturbative approach that should be useful in
computing excitation spectrum. This version of a perturbative approach to the Bose
gas seems �at least in principle� superior to the commonly used approach based on
the c-number substitution. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3129489�

I. INTRODUCTION

In this paper we would like to review one of outstanding open problems of quantum physics—
rigorous understanding of the energy-momentum spectrum of homogeneous Bose gas at zero
temperature. We describe various rigorous and heuristic arguments about its shape. In particular,
we discuss a number of versions of the so-called Bogoliubov approach. We use the main idea of
this approach to give rigorous upper bounds on the energy-momentum spectrum of the Bose gas.

There exists little rigorous work on this subject. We think that mathematicians avoid this topic
not only because of its difficulty. Unfortunately, it is not easy to formulate questions in this domain
that are, on one hand, physically relevant, and on the other hand, mathematically clean and
precise. We try to ask a number of such questions, some of them rather ambitious, but some,
perhaps, within the reach of present methods. We think that rigorous methods of spectral analysis
and operator theory could be very helpful in clarifying this subject.
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A. Bose gas in canonical approach

One can distinguish two possible approaches to the Bose gas at positive density:
“canonical”—fixing the density �—and “grand canonical”—fixing the chemical potential �. In
most of our paper we will concentrate on the latter setting. Nevertheless, in Sec. I, as well as in
Sec. II, we will stick to the canonical approach.

We suppose that the two-body potential of an interacting Bose gas is described by a real
function v defined on Rd, satisfying v�x�=v�−x�. We assume that v�x� decays at infinity suffi-
ciently fast.

A typical assumption on the potentials that we have in mind in our paper is

v̂�k� � 0, k � Rd, �1.1�

where the Fourier transform of v is given by

v̂�k� ª �
Rd

v�x�e−ikxdx . �1.2�

Potentials satisfying �1.1� will be called repulsive. Note, however, that a large part of our paper
does not use directly any specific assumption on the potentials.

Homogeneous Bose gas is described by the Hilbert space Ls
2��Rd�n� �symmetric square inte-

grable functions on �Rd�n�, the n-body Schrödinger Hamiltonian,

Hn = − �
i=1

1

2
�i + �

1�i�j�n
v�xi − x j� , �1.3�

and the momentum operator

Pn
ª �

i=1

n

− i�xi
.

�H , P� is a collection of 1+d commuting self-adjoint operators, hence we can ask about the
properties of their joint spectrum, called the energy-momentum spectrum.

�1.3� describes, however, only a finite number of particles in an infinite space. We would like
to investigate homogeneous Bose gas at positive density. It is a little problematic how to model
such a system. A natural solution would be restricting �1.3� to, e.g., �= �−L /2,L /2�d, the
d-dimensional cubic box of side length L, with Dirichlet boundary conditions. This will, however,
destroy its translational invariance. Therefore, following the accepted, although somewhat un-
physical tradition, we consider the Bose gas on a torus. This means, in particular, that the potential
v is replaced by

vL�x� =
1

V
�

k��2�/L�Zd

eik·xv̂�k� , �1.4�

where k� �2� /L�Zd is the discrete momentum variable and V=Ld is the volume of the box. Note
that vL is periodic with respect to the domain � and vL�x�→v�x� as L→	. The system on a torus
is described by the Hamiltonian

HL,n = − �
i=1

1

2
�i

L + �
1�i�j�n

vL�xi − x j� �1.5�

acting on the space Ls
2��n� �symmetric square integrable functions on �n�. The Laplacian is

assumed to have periodic boundary conditions.
Let us denote by EL,n the ground state energy in the box,
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EL,n
ª inf sp HL,n,

where sp K denotes the spectrum of an operator K.
The total momentum is given by the vector of operators

PL,n
ª �

i=1

n

− i�xi

L .

Its joint spectrum equals �2� /L�Zd.
Clearly, HL,n and PL,n commute with each other. Therefore we can define their joint spectrum,

sp�HL,n,PL,n� � R 

2�

L
Zd,

which will be called the energy-momentum spectrum in the box. By the excitation spectrum in the
box we will mean sp�HL,n−EL,n , PL,n�.

For k� �2� /L�Zd, we can define the Hamiltonian HL,n�k� to be the restriction of HL,n to the
supspace of PL,n=k and infimum of the excitation spectrum (IES) in the box as

�L,n�k� ª inf sp�HL,n�k� − EL,n� . �1.6�

By the infimum of the energy-momentum spectrum in the box we will mean EL,n+�L,n�k�.
It is believed that the properties of the Bose gas simplify in the thermodynamic limit. It means

that one should fix ��0, take the number of particles equal to n=�V, and then pass to the limit
L→	. Unfortunately, as far as we know, the Hamiltonians HL,n−EL,n do not have a limit as
self-adjoint operators. One can hope, however, that the IES has some kind of a limit.

Mathematically it is not obvious how to define this limit, since for finite L the IES is defined
on the lattice �2� /L�Zd, and in the thermodynamic limit it should be defined on Rd. Below we
propose one of possible definitions of the IES in the thermodynamic limit.

For k�Rd and ��0, we take ��0 and set

���k,�� ª lim inf
n→	

�inf��L,n�k��:k� �
2�

L
Zd, 	k − k�	 � �,� =

n

Ld
� . �1.7�

This gives a lower bound on the IES for the momenta k� in the window in the momentum space
around k of diameter 2�. The quantity ���k ,�� increases as � becomes smaller. The IES in the
thermodynamic limit is defined as its supremum �or, equivalently, its limit� as �↘0,

���k� ª sup
��0

���k,�� . �1.8�

Under assumption �1.1� it is easy to prove that EL,n is finite and �L,n�0�=���0�=0 �see Theo-
rem 3.1 and Proposition 3.3�.

Conjecture 1.1: We expect that for a large class of repulsive potentials the following state-
ments hold true.

�1� The function Rd�k����k��R+ is continuous.
�2� Let k�Rd. If L→	, nL→	, nL /Ld→�, kL� �2� /L�Zd, and kL→k, we have that

�L,nL�kL�→���k�.
�3� If d
2, then inf

k�0

����k� / 	k	�¬ccr
� �0.

�4� There exists the limit lim
k→0

����k� / 	k	�¬cph
� �0.

�5� The function Rd�k����k� is subadditive, that is, ���k1+k2�����k1�+���k2�.
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Statements �1� and �2� can be interpreted as some kind of a “spectral thermodynamic limit in
the canonical approach.” Note that if �1� and �2� are true around k=0, then we can say that there
is no gap in the excitation spectrum.

The properties �3� and �4� of the Bose gas were predicted by Landau in the 1940s. Shortly
thereafter, they were derived by a somewhat heuristic argument by Bogoliubov.3

�3� is commonly believed to be responsible for the superfluidity of the Bose gas. More
precisely, it is argued that because of �3�, a drop of Bose gas traveling at speed less than ccr

� will
experience no friction. This argument is described, e.g., in the course by Landau–Lifshitz15 and in
Ref. 41, see also Sec. II F.

Note that in dimension d=1 the statement �3� should be replaced by
�3��. If d=1, then

���k + 2��� = ���k� . �1.9�

The statement �3�� has a simple rigorous proof, which we will describe in our paper. It implies
that in dimension d=1 the excitation spectrum is periodic with the period 2��. It follows by the
well-known argument that involves boosting all particles simultaneously by the velocity 2� /L
�see, e.g., Ref. 19�.

Excitation spectrum with the property described by �4� is often described as phononic and the
excitations with such a spectrum are called phonons. One also expects that the parameter cph

�

coincides with the speed of sound—a parameter in principle macroscopically measurable.
Let us describe a heuristic argument for �5�. Suppose that excitations can be described by

certain elementary quasiparticles with a dispersion relation k���k�. We assume that the state
consisting of quasiparticles with momenta k1 , . . . ,kn has the excitation energy ��k1�+ ¯+��kn�.
Then it is easy to see that the IES is the subadditive hull of ��k�, that is,

��k� = inf���k1� + ¯ + ��kn�:k1 + ¯ + kn = k,n = 1,2, . . .
 , �1.10�

which is the largest subadditive function less than �. In Appendix B we describe a somewhat more
elaborate, but still heuristic, argument that seems to indicate that, in the thermodynamic limit, the
Bose gas has a subadditive excitation spectrum.

Note that free Bose gas does not satisfy Conjecture 1.1. In this case ��k�=1 /2k2 and ��k�
=0, see Fig. 1.

There are not so many subadditive functions. There exist, however, subadditive functions,
which satisfy the properties described in our conjecture in �3� or �3��, and in �4�. We discuss basic
properties of subadditive functions in Appendix A. We could not find these facts in the literature,
although they probably belong to the folk knowledge.

B. Critical velocity

One of the most important quantities in superfluidity is the so-called critical velocity. There
are several nonequivalent variations of this concept.

One of the variations, which we call the global critical velocity, is inf	k	��L,n�k� / 	k	�. This
quantity is responsible for the full stability of the superfluid flow, see Sec. II F. It plays the role in
some physical phenomena, such as the Hess–Fairbank experiment, discussed in Ref. 17. It is
positive for the free Bose gas. It is, however, relevant only in a finite volume, since it vanishes in

FIG. 1. �Color online� Excitation spectrum of the free Bose gas.
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the thermodynamic limit. To our understanding, it is far too low to account for most other mani-
festations of superfluidity.

One can also introduce another kind of critical velocity, which we believe is more interesting
physically. It can be called the restricted critical velocity. In its definition we look first at
�L,n�k� / 	k	 for 	k	 less than some constant R, then go to the thermodynamic limit, and finally let
R→	. It is zero for a free Bose gas. If we assume that the dimension d
2, the interactions are
repulsive, and the density is positive, we expect it to be positive in the thermodynamic limit. We
believe that it is responsible for the metastability of the superfluid flow, see Sec. II F.

C. Experimental evidence

To our experience, most physicists interested in this subject �but not all� would agree that one
should expect Conjecture 1.1 �as well as the analogous Conjecture 3.4 formulated in the grand-
canonical setting� to be true. Let us start with a brief account of experimental evidence for these
conjectures.

Theoretically, the cross section for neutron scattering against a droplet of helium IV at zero
temperature is approximately proportional to the so-called van Hove form factor S�� ,k� �Ref. 38,
see also �H.6��. S�� ,k� is a measure of the density of excitations of the Bose gas at energy � and
momentum k at zero temperature. Therefore, S�� ,k� is zero below the curve k����k�. It seems
reasonable to suppose that more is true: S�� ,k� should be nonzero everywhere above the curve
k����k�. If in addition Conjecture 1.1 is true, then the lower boundary of the support of S�� ,k�
should satisfy �3�–�5� of this conjecture.

To our understanding, within experimental accuracy, experiments on helium IV at low tem-
peratures seem to confirm the above theoretical expectations.

Actually, experiments seem to say more than this. At least for low momenta, one observes a
sharp peak of S�� ,k� along a curve similar to k���k� at Fig. 2, see Ref. 40 and Fig. 1 of Ref.
24. This curve is interpreted as the dispersion relation of a quasiparticle �elementary excitation
spectrum�. These quasiparticles are called phonons for small momenta and rotons around the local
minimum of the dispersion relation. To our understanding, experiments indicate that below the
subadditive hull of the elementary excitation spectrum the value of S�� ,k� drops down substan-
tially. �In the case of Fig. 2, this subadditive hull equals k���k��.

Experiments involving excited phonon states are usually successfully interpreted in terms of
multiquasiparticle states whose momenta and energies are additive.24 This also implies that the
energy of multiquasiparticle states lies above k���k�.

A similar picture arises in the case of Bose–Einstein �BE� condensates of alcalic metals. For
example, the reader can consult Fig. 2 of Ref. 33, which shows the quasiparticle spectrum of the
BE condensate of 87Rb around zero temperature. Compared to helium IV, the main difference is
the absence of the rotonic part of the elementary excitation spectrum, see Fig. 3.

Of course, it is difficult to interpret real experiments in terms of rigorous statements. The setup
that we describe in this paper does not apply in all its details to realistic BE condensates. First of
all, both in helium IV and alcalic metals, the potential has typically an attractive part and a hard
core. Therefore, strictly speaking it does not belong to the class that we would like to consider in
this paper.

FIG. 2. �Color online� Excitation spectrum of helium IV.
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In the case of helium IV, the situation is further complicated by the fact that the Schrödinger
operator of the form �1.3� is not believed to describe it adequately—three-body interactions are
probably relevant. This problem does not appear in BE condensates of alcalic metals, where
apparently one can assume that only two-body interactions play the role.

BE condensates of alcalic metals have a different conceptual problem absent in the case of
helium IV: they do not represent the true ground state but only a metastable state.

D. Bogoliubov approximation

There are many theoretical physics papers devoted to the Bose gas. To our surprise, their
authors usually avoid making precise statements or conjectures about the excitation spectrum of
the Bose gas. �A notable exception is Ref. 41, where a definition of the IES similar to �1.7� can be
found�.

In Ref. 3 Bogoliubov proposed an approximation, which implies that the Bose gas should be
described by elementary excitations with the spectrum

�bg
� �k� = �1

2k2� 1
2k2 + 2v̂�k��� . �1.11�

Within this approximation, the IES equals �bg
� , the subadditive hull of �bg

� �see �1.10��, which has
the properties described in Conjecture 1.1.

Note that if we replace the potential v with �v and the density � with � /� �with a positive ��,
then neither �bg

� nor �bg
� depend on �. In fact, it is natural to conjecture that �bg

� describes the true
IES in the weak coupling–large density limit.

More precisely, let ��,��k� be the IES for the potential �v.
Conjecture 1.2: Let d
2. Then for a large class of repulsive potentials we have

lim
�↘0

���/��,��k� = �bg
� �k� .

Note that Conjecture 1.2 is certainly wrong in dimension d=1 because of �1.9�.
We do not know complete proofs of a statement similar to Conjectures 1.1, 1.2, as well as

their grand-canonical analogs described later on in our paper. We believe that to prove or disprove
them would be an interesting subject for research in mathematical physics.

Many theoretical works on the energy-momentum spectrum of the Bose gas instead of the
correct Hamiltonian HL,n �or its second-quantized version HL and the grand-canonical version H�

L�
consider its modifications. They either replace the mode k=0 by a c-number or drop some of the
terms or do both modifications.1,14,9,11,36,42 These Hamiltonians have no independent justification
apart from being approximations to the correct Hamiltonian in some uncontrolled way. Let us
stress that in our paper we are mostly interested in the correct Hamiltonian and not its modifica-
tions: all our statements will be related either to HL,n or to the grand-canonical Hamiltonian H�

L

�the second quantization of HL,n−�n�.

E. Organization of the paper

The paper is divided into several sections and appendices. The individual sections use some-
times slightly different notation and are devoted to different aspects of the Bose gas.

FIG. 3. �Color online� Excitation spectrum typical for BE condensates of alcalic metals.
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Section II is devoted to some facts about Bose gas that are naturally formulated in the
canonical approach, where we start with a definite number of particles and go to the thermody-
namic limit keeping the density fixed. The later part of the paper, where we use the grand-
canonical approach, is independent of this section.

We start with a discussion of the Galilean covariance in a finite box with periodic boundary
conditions. We believe that this is relevant if one wants to understand the physics of the Bose gas.
Even though what we present is elementary, we did not find most of it in the literature.

In Sec. II D we discuss the case of dimension d=1. We prove that the excitation spectrum is
periodic in momentum. This fact is known to some experts and we do not claim its discovery—
nevertheless, we have never seen it explicitly stated in the literature.

In Sec. II F we describe an argument that links the properties of the excitation spectrum to
superfluid behavior. The argument that we describe is slightly different from the one usually stated
in the literature20,41—in particular, it applies to systems confined to a finite volume.

In Sec. II G we present the variational ansatz due to Bijls2 and Feynmann8 for the excitation
spectrum.

In Sec. III we describe the �nonrigorous but interesting� argument due to Onsager28 that
indicates the phononic character of the excitation spectrum obtained by this Ansatz. Our presen-
tation follows that of a recent paper.41

Section III is the central part of our paper. Starting with this section, we switch to the
grand-canonical setting. This means that we allow the number of particles to vary and we fix the
chemical potential �. We also use the formalism of second quantization.

In Sec. III A we describe the formalism and formulate Conjecture 3.4, the grand-canonical
analog of Conjecture 1.1.

In Sec. III B, we discuss the Hamiltonian obtained by a c-number substitution of the mode
k=0. We describe the theorem of Lieb et al.22 saying that this approximate Hamiltonian gives the
correct energy density in the thermodynamic limit. Note that the result of Ref. 22 is more general,
it concerns an arbitrary temperature. Our presentation sticks to the zero temperature, which allows
for some minor simplifications.

In Sec. III C we describe the Bogoliubov approximation. Its original form was formulated in
the canonical setting of fixed density in the second-quantized formalism. We follow its grand-
canonical version, which can be traced back to Beliaev1 and Hugenholz-Pines,14 see also a recent
review paper by Zagrebnov and Bru.42 Even though this is a classic reasoning, our presentation
seems to be somewhat different from and more satisfactory than what we have seen in the
literature. Its first step is a variational problem involving coherent states. The second step is the
Bogoliubov translation and rotation adapted to the resulting approximate ground state. Our rea-
soning does not involve the c-number substitution: we treat the mode k=0 quantum mechanically.

One can try to improve on Bogoliubov’s approximation by looking for the minimum of the
energy among translation invariant squeezed states. To our knowledge, in the context of the Bose
gas this idea first appeared in the paper of Robinson.31 Robinson considered a slightly more
general class of states—quasifree states. He noticed, however, that in the case he looked at it is
sufficient to restrict to pure quasifree states, which coincide with squeezed states. In the literature
this approach often goes under the name of the Hartree–Fock–Bogoliubov method. One should
mention also,6 where a variational bound on the pressure of Bose gas in a positive temperature is
derived by using quasifree states. More recently, similar methods were used to obtain rigorous
results about Bose gases in Refs. 32 and 7.

Only an upper bound to the ground state energy is considered in Ref. 31. We go one step
further: we show how this method can be extended to obtain upper bounds on the infimum of the
energy-momentum spectrum by using one-particle excitations over squeezed states.

After finding the minimizing squeezed vector �, it is natural to express the Hamiltonian in the
new creation/annihilation operators bk

� /bk, for which the new approximate ground state is a Fock
vacuum. We show that the resulting quadratic Hamiltonian has no terms involving b, b�, bb, and
b�b�. The Hamiltonian becomes
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H = C + �
k

D�k�bk
�bk + terms of order 3 and 4. �1.12�

This new form of the Hamiltonian yields immediately an interesting estimate on the energy-
momentum spectrum. In fact, the vectors bk

�� have precisely the momentum k and the energy
equal to C+D�k�. One could ask how good is this estimate. It turns out that it has a serious
drawback. As we show in Sec. III G, under quite general circumstances we have D�0��0.

Perhaps, this is the most important �even if negative� finding of our paper. It implies that at the
bottom of its spectrum one-particle excitations over a squeezed state are poor test functions for the
excitation spectrum.

In the literature, the existence of a gap in various approximation schemes that try to improve
on the original Bogoliubov’s one has been noticed by a number of authors.11,36 However, to our
knowledge those authors did not consider the correct Hamiltonian, but always used one of its
distorted versions.

The Hilbert space of the homogeneous Bose gas can be naturally factorized into the tensor
product of an infinite family of Hilbert spaces for various values of the momenta. Variational
Ansätze involving translation invariant squeezed states, as well as particle excitations over the
squeezed states, have a common feature—they are factorized with respect to this tensor product.
We call such states uncorrelated. One can pose a question: how good are uncorrelated states as
variational test functions in many body problems? It seems to us that they have serious
drawbacks—in particular, we conjecture that they typically give spectrum with an energy gap.

In Sec. IV we discuss approaches to the Bose gas based on perturbation theory. We would like
to treat the coupling constant � as a small parameter, keeping the chemical potential � fixed.

In Sec. IV A we describe a naive splitting of the Hamiltonian into a main part and a pertur-
bation based on the usual Bogoliubov approach. Unfortunately, this approach seems to fail be-
cause of a serious infrared problem. We also formulate Conjecture 4.1, which is the grand-
canonical analog of Conjecture 1.2 and is suggested by Bogoliubov’s approximation.

In Sec. IV B we propose a certain systematic procedure for perturbation expansion, which
avoids the infrared problem. This procedure uses �1.12� as the starting point for the expansion. The
third and fourth order terms are treated as perturbations. The advantage of this procedure is that it
does not drop any terms from the Hamiltonian. All the works on the Bose gas based on perturba-
tion theory1,14,9 that we know involve the c-number substitution. This substitution, even if justified
for the energy density,22 is unfounded for finer quantities such as the IES. Our perturbative
procedure does not involve distorting the Hamiltonian. Therefore, in our opinion, it is superior
from the physical point of view.

In Sec. V we describe various inequalities on the Bose gas that can be proved rigorously.
These results are consistent with the absence of the energy gap and the phononic form of the
excitation spectrum. They are obtained by relatively simple methods, involving especially the
so-called f-sum rule. Our presentation is based on the work of Bogoliubov4 and on results pre-
sented by Stringari.34,35

In appendices we present some background material to make our paper accessible to a larger
audience. In Appendix F we describe technical computations.

F. Additional remarks about the literature

Let us make some additional remarks about the literature of the subject. The case of dimen-
sion d=1 and repulsive delta interactions has been studied in detail. Girardeau10 studied the case
of “infinite” coupling �which amounts to the Dirichlet boundary conditions�. The case of an
arbitrary positive coupling constant was studied in Refs. 20 and 19, where arguments for the
absence of a gap and the phononic shape of the excitation spectrum in the thermodynamic limit are
given. Reference 41 gives a full rigorous proof for the linearity of the excitation spectrum in the
thermodynamic limit for Girardeau’s model. Note, however, that the one-dimensional case is
believed to be quite different from the case d
2.
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There exists a large literature on the energy density of the Bose gas. The energy density can
be defined as

e�
ª lim

L→	

EL,n

V
, �1.13�

where �=n /V is kept fixed. There exist derivations of the asymptotics of e� in dimension d=3 for
small � going back to Refs. 5, 14, 16, and 18. This asymptotics is not restricted to small
potentials—it covers also the case of hard-core potentials. One can show rigorously �see Ref. 23
and references therein� that the leading term of this asymptotics correctly describes the energy
density. Similar results can be shown in dimension d=2.

Note that the energy density is easier to study than the IES. Besides, it does not capture some
interesting physical phenomena the excitation spectrum is responsible for. Note also that the above
mentioned results involve the following limit: the scattering length is kept fixed �this can be
achieved, e.g., by fixing the potential� and the density goes to zero. In our paper we usually
consider a different limit: the chemical potential is kept fixed and the coupling constant in front of
the potential goes to zero. One can have various opinions comparing the physical relevance of the
two limits. In any case, the latter limit seems more appropriate if one wants to capture the
phononic character of the excitation spectrum.

Another direction of rigorous research involves studying the so-called Gross–Pitaevski limit.
Again it concerns mostly the dimension d=3. The quantity that is kept fixed is an /L, where a is
the scattering length and n goes to infinity. The Gross–Pitaevski limit is usually presented with a
fixed L and the scattering length a going to zero, which is achieved by an appropriate scaling of
the potential. Equivalently, one can fix the potential, consider L→	, and scale the density as �
�L1−d as L→	. In this limit, Lieb et al.23 obtained a number of interesting and precise results. In
particular, they are able to approximate the behavior of the n-body system by a nonlinear effective
equation—the Gross–Pitaevski equation. Note, however, that in this limit it is difficult to say
something interesting about the excitation spectrum because the density and, hence, the speed of
sound and the critical velocity go to zero.

The result of Ref. 21 �see also Theorem 5.3 of Ref. 23� can be interpreted as the positivity of
the global critical velocity in finite volume. This result does not address the properties of the
restricted critical velocity.

Finally, let us note that there exists a number of interesting rigorous results about Bose gas in
positive temperatures.4,6,12,34,35,26,22

II. CANONICAL APPROACH

In this section we will always work on a Hilbert space of fixed number of particles. We will
use the Hamiltonian HL,n introduced in Sec. I. To simplify the notation, we often drop the super-
scripts n , L, writing, e.g., H instead of HL,n.

A. Free Bose gas

In finite volume, the momentum is restricted to

k =
2�

L
k̃, k̃ � Zd.

It is easy to compute exactly the excitation spectrum of the free Bose gas in a finite volume, see
Fig. 4. In particular, in dimension d=1, its infimum is given by the broken line with vertices at

k =
2�n

L
k̃, �L,n�k� =

1

2
k2, k̃ � Z .

In an arbitrary dimension, we just add the contributions from each dimension,
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�L,n�k1, . . . ,kd� = �L,n�k1� + ¯ + �L,n�kd� .

B. Galilean covariance in a box with periodic boundary conditions

In infinite volume the Galilean covariance involves an arbitrary value of velocity. This is not
the case in a box with periodic boundary conditions �torus�, where the Galilean covariance is only
rudimentary. To describe it we will restrict ourselves to boosts in the first coordinate. The follow-
ing operator, which we will call the boost operator, adds simultaneously velocity 2� /L to all
particles in the direction of the first coordinate,

U1 ª exp� i2�

L
�
i=1

n

xi1� .

�xi1 denotes the first coordinate of the ith particle�. Clearly, U1 preserves the domain of H and is
a unitary operator on Ls��n� satisfying

U1P1U1
� = P1 −

2�n

L
, �2.1�

U1HU1
� = H −

2�

L
P1 +

�2��2n

2L2 . �2.2�

�P1 denotes the first component of the total momentum�. Hence

U1�H −
1

2n
P2�U1

� = H −
1

2n
P2. �2.3�

�2.3� and �2.2� impose a severe restriction on the shape of the excitation spectrum,

sp�H −
1

2n
P2� �2.4�

has to be invariant with respect to translations by 2�n /L, see Fig. 5.

FIG. 4. �Color online� IES of free Bose gas in finite volume.

FIG. 5. �Color online� Typical IES of interacting Bose gas in finite volume.
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C. Critical velocity

The global critical velocity in finite volume is defined by

ccr
L,n

ª inf
k�0

�L,n�k�
	k	

.

Recall that we are interested in the thermodynamic limit, which involves L ,n→	 with n /V=�
�0.

Note that for the free Bose gas we have

ccr
L,n =

�

L
. �2.5�

Thus the global critical velocity is positive, but goes to zero in the thermodynamic limit.
In the interacting case we have a sequence of low energy states with the momentum and the

excitation energy obtained by boosting the ground state,

k =
2�n

L
k̃, � =

�2��2

2L2 nk̃2,

where k̃�Zd. Expressed in terms of density this gives

k = 2��Ld−1k̃, � =
�2��2

2
�Ld−2k̃2.

Therefore, in the general case the global critical velocity is not greater than in the case of the free
gas,

ccr
L,n �

�

L
.

In dimension d
2, the momentum of these states escapes to infinity, so in a sense they are not
visible in the thermodynamic limit �Fig. 6�.

D. Bose gas in dimension d=1

Bosonic gas in dimension d=1 seems to have different properties than in higher dimensions.
In particular, statement �3� of Conjecture 1.1 should be replaced by �3��.

Theorem 2.1: R�k����k� is periodic with the period 2��.
Theorem 2.1 easily follows from the invariance of the spectrum �2.4�.

E. Twisted boundary conditions

One can also consider the boost operator for an arbitrary velocity. In fact, for ��R, define the
unitary operator,

FIG. 6. �Color online� Typical IES of Bose gas in dimension d=1.
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U1��� ª exp� i�

L
�
i=1

n

xi1� .

Let ��� denote � mod�2��. We will write P1,��� and H��� for the momentum and the Hamiltonian
with the boundary condition in the first coordinate twisted by ���. �It means that the elements of
the domain of these operators for j=1, . . . ,n satisfy

��x1, . . . ,x j − 1
2Le1, . . . ,xn� = ei���x1, . . . ,x j + 1

2Le1, . . . ,xn� ,

where e1 is the unit vector in the direction of the 1s coordinate�.
For � not equal to a multiple of 2� the operator U1��� does not preserve the domain of H and

P. Instead of identities �2.1� and �2.2� we have

U1���P1U1�− �� = P1,��� −
�n

L
, �2.6�

U1���HU1�− �� = H��� −
�

L
P1,��� +

�2n

2L2 , �2.7�

�2.6� and �2.7� imply

H��� = U1����H +
�

L
P1�U1�− �� +

�2n

2L2 . �2.8�

In particular, if 0��0��, then

ccr
L,n 


�0

L

if and only if

H��� − E 

�2n

2L2 , 	�	 � �0. �2.9�

�2.9� was used by Lieb et al. as a criterion for the positivity of global critical velocity in Ref. 21,
see also Theorem 5.3 of Ref. 23.

F. Superfluidity

Let us describe one of experiments that show superfluid properties of the Bose gas.
A laser beam playing the role of an optical spoon30 is directed into a sample of a Bose gas at

a sufficiently low temperature. The beam makes a rotating motion. If the velocity of this motion is
lower than a certain critical value, then the sample heats up very slowly. For velocities above this
critical value, the sample heats up much faster.

Let us try to describe an idealized mathematical model of this phenomenon, which is a version
of the well-known argument due to Landau described, e.g., in Refs. 15 and 41.

Since our Bose gas has periodic boundary conditions, we can make an idealized assumption
that the “laser beam” travels forever with a constant velocity w= �w ,0 , . . . ,0��Rd. We will model
it with a weak traveling potential u�x− tw� interacting with all particles. Thus the system is
described by the Schrödinger equation with a time-dependent Hamiltonian,

i�t�t = �H + �
i=1

n

u�xi − tw���t. �2.10�

Let us replace �t with
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�̃t�x1, . . . ,xn� ª �t�x1 + tw, . . . ,xn + tw� .

We obtain a Schrödinger equation with a time-independent Hamiltonian,

i�t�̃t = �H − wP + �
i=1

n

u�xi���̃t.

We know that the operator H has a nondegenerate ground state energy E. The corresponding
ground state � is therefore stable with respect to small time-independent perturbations. We ask the
question whether the state � is stable against a small traveling perturbation of the form �2.10�.

Let us first describe a slightly dishonest version of the argument for superfluidity �which
actually is usually found in the literature�. Let ccr denote the critical velocity. For 	w	�ccr, the
excitation spectrum of the “tilted Hamiltonian” H−wP looks as at Fig. 7, so � is its ground state.
Hence � hence is stable. For 	w	�ccr the excitation spectrum looks as at Fig. 8. Therefore � is
not a ground state of H−wP and its energy is close to energies of many other states. Hence � is
unstable.

Note that we cheated a little in the above argument. The situation that we described involved
a finite volume, but the pictures were �as we believe� typical for the thermodynamic limit. The
actual plot in finite volume resembles Fig. 9. In particular, the global critical velocity in finite
volume ccr

L,n is small and goes to zero in the thermodynamic limit. Physical evidence seems to
indicate that the superfluid flow can be metastable at much larger velocities, which are positive in
the thermodynamic limit. Note that Figs. 7 and 8 represent the excitation spectrum in the thermo-
dynamic limit and do not show the low lying states present in finite volume, which have a very
low critical velocity.

Let us try to present a more physical argument for superfluidity. Suppose that the Fourier
transform of u is supported in the ball 	k	�R. Define the restricted critical velocity below the
momentum R as

ccr,R
L,n

ª inf� �L,n�k�
	k	

k � 0, 	k	 � R
 . �2.11�

If the “tilted Hamiltonian” HL,n−wPL,n has no other eigenstates of energy close to EL,n and
momentum less that R, then the state � will be metastable against the perturbation �2.10�, at least

FIG. 7. �Color online� IES of tilted Hamiltonian for velocity below ccr.

FIG. 8. �Color online� IES of tilted Hamiltonian for velocity above ccr.
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in the first order. This is the case for 	w	�ccr,R
L,n . On the other hand, for 	w	
ccr,R

L,n , we can expect
many states with energy close to EL,n and momentum less than R, so the metastability will be lost.

Heuristic arguments �e.g., the Bogoliubov method described later on� suggest that in dimen-
sion d
2, for a positive density � and for an arbitrary R, the restricted critical velocity ccr,R

L,n is
bounded away from zero even in the thermodynamic limit. This can be formulated in the follow-
ing conjecture.

Conjecture 2.2: Fix density �. Then

ccr,R
�

ª lim
L→	

ccr,R
L,n ,

n

V
= � ,

exists, where ccr,R
L,n is defined as in (2.11). Moreover, in dimension d
2,

lim inf
R→	

ccr,R
� � 0. �2.12�

We think that the statement of Conjecture 2.2, and, in particular, �2.12�, is a good candidate
for the definition of superfluidity at zero temperature. Another candidate for a such definition is the
statement of Conjecture 1.1 �3�.

Note in parenthesis that Conjecture 2.2 is stronger than Conjecture 1.1 �3�. In fact, the left
hand side of �2.12� is less than or equal to ccr

� introduced in Conjecture 1.1 �3�.

G. Bijls–Feynmann’s Ansatz

For k� �2� /L�Zd set

Nk ª �
i=1

n

eikxi, �2.13�

acting on Ls
2��n�.

It is well known that the ground state of H is nondegenerate. Denote it by �. We will write
�see Appendix G�

�A� ª ��	A��, ��A,B�� ª �A�H − E�−1B� + �B�H − E�−1A� .

Note the following identity:

1

2
�Nk

�,�H,Nk�� =
k2

2
n . �2.14�

It implies the so called f-sum rule,

FIG. 9. �Color online� IES of “tilted Hamiltonian” in finite volume.
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1

2
�Nk

��H − E�Nk� +
1

2
�Nk�H − E�Nk

�� =
k2

2
n . �2.15�

By the reality of � and H, �2.15� also equals �Nk
��H−E�Nk�. Define

sk ª n−1�Nk
�Nk� , �2.16�

�k ª n−1��Nk
�,Nk�� . �2.17�

By the reality of � and H, �2.17� also equals 2n−1�Nk
��H−E�−1Nk�.

By the Schwarz inequality, we obtain

sk �
1
2 	k	��k. �2.18�

Bijls2 and Feynmann8 proposed to consider the following variational Ansatz:

�k ª Nk�/�Nk�� ,

to obtain the excitation spectrum of the Bose gas.
Theorem 2.3: We have

P�k = k�k, �2.19�

�0 = � , �2.20�

��k	�H − E��k� =
	k	2

2sk



	k	
��k

. �2.21�

Proof: To see �2.21� we note that

��k	�H − E��k� =
�Nk

��H − E�Nk� + �Nk�H − E�Nk
��

2�Nk
�Nk�

=
k2

2sk



	k	
��k

,

where we applied the f-sum rule to the numerator and used �2.18�. �

It is believed that the Bijls–Feynman Ansatz gives the correct behavior of the excitation
spectrum for low momenta, and, in particular, it gives the value of cph

� , which was defined in
Conjecture 2.2 �4�.35 Let us formulate this as a conjecture.

Conjecture 2.4: Fix density �. Let Rd�k��BF
� �k� be defined as in (1.7) and (1.8) with

��k 	 �HL,n−EL,n��k� replacing �L,n�k�. [In other words, �BF
� �k� is a thermodynamic limit of the left

hand side of (2.21)]. Then

lim
k→0

���k�
	k	

= lim
k→0

�BF
� �k�
	k	

. �2.22�

H. Speed of sound

Recall that under broad conditions we are able to prove the existence of the energy density
�1.13�, which for typographical reasons in this subsection we will be written e��� instead of e�.

Another important macroscopic parameter, which in principle can be measured experimen-
tally, is the speed of sound, denoted cs. It is related to the energy density by

cs = ��e���� �2.23�

�see, e.g., Appendix C�.
It is believed that for low momenta
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lim
k→0

sk

	k	
=

1

2cs
, �2.24�

and hence ��k 	 �H−E��k��cs	k	. If this is the case and if the speed of sound is nonzero, then the
excitation spectrum given by the Bijls–Feynman ansatz is phononic, that is the limit on the right
hand side of �2.22� exists and equals cs.

I. Relation between the speed of sound and �k

Instead of arguing for �2.24�, it seems easier to justify the relation

lim
k→0

�k =
1

cs
2 . �2.25�

In this subsection we describe a series of heuristic arguments indicating that �2.25� holds in the
thermodynamic limit. Given �2.25� and if the speed of sound is nonzero, �2.21� gives a phononic
lower bound on ��k 	 �H−E��k�. This inequality is attributed to Onsager.28 Our presentation
follows that of Ref. 41.

Let Cper
	 �Rd� denote the set of smooth periodic functions. If u�Cper

	 �Rd�, we will often identify
it with its restriction to �, where we assume that L is a multiple of the period of u. We also
introduce a notation for the perturbed Hamiltonian,

Hu ª H + �
i

u�xi� . �2.26�

We denote by Eu the ground state energy of Hu. We also set

Eu
df
ª inf�

�

�e���x�� + u�x���x��dx ,

where we take the infimum over positive functions ��x���x� satisfying ����x�dx=n. �The
superscript df stands for the density functional�.

Let F be a function depending on u�Cper
	 �Rd�. We will say that F�u�=o�	�u	0� if and only if

there exists N and a function f such that lim
�→0

f���=0 and

	F�u�	 � f� �
1�	�	�N

sup	�x
�u�x�	� .

Conjecture 2.5: Eu
df is an approximation of Eu for slowly varying u , more precisely,

lim sup
L→	, n=�V

1

V
	Eu − Eu

df	 = o�	�u	0� .

The next claim follows from Conjecture 2.5 by an application of a perturbation argument.
Conjecture 2.6: For u�Cper

	 �Rd� having the mean value equal to zero we have

� 1

Ve����� u�x�2dx −
2

V��
i

u�xi��H − E�−1�
i

u�xi��� = o�	�u	0� .

Let us give an argument in favor of Conjecture 2.6. For ��R, we consider the family of
Hamiltonians H�u with the ground state energy E�u. By the usual perturbation theory,

d

d�
�E�u − E� = 0, �2.27�
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d2

d�2 �E�u − E� = − 2��
i

u�xi��H − E�−1�
i

u�xi�� . �2.28�

Now

E�u
df = inf�� e���x��dx + �� ��x�u�x�dx
 �2.29�

�Ve��� + inf�� e����
2

���x� − ��2dx + �� ���x� − ��u�x�dx
 , �2.30�

where in �2.29� and �2.30� we minimize over positive functions � such that ���x�dx=n. The
minimum of �2.30� is attained at

��x� ª � −
�

e����
u�x� .

Therefore,

E�u
df � Ve��� −� �2

2e����
u�x�2dx .

Invoking �2.28� we obtain Conjecture 2.6.
Now �2.25� will follow from �2.23� and the following claim.
Conjecture 2.7: �k is well defined in the thermodynamic limit and satisfies

lim
k→0

�k =
1

e�����
. �2.31�

Let us justify �2.31�. We assume that L is large. Clearly,

�Nk
��H − E�−1Nk� = ��

i

cos�kxi��H − E�−1�
j

cos�kx j�� + ��
i

sin�kxi��H − E�−1�
j

sin�kx j��
+ 2 Im��

i

sin�kxi��H − E�−1�
j

cos�kx j�� . �2.32�

The ground state � is a real vector. The Hamiltonian H, and hence also �H−E�−1, is a real
operator. Therefore, the last term in �2.32� is zero.

Obviously,

1

Ve����� �cos2�kx� + sin2�kx��dx =
1

e����
.

Hence, by Conjecture 2.6,

lim
k→0

lim sup
L→	, n=�V

� 2

V
�Nk

��H − E�−1Nk� −
1

e����
� = 0,

which implies �2.31�.

III. BOGOLIUBOV APPROACH IN THE GRAND-CANONICAL SETTING

A. Grand-canonical approach to the Bose gas

As realized by Bogoliubov,3 even if one is interested in properties of the Bose gas with a fixed
but large number of particles, it is convenient to use the second-quantized description of the
system, allowing for an arbitrary number of particles.
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An additional reformulation of the problem was noted already by Beliaev,1

Hugenholz-Pines,14 and others. Instead of studying the Bose gas in the canonical formalism, fixing
the density, it is mathematically more convenient to use the grand-canonical formalism and fix the
chemical potential. Then one can pass from the chemical potential to the density by the Legendre
transformation.

More precisely, for a given chemical potential �
0 on the symmetric Fock space,

�s�L2���� ª �
n=0

	

Ls
2��n� ,

we define the grand-canonical Hamiltonian,

H�
L
ª �

n=0

	

�HL,n − �n� =� ax
��−

1

2
�x − ��axdx +

1

2
� � ax

�ay
�vL�x − y�ayaxdxdy .

The second-quantized momentum and number operators are defined as

NL
ª �

n=0

	

n =� ax
�axdx ,

PL
ª �

n=0

	

Pn,L = − i� ax
��x

Laxdx .

It is convenient to pass to the momentum representation,

H�
L = �

k
�1

2
k2 − ��ak

�ak +
1

2V
�

k1,k2,k3,k4

��k1 + k2 − k3 − k4�v̂�k2 − k3�ak1

� ak2

� ak3
ak4

,

NL = �
k

ak
�ak,

PL = �
k

kak
�ak,

where we used �1.4� to replace vL�x� with the Fourier coefficients v̂�k�. Note that v̂�k�= v̂�−k� and
ax=V−1/2�keikxak.

The ground state energy in the grand-canonical approach is defined as

E�
L = inf spH�

L = inf
n
0

�EL,n − �n� , �3.1�

Where E�
L is a decreasing concave function of �. To go back to the canonical condition �fixed

number of particles,� one uses

n = − ��E�
L . �3.2�

Both EL,n and E�
L are finite for a large class of potentials, which follows from a simple and

well-known rigorous result, which we state below.
Theorem 3.1: Suppose that v̂�k�
0, v̂�0��0, and v�0��	. Then HL,n and H�

L are bounded
from below and

EL,n 

v̂�0�
2V

n2 −
v�0�

2
n , �3.3�
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E�
L 
 − V

�1

2
v�0� + ��2

2v̂�0�
. �3.4�

Proof: Let us drop the subscript L. Set

Nq ª �
k

ak+q
� ak =� eiqxax

�axdx �3.5�

�which is the second-quantized version of �2.13��. Then, by a simple commutation, using that
N0=N and that v̂�k� is non-negative, we obtain

H� 
 − �N +
1

2V
�

k1,k2,k3,k4

��k1 + k2 − k3 − k4�v̂�k2 − k3�ak1

� ak2

� ak3
ak4

=
1

2V
�
k

v̂�k�Nk
�Nk − �� +

v�0�
2

�N 

v̂�0�
2V

N2 − �� +
v�0�

2
�N . �3.6�

Setting �=0 and N=n in �3.6� we obtain �3.3�. Minimizing �3.6� over N proves �3.4�. �

For k� �2� /L�Zd let H�
L�k� denote the Hamiltonian H�

L restricted to the space P=k. The IES
in the box is defined as

��
L�k� ª inf spH�

L�k� . �3.7�

For k�Rd we define the IES at the thermodynamic limit

���k� ª sup
��0

�lim inf
L→	

� inf
k���2�/L�Zd,	k−k�	��

��
L�k���� . �3.8�

Throughout most of our paper, the chemical potential � is considered to be the natural
parameter of our problem. It often can be proven that the energy density exists in the thermody-
namic limit for a fixed �
0,

e� ª lim
L→	

E�
L

V
. �3.9�

and is related to e� of �1.13� by the Legendre transformation,

e� = inf
�

�e� − ��
 .

By definition, e� is decreasing and concave. Hence it is differentiable almost everywhere. At the
points of differentiability, we can pass from the grand canonical to the canonical approach by

− ��e� = � . �3.10�

At the points where �3.10� has a unique solution ����, we should be able to relate the canonical
and the grandcanonical IES:

Conjecture 3.2: ���k�=������k�. The following proposition is one of few rigorous facts that
can be easily shown about the IES.

Proposition 3.3: At zero total momentum, the excitation spectrum has a global minimum
where it equals zero: �L,n�0�=���0�=0 and ��

L�0�=���0�=0.
Proof: Each EL,n is a nondegenerate eigenvalue of HL,n, and HL,n commutes with the total

momentum and space inversion. Thus each EL,n corresponds to zero total momentum, and hence
by �3.1� so does E�

L . Hence �L,n�0�=��
L�0�=0. �

Let us now formulate the conjectures about ���k� �analogous to the Conjecture 1.1 about
���k��.

062103-19 Infimum of the Bose gas energy-momentum spectrum J. Math. Phys. 50, 062103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



Conjecture 3.4: We expect the following statements to hold true,

�1� The map Rd�k����k��R+ is continuous.
�2� Let k�Rd. If L→	, kL� �2� /L�Zd, and kL→k, we have that ��

L�kL�→���k�.
�3� If d
2, then infk�0����k� / 	k	�¬ccr,��0.
�4� The limit limk→0����k� / 	k	�¬cph,��0 exists.
�5� k����k� is subadditive.

B. c-number substitution

One of the steps of the Bogoliubov method consists in replacing the operators a0
�, a0, with

c-numbers,

a0
�a0 � 	�	2, a0 � � ,a0

� � �̄ . �3.11�

This means replacing H�
L by

H�
L��� =

v̂�0�
2V

	�	4 − �	�	2 + �
k

��1

2
k2 − � +

v̂�0� + v̂�k�
V

	�	2�ak
�ak

+ �
k

�� v̂�k��2

2V
ak

�a−k
� +

v̂�k��̄2

2V
aka−k�

+ �
k

��̄
v̂�k1� + v̂�k1 + k2�

2V
ak1+k2

� ak1
ak2

+ �
k

��
v̂�k1� + v̂�k1 + k2�

2V
ak1

� ak2

� ak1+k2

+
1

2V
�

k1,k2,k3,k4

���k1 + k2 − k3 − k4�v̂�k2 − k3�ak1

� ak2

� ak3
ak4

. �3.12�

Here �k� denotes the sum over all k� �2� /L�Zd \ �0
. Note that H�
L��� is the Wick symbol of the

operator H�
L with respect to the mode k=0. It is easy to compute also its anti-Wick symbol,

H̃�
L��� = H�

L��� −
2v̂�0�

V
	�	2 +

v̂�0�
V

+ � − �
k

�
v̂�0� + v̂�k�

V
ak

�ak.

�See, e.g., Appendix D for the definitions and basic properties of Wick and anti-Wick symbols�.
The following theorem is due to Lieb et al.22

Theorem 3.5: Assume that the energy density e� exists. Assume also that v̂�k� is bounded.
Then

e� = lim
L→	

V−1 inf�inf sp H�
L���:� � C
 . �3.13�

Thus we can replace H�
L with the Hamiltonian H�

L��� when computing the energy density.
Proof: The anti-Wick symbol of the number operator NL with respect to the mode k=0 is

ÑL��� = 	�	2 − 1 + �
k

�ak
�ak.

Note that for �ªsupk v̂�k�, by �D3� we have
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0 � H�
L��� − H̃�

L��� �
2�

V
ÑL +

v̂�0�
V

− � .

Now

inf sp H�
L � inf�inf sp H�

L���:� � C
 � inf�inf spH̃�
L��� +

2�

V
ÑL���:� � C
 +

v̂�0�
V

− �

� inf sp H�−2�/V
L +

v̂�0�
V

− � � inf sp H�1

L +
v̂�0�

V
− � ,

where in the last inequality �1�� and V is large enough. �The first and third inequalities follow
from �D3��. Dividing both sides by V and letting L→	 we obtain

e� � lim
L→	

V−1 inf�inf sp H�
L���:� � C
 � e�1

. �3.14�

Now �0,����1�e�1
is a finite concave function, hence it is continuous, which implies �3.13�. �

C. Bogoliubov method

Let us describe a version of the Bogoliubov approximation adapted to the grand-canonical
approach. A similar discussion can be found, e.g., in the review of Zagrebnov-Bru.42

In what follows we will always use the grand-canonical approach. We will drop � from H�
L ,

��
L�k�, etc.

For ��C, we define the displacement or Weyl operator of the mode k=0,

W� ª e−�a0
�+�̄a0, �3.15�

and the corresponding coherent vector ��ªW�
��. Note that W� is the only Weyl operator com-

muting with the momentum, and hence �� is the only coherent vector of momentum zero.
Let us apply the “Bogoliubov translation” to the mode k=0 of HL. This means making the

substitution,

a0 = ã0 + �, a0
� = ã0

� + �̄ ,

ak = ãk, ak
� = ãk

�, k � 0 . �3.16�

Note that

ãk = W�
�akW�, ãk

� = W�
�ak

�W�,

and thus the operators with and without tildes satisfy the same commutation relations. In addition,
the annihilation operators with tildes kill the “new vacuum” ��.

For notational simplicity, in what follows we drop the tildes and we obtain

HL = − �	�	2 +
v̂�0�
2V

	�	4

+ � v̂�0�
V

	�	2 − ����̄a0 + �a0
��

+ �
k
�1

2
k2 − � +

�v̂�0� + v̂�k��
V

	�	2�ak
�ak

+ �
k

v̂�k�
2V

��̄2aka−k + �2ak
�a−k

� �
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+ �
k,k�

v̂�k�
V

��̄ak+k�
� akak� + �ak

�ak�
� ak+k��

+ �
k1,k2,k3,k4

��k1 + k2 − k3 − k4�
v̂�k2 − k3�

2V
ak1

� ak2

� ak3
ak4

. �3.17�

The expectation value of the state given by �� equals the constant term of �3.17�, that is,

���	HL��� = − �	�	2 +
v̂�0�
2V

	�	4. �3.18�

�3.18� is minimized for 	�	2=��V / v̂�0��. This choice kills also the linear term on the second line
of �3.17�.

Let us choose � so as to minimize �3.18�. This means, we choose ei� and set �

=ei��V� /�v̂�0�. Then the Hamiltonian becomes

HL
ª − V

�2

2v̂�0�

+ �
k
�1

2
k2 + v̂�k�

�

v̂�0�
�ak

�ak

+ �
k

v̂�k�
�

2v̂�0�
�e−i2�aka−k + ei2�ak

�a−k
� �

+ �
k,k�

v̂�k���

�v̂�0�V
�ēi�ak+k�

� akak� + ei�ak
�ak�

� ak+k��

+ �
k1,k2,k3,k4

��k1 + k2 − k3 − k4�
v̂�k2 − k3�

2V
ak1

� ak2

� ak3
ak4

. �3.19�

�Note that we have made no approximation yet.� The first three lines of �3.19� form a qua-
dratic Hamiltonian, which will be denoted by Hbg

L . Now let us make the assumption that Hbg
L can

be treated as an approximation to HL. For a possible justification for this approximation, see Sec.
IV A.

It is easy to find the excitation spectrum of Hbg
L . To this end, for k�0 we make the substitu-

tion

ak
� = ckbk

� − s̄kb−k, ak = ckbk − skb−k
� . �3.20�

Let �= ��k� be a sequence such that �0=0 and

ck ª cosh	�k	, sk ª −
�k

	�k	
sinh	�k	 .

Introduce the unitary operator

U� ª �
k

e−�1/2��kak
�a−k

� +�1/2��̄kaka−k. �3.21�

Note that

U�
�akU� = bk, U�

�ak
�U� = bk

� ,

and hence ak , ak
� satisfy the same commutation relations as bk , bk

�. Note also that we have sk

=s−k and ck=c−k=�1+ s̄ksk.
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The mode k=0 has to be treated separately. Let us introduce the operators p0 and x0 which are
defined as

p0 =
1
�2

�ei�a0
� + e−i�a0�, x0 =

i
�2

�− ei�a0
� + e−i�a0� . �3.22�

They are self-adjoint operators and satisfy the commutation relation �x0 , p0�= i. As we can see they
are the “momentum” and “position” of the mode k=0.

We choose the Bogoliubov rotation that kills double creators and annihilators, which amounts
to

sk =
�

�2	�	��1 −� v̂�k�
�

v̂�0�
1

2
k2 + v̂�k�

�

v̂�0�
�

2

�
−1/2

− 1�
1/2

, �3.23�

and ck=�1+ 	sk	2. We obtain

Hbg
L = Ebg

L + �p0
2 + �

k
��bg�k�bk

�bk, �3.24�

where the elementary excitation spectrum is

�bg�k� =�1

2
k2�1

2
k2 + 2v̂�k�

�

v̂�0�
� , �3.25�

and the energy is

Ebg
L = − V

�2

2v̂�0�
− �

k

1

2
��1

2
k2 + v̂�k�

�

v̂�0�
� − �bg�k�� �3.26�

�where the sum above includes the mode k=0 again�.
Note that �bg�k� is well defined for all values k�Rd, even though it is restricted to k

� �2� /L�Zd in �3.24� and �3.26�. The IES of Hbg
L for k� �2� /L�Zd is given by

�bg
L �k� = inf��bg�k1� + ¯ + �bg�kn�:k1 + ¯ + kn = k, k �

2�

L
Zd, n = 1,2, . . .
 .

The thermodynamic limit of �bg
L �k� is defined for any k�Rd by

�bg�k� = inf��bg�k1� + ¯ + �bg�kn�:k1 + ¯ + kn = k, k � Rd, n = 1,2, . . .
 . �3.27�

We have �in any dimension� the following.

�1� infk�0�bg�k� / 	k	=inf�1 /2�1 /2k2+2v̂�k�� / v̂�0��¬ccr,bg�0.
�2� limk→0�bg�k� / 	k	=��¬cph,bg�0.

Therefore, by Theorem A.4 �1� and �2� we have the following.

�1� infk�0�bg�k� / 	k	=ccr,bg.
�2� limk→0�bg�k� / 	k	=cph,bg.

Thus, �bg�k� has all the properties described in Conjecture 3.4.
We can also compute that for small 	k	,

sk �
ei�

�2
�1/4	k	−1/2. �3.28�
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�3.24� has no ground state because of the mode k=0. Let � be any vector that minimizes
modes k�0. Clearly, for k�0,

��	ak
�ak�� = 	sk	2 �

�1/2

2	k	
.

Let

N� ª �
k

�ak
�ak

be the number of particles away from the mode k=0. Clearly the density of particles away from
the mode k=0 in the state � equals

1

V
��	N��� =

1

V
�
k

�	sk	2. �3.29�

We expect that for large L, �3.29� converges to

1

�2��d� 	sk	2dk . �3.30�

Note that in dimension d=1 there is a problem with the formula �3.30�, since 	k	−1 is inte-
grable only in dimension d�1. Therefore, for d=1 �3.30� diverges. Thus, the Bogoliubov approxi-
mation is problematic for d=1 if we keep the density of particles � fixed as L→	. To our
knowledge, �3.28� and the above described problem of the Bogoliubov approximation in d=1 was
first noticed in Ref. 9.

Nevertheless, in spite of the breakdown of the Bogoliubov approximation, many authors
believe that also in d=1 the IES exhibits the behavior ���k��cph	k	 with cph�0 for low momenta,
see, e.g., Ref. 27, Chap. 6.20,19

D. Improving the Bogoliubov method

For �2� /L�Zd�k��k�C, a square summable sequence with �k=�−k, let U� be defined as in
�3.21�. �This time we allow �0 to be nonzero�. For ��C, let W� be defined as in �3.15�.

U�,�ªU�W� is the general form of a Bogoliubov transformation commuting with PL. Let �
denote the vacuum vector. Note that

��,� ª U�,�
� �

is the general form of a squeezed vector of zero momentum.
One of our next objectives is to look for the squeezed vector that minimizes the expectation

value of HL. As in Sec. III C, we will also compute the Hamiltonian HL expressed in new creation
and annihilation operators adapted to the new vacuum ��,�. We do this in two steps. First we
perform the Bogoliubov translation �3.16�, which results in the expression �3.17�. Then we per-
form the Bogoliubov rotation �3.20�. This time, however, we apply it to all the modes, including
k=0.

The Hamiltonian after these substitutions in the Wick ordered form equals

HL = BL + CLb0
� + C̄Lb0 +

1

2�
k

OL�k�bk
�b−k

� +
1

2�
k

ŌL�k�bkb−k + �
k

DL�k�bk
�bk

+ terms higher order in b�s. �3.31�

Clearly,
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���,�	HL��,�� = BL, �bk
���,�	HLbk

���,�� = BL + DL�k� .

Therefore, we obtain rigorous bounds,

EL � BL, EL + �L�k� � BL + DL�k� .

If we require that BL attains its minimum, then we will later on show that CL and OL�k� vanish
for all k. Henceforth we drop the superscript L,

B = − �	�	2 +
v̂�0�
2V

	�	4 + �
k
�k2

2
− � +

�v̂�k� + v̂�0��
V

	�	2�	sk	2 − �
k

v̂�k�
2V

��̄2skck + �2s̄kck�

+ �
k,k�

v̂�k − k��
2V

ckskck�s̄k� + �
k,k�

v̂�0� + v̂�k − k��
2V

	sk	2	sk�	
2,

C = � v̂�0�
V

	�	2 − � + �
k

�v̂�0� + v̂�k��
V

	sk	2���c0 − �̄s0� + �
k

v̂�k�
V

��s0cks̄k − �̄c0cksk� .

In order to express D�k� and O�k�, it is convenient to introduce

fk ª
k2

2
− � + 	�	2

v̂�0� + v̂�k�
V

+ �
k�

v̂�k� − k� + v̂�0�
V

	sk�	
2, �3.32�

gk ª �2 v̂�k�
V

− �
k�

v̂�k� − k�
V

sk�ck�. �3.33�

�Note that fk is real.�

D�k� = fk�ck
2 + 	sk	2� − ck�skḡk + s̄kgk� , �3.34�

O�k� = − 2ckskfk + sk
2ḡk + ck

2gk. �3.35�

The main intermediate step of the calculations leading to the above result is described in Appendix
F.

E. Conditions arising from minimization of the energy over �

We demand that B attains a minimum. To this end we first compute the derivatives with
respect to � and �̄,

��B = �− � +
v̂�0�

V
	�	2 + �

k

�v̂�0� + v̂�k��
V

	sk	2��̄ − �
k

v̂�k�
V

s̄kck� ,

��̄B = �− � +
v̂�0�

V
	�	2 + �

k

�v̂�0� + v̂�k��
V

	sk	2�� − �
k

v̂�k�
V

skck�̄ .

Note that

C = c0��̄B − s0��B ,

so that the condition
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��̄B = ��B = 0 �3.36�

entails C=0. The condition �3.36� yields

� =
v̂�0�

V
	�	2 + �

k�

v̂�0� + v̂�k��
V

	sk�	
2 −

�2

	�	2�
k�

v̂�k��
V

s̄k�ck�. �3.37�

This allows to eliminate � from the expression for fk,

fk ª
k2

2
+ 	�	2

v̂�k�
V

+ �
k�

v̂�k� − k� − v̂�k��
V

	sk�	
2 +

�2

	�	2�
k�

v̂�k��
V

s̄k�ck�. �3.38�

F. Conditions arising from minimization of the energy over sk

Computing the derivative with respect to sk, s̄k we can use

�sk
ck =

s̄k

2ck
, �s̄k

ck =
sk

2ck
,

�sk
B = fks̄k −

ḡk

2
�ck +

	sk	2

2ck
� − gk

s̄k
2

4ck
, �3.39�

�s̄k
B = fksk −

gk

2
�ck +

	sk	2

2ck
� − ḡk

sk
2

4ck
. �3.40�

One can calculate that

O�k� = �− 2ck +
	sk	2

ck
��s̄k

B −
sk

2

ck
�sk

B .

Thus �sk
B=�s̄k

B=0 entails O�k�=0.
�3.39� and �3.40� also imply

sk�sk
B − s̄k�s̄k

B =
ck

2
�gks̄k − ḡksk� ,

and hence

gks̄k = ḡksk. �3.41�

It is convenient to introduce the parameters

Sk ª 2skck,

Ck ª ck
2 + 	sk	2.

Now, using �3.41� we can write

D�k� = Ckfk − Skḡk, �3.42�

O�k� = − Skfk + Ckgk. �3.43�

Equating O�k� to zero and assuming that fk�0, we obtain

D�k� = sgn fk
�fk

2 − 	gk	2, �3.44�
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Sk =
gk

D�k�
, �3.45�

Ck =
fk

D�k�
. �3.46�

We will keep �2 instead of � as the parameter of the theory, hoping that one can later on express
� in terms of �2. We set ei�

ª� / 	�	. Then we can write

fk ª
k2

2
+ 	�	2

v̂�k�
V

+ �
k�

v̂�k� − k� − v̂�k��
2V

�Ck� − 1� + �
k�

v̂�k��
2V

ei2�S̄k�, �3.47�

gk ª �2 v̂�k�
V

− �
k�

v̂�k� − k�
2V

Sk�. �3.48�

Then we can express � by

� =
v̂�0�

V
	�	2 + �

k�

v̂�0� + v̂�k��
2V

�Ck� − 1� − ei2��
k�

v̂�k��
2V

S̄k�. �3.49�

One can express the minimizing conditions in the following theorem.
Theorem 3.6:

�1� Suppose that 	�	2�0 and ei� are fixed parameters. Let the first derivative of B with respect
to � , �̄ , �sk� , �s̄k� vanish. Let fk and gk be given by (3.47) and (3.48). For any k
� �2� /L�Zd we have then fk

2 
 	gk	2, and the Eqs. (3.44)–(3.46) hold.
�2� We have

���̄��B ��̄
2B

��
2B ����̄B

� = � f0 g0

ḡ0 f0
� . �3.50�

(3.50) is positive/negative definite if and only if D�0� is positive/negative. (3.50) is zero if and
only if D�0�=0. Besides,

D�0� = 2 sgn f0� v̂�0�
V

�2�
k

v̂�k�
2V

S̄k. �3.51�

In the above theorem we included all possibilities that guarantee the stationarity of B. Clearly,
the case of D�k��0 seems physically irrelevant. But this is equivalent to fk�0. Therefore, under
the additional condition D�k�
0, we can drop sgn fk from �3.44�.

In the case of the zero momentum we have an additional argument for the positivity of D�0�
given in �2�. D�0�
0 is, in fact, equivalent to the condition �3.50� 
0, which is necessary for the
existence of minimum of B.

Let us compute the ground state energy in the improved Bogoliubov method. Inserting �3.37�
to the expression for B, we obtain
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B = −
v̂�0�
2V �	�	2 + �

k
	sk	2�2

+ �
k

k2

2
	sk	2

+ �
k

v̂�k − k�� − v̂�k�� − v�k�
2V

	sk�	
2	sk	2

+ �
k

v̂�k��
4V

�ei2�S̄k + e−i2�Sk�	sk	2

+ �
k,k�

v̂�k − k��
8V

Sk�S̄k,

where recall that 	sk	2= 1
2 �Ck−1�. Using �3.37� again to eliminate 	�	2 in favor of �, and then

computing the derivative with respect to � we obtain

− ��B = 	�	2 + �
k

	sk	2.

Therefore, the grand-canonical density is given by

� =
	�	2 + �k

	sk	2

V
. �3.52�

G. Thermodynamic limit of the fixed point equation

One can ask whether the method described in the previous two sections has a well defined
limit as L→	. A natural way to take this limit, at least formally, involves the following steps. We
put �=�V�ei�, for some fixed parameter ��0 having the interpretation of the density of the
condensate. We expect sk �and hence Sk, etc.� to converge to a function depending on k�Rd in a
reasonable class. Finally, we replace �1 /V��

k

by �1 / �2��d��dk. Thus Eqs. �3.47�–�3.49� are re-

placed with

fk =
k2

2
+ �v̂�k� +

1

2�2��d� �v̂�k� − k� − v̂�k����Ck� − 1�dk� +
ei2�

2�2��d� v̂�k��S̄k�dk�,

�3.53�

gk = �ei2�v̂�k� −
1

2�2��d� v̂�k� − k�Sk�dk�, �3.54�

� = v̂�0�� +
1

2�2��d� �v̂�0� + v̂�k����Ck� − 1�dk� −
ei2�

2�2��d� v̂�k��S̄k�dk�. �3.55�

We also obtain �in the physical case of positive D�

D�0� = 2�v̂�0��
1

2�2��d� dkv̂�k�S̄k. �3.56�

�3.56� is typically positive—thus the quadratic part of the Hamiltonian �3.31� seems to have a gap.
One can try to find � , �Sk� satisfying the minimization condition by iterations. A natural

starting point seems to be Sk=0. Then, by �3.37� or �3.55�, �= v̂�0��. After one iteration we obtain
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fk =
k2

2
+ �v̂�k� ,

gk = �v̂�k� ,

D�k� = ��k2/2�2 + k2�v̂�k� ,

Sk =
�v̂�k�

��k2/2�2 + k2�v̂�k�
.

Thus D�k�=�bg,��k� given by �3.25�—we obtain the grand-canonical Bogoliubov approximation.
In the case of finite L we cannot continue iterations because of S0=	.
In the thermodynamic limit, the value at zero may not matter, since k is a continuous variable.

Sk for small k behaves as �	k	−1 �this was noted already in �3.23��. In dimension d=1, if we try
to do the next iteration we obtain divergent integrals. Thus, we cannot continue iterations. How-
ever, in dimensions d
2 the integrals are convergent and we can do the next iteration �and
presumably we can keep on going�.

The energy gap appears already at the second iteration.

H. Uncorrelated states

Let H0 denote the space spanned by 1 and let H�k,−k
 denote the space spanned by eikx and
e−ikx. Clearly,

L2��� = H0 � � �
�k,−k


H�k,−k
� . �3.57�

The sum in �3.57� runs over all two-element sets of the form �k ,−k
 with k� �2� /L�Zd.
The exponential property of Fock spaces yields

�s�L2���� = �s�H0� � � �
�k,−k


�s�H�k,−k
�� . �3.58�

�See, e.g., Ref. 37 for the definition of the tensor product of an infinite family of Hilbert
spaces used in �3.58�. Note that in each of the factors of the tensor product of �3.58�, we distin-
guish a normalized vector—the vacuum vector�.

We will say that a vector ���s�L2���� is uncorrelated with respect to �3.58�, or simply
uncorrelated, if and only if it is of the form

�� = �0 � � �
�k,−k


��k,−k
��

for some

�0 � �s�H0�, ��k,−k
 � �s�H�k,−k
� .

We define the uncorrelated ground state energy in the box

Eun
L
ª inf���	HL��:� is uncorrelated and of norm 1
 .

For k� �2� /L�Zd we define the uncorrelated IES in the box,

�un
L �k� ª inf���	HL�k��� − Eun

L :� is uncorrelated,��� = 1
 ,

and for k�Rd we define the uncorrelated IES in the thermodynamic limit,

�un�k� ª sup
��0

�lim inf
L→	

� inf
k���2�/L�Zd,	k−k�	��

�un
L �k���� .
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Clearly, from the mini-max principle we obtain

EL � Eun
L , EL + �L�k� � Eun

L + �un
L �k� .

Conjecture 3.7: We believe the following statements to hold true.

�1� The map Rd�k��un�k��R is positive and continuous away from 0.
�2� Let k�Rd \ �0
. If L→	, kL� �2� /L�Zd, and kL→k, then �un

L �kL�→�un�k�.
�3� supk�0 �un�k��0.

Thus we conjecture that using only uncorrelated states in a variational determination of the
excitation spectrum have serious limitations. We expect the results to be well behaved in the
thermodynamic limit, but they will probably not capture the phononic behavior at the bottom of
the IES, and, in particular, we will obtain an energy gap.

Note that the squeezed vectors ��,� and the particle excitations over the squeezed vectors
bk

���,� are examples of uncorrelated vectors. Therefore, the expectation values of HL in these
vectors give an upper bound on Eun

L and Eun
L +�un

L �k�. We showed that for these expectation values
one should expect an energy gap—we expect this gap to persist even for more general uncorre-
lated states.

Thus, in order to obtain more satisfactory bounds, it seems that one needs to use correlated
vectors. Note that the Bijls–Feynman variational vector Nk� / �Nk�� is correlated for k�0, even
if � is uncorrelated.

IV. PERTURBATIVE APPROACH

In this section we will use the grand-canonical formalism. We replace the potential v�x� with
�v�x�, where � is a �small� positive constant. We will drop � from most symbols, and instead we
will make the dependence on � explicit. Thus instead H�

L we will write H�,L.

A. Perturbative approach based on the Bogoliubov method

Let us go back to the Bogoliubov method described in Sec. III C. Using the formula �3.19� we
can split the Hamiltonian as

H�,L = �−1H−1
L + H0

L + ��H1/2
L + �H1

L,

where

H−1
L
ª − V

�2

2v̂�0�
,

H0
L
ª �

k
�1

2
k2 + v̂�k�

�

v̂�0�
�ak

�ak + �
k

v̂�k�
�

2v̂�0�
�e−i2�aka−k + ei2�ak

�a−k
� � ,

H1/2
L

ª �
k,k�

v̂�k���

�v̂�0�V
�ēi�ak+k�

� akak� + ei�ak
�ak�

� ak+k�� ,

H1
L
ª �

k1,k2,k3,k4

��k1 + k2 − k3 − k4�
v̂�k2 − k3�

2V
ak1

� ak2

� ak3
ak4

. �4.1�

Note that Hn
L, n=−1,0 , 1

2 ,1, do not depend on �. This suggests that one can try to apply
methods of perturbation theory to compute the ground state energy of H�,L treating ��H1/2
+�H1 as a small perturbation of the quadratic Bogoliubov Hamiltonian,
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�−1H−1
L + H0

L. �4.2�

It is also tempting to compute the excitation spectrum, applying perturbation methods to the
same splitting of H�,L restricted to the sector of fixed momentum k. Unfortunately, when one tries
to implement this idea, one encounters serious difficulties due to the infrared problem: the operator
�4.2� does not have a ground state, neither globally nor in fixed momentum sectors �because of the
k=0 mode�. Further on we will describe a natural approach that should help solve the infrared
problem and should give a better starting point for the perturbation methods.

In any case, the splitting suggests the following conjecture �which is the grand-canonical
version of Conjecture 1.2�. Let ��

��k� be the grand-canonical IES for the potential �v and let
�bg,��k� be given by �3.27�.

Conjecture 4.1: Let d
2. Then for a large class of repulsive potentials we have

lim
�↘0

��
��k� = �bg,��k� .

B. Perturbative approach based on improved Bogoliubov method

We fix the size of the box, �, and ei�, and we assume that we solved the fixed point equation
described in Sec. III F and there is an energy gap. We assume that the solution is unique. The
expression for H�,L Wick ordered with respect to the operators bk, bk

� allows us to write

H�,L = �−1H−1
�,L + H0

�,L + ��H1/2
�,L + �H1

�,L, �4.3�

where �−1H−1
�,L=B is the constant term, H1

�,L=�kD�k�bk
�bk is the quadratic term, and H1/2

�,L and H1
�,L

are, respectively, the third and fourth order parts of H in operators bk and bk
�, see �3.31�.

The splitting �4.3� can be used to set up a perturbative approach for computing the energy
density and excitation spectrum. The presence of a gap will be actually an advantage in this case.

More precisely, let us consider the following Hamiltonian:

H�,�,L
ª �−1H−1

�,L + H0
�,L + ��H1/2

�,L + �H1
�,L, �4.4�

where � is an additional parameter introduced for book-keeping reasons. We treat �−1H−1
�,L+H0

�,L as
the unperturbed operator and the rest as a perturbation depending on the small parameter �.
�−1H−1

�,L+H0
�,L has a ground state ��,�, and even a mass gap, so the perturbation expansion in terms

of � for the ground state vector and energy is well defined and for small �,

��,�,L = �
n=0

	

��n�n
�,L + �n+1/2�n+1/2

�,L �, E�,�,L = �
n=−1

	

�nEn
�,L,

where �0
�,L=��,�. �It is easy to see that all powers of � for the energy are integral.� At the end we

will substitute � for �,

��,L � �
n=0

	

��n�n
�,L + �n+1/2�n+1/2

�,L �, E�,L � �
n=−1

	

�nEn
�,L. �4.5�

Let �L�k� be the subadditive hull of DL�k�. Assume that for some k1 , . . .kn with k=k1+ ¯

+kn, we have �L�k�=DL�k1�+ ¯+DL�kn�. This implies that the vector �n!�−1/2bk1

�
¯bkn

� ��,� is at
the bottom of the spectrum of �−1H−1

�,L+H0
�,L in the sector of momentum k. Again we can write

down the perturbation expansion in terms of � for the excitation spectrum, convergent for small �,

��,�,L�k� = �
n=0

	

��n�n
�,L�k� + �n+1/2�n+1/2

�,L �k��, ��,�,L�k� = �
n=−1

	

�n�n
�,L�k� ,

where �0
L,��k�=bk

���,�. Then we put �=� obtaining
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��,L�k� � �
n=0

	

��n�n
�,L�k� + �n+1/2�n+1/2

�,L �k��, ��,L�k� � �
n=−1

	

�n�n
�,L�k� . �4.6�

Of course, we do not claim that the power series �4.5� and �4.6� have a nonzero radius of
convergence. We only hope that they are in some sense asymptotic to the physical quantities.

We hope that the perturbation expansions �4.5� and �4.6� survive the thermodynamic limit. We
do not expect that the nth terms of these expansions will be of order O��n�. However, we hope that
each next term will give a better approximation, as expressed in the following conjecture.

Conjecture 4.2:

�1� For any n, there exist

en
�
ª lim

L→	

En
�,L

V
,

�n
��k� ª lim

L→	
�n

�,L�kL�, kL → k .

�2�

lim
�↘0

e−1
� =

�2

2v̂�0�
,

lim
�↘0

e0
� = −

1

�2��d� 1

2
��1

2
k2 + v̂�k�

�

v̂�0�
� − �bg,��k��dk ,

lim
�↘0

�0
��k� = �bg�k� .

�3� For some 0��1��2¯ with lim
n→	

�n=	,

�nen
� = O���n�, n = 1,2, . . .

�n�n
��k� = O���n�, n = 1,2, . . . .

�4� For �n as above and all n,

�
j=0

n

� j� j
��0� = O���n� .

�1� is the existence of the thermodynamic limit of the perturbation expansion. �2� tells us that the
lowest order terms in this expansion agree with the quantities obtained in the Bogoliubov approxi-
mation. �3� means that the later terms in the expansion are in some sense lower order than earlier.
�4� says that there is no gap in the excitation spectrum at k=0.

It seems that a result similar to the above conjecture could be easier to prove than a result
about the true energy density and the true IES.

Let us sum up the procedure that we propose to compute various quantities for Bose gas with
� small and fixed �. We will call it the improved Bogoliubov approach.

�1� Find a translation invariant squeezed state ��,� minimizing the expectation value of the
Hamiltonian H�,L.

�2� Split the Hamiltonian as in �4.3�,

H�,L = �−1H−1
�,L + H0

�,L + ��H1/2
�,L + �H1

�,L
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according to the power in creation/annihilation operators adapted to ��,�.
�3� Introduce a fictitious Hamiltonian with an additional coupling constant �,

H�,�,L = �−1H−1
�,L + H0

�,L + ��H1/2
�,L + �H1

�,L.

�4� Compute the desired quantity perturbatively, obtaining a �formal� power series c�,�,L

=�n�ncn
�,L.

�5� Go to the thermodynamic limit with each term in the series separately, obtaining cn
�

ª limL→	 cn
�,L.

�6� Set �=�, obtaining the power series c�=�n�ncn
�, which is the final expression for the desired

quantity.

C. Approach with isolated condensate

In the literature there are many works that are based on a somewhat different approach to the
Bose gas with small � and fixed �. This approach is sometimes called the approach with isolated
condensate. We would like to compare it to the improved Bogoliubov’s approach.

Let us describe the basic steps of this approach.

�1� Make the c-number substitution, obtaining the Hamiltonian H�,L��� as in �3.12�.
�2� Substitute �=��−1�V and split the Hamiltonian as

H�,L��� = �−1H−1
�,L + H0

�,L + ��H1/2
�,L + �H1

�,L.

according to the power of �.
�3� Compute perturbatively the ground state energy, obtaining a �formal� power series E�,�,L

=�n�nEn
�,L.

�4� Compute the desired quantity as a �formal� power series c�,�,L=�n�ncn
�,L.

�5� Minimize �up to the desired order in �� E�,�,L, obtaining ��,L as a function of � ,L.

�6� Substitute ��,L in the expression for the desired quantity, obtaining cn
�,L=cn

��,L,L.
�7� Go to the thermodynamic limit with each term of the series separately, obtaining cn

�

=limL→	 cn
�,L. The final expression for the desired quantity is

c� = �
n

�ncn
�.

As proven by Ref. 22 �see Sec. 3.12�, the approach with isolated condensate is exact in the
thermodynamic limit for the energy density. In the case of finer quantities, such as the IES or
Green’s functions, we do not see why the thermodynamic limit should make this approach exact.

Improved Bogoliubov approach and approach with isolated condensate seem to have a lot in
common. In both of them the main step involves calculations with a quadratic Hamiltonian
perturbed by third and fourth order perturbations. In both approaches the quadratic term does not
contain a term linear in creation/annihilation operators. Note also that in both procedures the
dependence of the final quantities on the coupling constant � can be quite complicated and not
given just by a power series.

The approach with isolated condensate may seem simpler technically, since the perturbation
expansion is applied to a simpler splitting, whereas in the improved Bogoliubov approach the first
step involves solving a complicated fixed point equation. It is, however, quite clear that the
improved Bogoliubov approach is physically better justified than the approach with isolated con-
densate. In the former no term is dropped. In the latter, at the very beginning we drop an important
term from the Hamiltonian.
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V. OBSERVABLES

In this section we work in the grand-canonical approach. We drop the subscripts � and L, so
that H�

L is denoted by H. �In particular, in order not to clutter the notation we hide the dependence
on L, which, however, plays an important role in what follows.�

A. Spontaneous symmetry breaking

The Hamiltonian H is invariant with respect to the transformation generated by the number
operator ei�N. Consequently, its ground state can be chosen to have a definite number of particles.
It is, however, believed that in the thermodynamical limit this gauge invariance is spontaneously
broken. �In fact, it is broken in the Bogoliubov method.�

Let us try to describe this symmetry breaking rigorously. Following Bogoliubov,4 we perturb
the Hamiltonian by a nonphysical perturbation,

H� ª H − ��V�a0
� + a0� , �5.1�

where ��0. H� depends on the gauge,

ei�NH�e−i�N = H − ��V�ei�a0
� + e−i�a0� . �5.2�

Let us assume that H� has a unique ground state given by the vector ��. Note that the
Hamiltonian H� is real, therefore we can assume �� to be real as well. H� is translation invariant
and the group of translations of the torus is compact. Hence we can take �� to be translation
invariant. The expectation value with respect to the vector �� will be denoted

� · �� ª ���	 · ��� .

Because of the translation invariance we have

�ak�� = 0, k � 0 ,

�ak
�ak��� = 0, k � k�,

�aka−k��� = 0, k � k�. �5.3�

Thus the nontrivial one- and two-point correlation function are

�a0�� = �a0
���, �5.4�

�ak
�ak�� = �a−k

� a−k��, �5.5�

�aka−k�� = �ak
�a−k

� ��, �5.6�

and the expressions �5.4�–�5.6� are all real. Their reality follows from the reality of the Hamil-
tonian �5.1� and the reality of � · ��.

Let us assume that there exists the limit

� · � ª lim
�↘0

lim
L→	

� · ��, �5.7�

as a state on a suitable family A of observables.
Clearly, A is invariant with respect to the Hermitian conjugation. Moreover, the group of

translations eixP ·e−ixP and the dynamics eixH ·e−ixH act on A.
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Clearly, the ground state of ei�NH�e−i�N �before taking the thermodynamic limit� is given by
ei�N��. Replacing �� with ei�N�� and performing the limit �5.7�, we obtain a new state on A. If
�5.4� or �5.6� are nonzero, then this new state differs from � · ��: �5.4� has to be multiplied with ei�

and �5.6� with ei2�.
Clearly, �5.3� are true if we replace � · �� with � · �. It is natural to assume that the following

limits exist:

� ª lim
�↘0

lim
L→	

�N��

V
, �5.8�

�� ª lim
�↘0

lim
L→	

�a0��

�V
, �5.9�

�ak
�ak� = lim

�↘0
lim
L→	

�ak
�ak��, k � 0 , �5.10�

�aka−k� = lim
�↘0

lim
L→	

�aka−k��, k � 0 . �5.11�

Clearly, the expressions �5.9�–�5.11� are again real. All of them depend on �. � is the density and
� can be interpreted as the density of the condensate.

B. A priori estimates

We will use notation explained in an abstract setting in Appendix H, where the reader will also
find some general remarks about Green’s functions and their motivation. In particular, for a pair of
operators A, B the static Green’s function is defined as

��A,B��� ª �A�H� − E��−1B�� + �B�H� − E��−1A��.

Recall the operator

Nq ª �
k

aq+k
� ak =� eikxax

�axdx ,

�see �3.5� and �2.13��.
We will tacitly assume that we can perform the thermodynamic limit of various observables,

such as

��ak
�,ak�� ª lim

�↘0
lim
L→	

��ak
�,ak���,

��ak,a−k�� ª lim
�↘0

lim
L→	

��ak,a−k���,

sk ª lim
�↘0

lim
L→	

�Nk
�Nk��

�N��

,

�k ª lim
�↘0

lim
L→	

��Nk
�,Nk���

�N��

.

�Compare with the definition of sk and �k in �2.16� and �2.17��.
In this setting we have the following analog of �2.14�:
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1

2
�Nk

�,�H�,Nk�� =
k2

2
N +

��V

2
�a0 + a0

�� . �5.12�

It implies the so-called f -sum rule,

1

2
�Nk

��H� − E��Nk�� +
1

2
�Nk�H� − E��Nk

��� =
k2

2
�N�� + ��V�a0��. �5.13�

By the Schwarz inequality and taking the thermodynamic limit, we obtain

sk �
1
2 	k	��k. �5.14�

In the theorem below, �5.16� is due to Pitaevski and Stringari,26,34 and �5.17� is the zero-
temperature version of the famous 1 /k2 Theorem of Bogoliubov.4

Theorem 5.1:

�ak
�ak� 


�

4sk�
−

1

2
, �5.15�



�

2	k	��k�
−

1

2
, �5.16�

��ak,ak
��� 


�

�k2 + ���ak,a−k�� +
�

�k2� . �5.17�

Proof: To simplify the presentation, our proof will be not quite rigorous, since we will ignore �
and skip the thermodynamical limit involving lim

�↘0

lim
L→	

.

We set A�=ak and BªNk in the uncertainty relation �G2� and we obtain

��ak
�ak� + 1

2��Nk
�Nk� 


1
4 	�a0�	2.

This proves �5.15�. Now �5.14� implies �5.16�.
To prove �5.17� introduce the operators

Qk ª Nk + Nk
� ,

Rk = i�Qk,H� .

We obtain

�Qk,�H,Qk�� = 2k2N − k2Q2k,

�Qk,ak� = − a0 − a2k,

�Qk,a−k
� � = a0

� + a−2k
� .

Therefore,

1
2 ��Rk,Rk�� = 1

2 ��Qk,�H,Qk��� = �N�k2, �5.18�

��ak,Rk�� = i��Qk,ak�� = − i�a0� , �5.19�

��a−k
� ,Rk�� = i��Qk,a−k

� �� = i�a0
�� . �5.20�
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�5.19� and �5.20� are sometimes called the Bogoliubov sum rules.4,34

For a complex parameter t we have

− i�a0� + it�a0
�� = ���ak + ta−k

� �,Rk�� . �5.21�

We take the square of the absolute value of �5.21�, apply �G3�, and we obtain

	�a0�	2 − t�a0
��2 − t̄�a0�2 + 	t	2	�a0�	2 � ���ak + ta−k

� �,�ak
� + t̄a−k�����Rk,Rk�� .

Taking into account �5.18�, we obtain

0 � ��ak,ak
��� −

	�a0�	2

�N�k2 + t���a−k
� ,ak

��� +
�a0

��2

�N�k2� + t̄���ak,a−k�� +
�a0�2

�N�k2� + 	t	2���a−k
� ,a−k��

−
	�a0�	2

�N�k2 � .

Using

�a0� = �a0
��, ��a−k

� ,a−k�� = ��ak
�,ak��, ��a−k

� ,ak
��� = ��ak,a−k�� ,

we obtain

���ak,a−k�� +
�a0�2

�N�k2�2

� ��ak
�,ak�� −

	�a0�	2

�N�k2 ,

which implies �5.17�. �

Note the following consequence of �5.17�:

��ak
�,ak�� − ��ak

�,a−k
� �� 


2�

�k2 . �5.22�

Theorem 5.2: Let ��k� be the IES at momentum k. Then

��k�2 �
k2�

2�
�k2

2
− � + �v̂�0� +

1

2�2��d� v̂�k��2�aq+k
� aq+k� + �aq+k

� a−q−k
� � + �aq+ka−q−k��dq� ,

�5.23�

��k�2 � �k2

2
�2

+ 2k2� 	q	2

2
�aq

�aq�dq + �� dx�1 − cos kx��
k̂

�2�
v�x��a0

�ax
�axa0� , �5.24�

where k̂ denotes 	k	−1k and �
k̂

�2�
v�x� denotes the second derivative of v in the direction of k̂.

Proof: To prove �5.23�, we use �G8� with A�=ak−a−k
� and B=Nk and then go to the thermo-

dynamic limit.
To prove �5.24� we use �G9� with A=Nk �

Both estimates of Theorem 5.2 indicate the phononic character of the excitation spectrum. The
estimate �5.23� is due to Wagner39,34� and involves the symmetry breaking parameter �. The
estimate �5.24� involves the kinetic energy and the pair correlation function �a0

�ax
�axa0� �here 0

refers to the position�, but does not involve �, hence it can be applied to situations without
symmetry breaking. This estimate comes from Refs. 29 and 25, see also Ref. 34.

C. Green’s functions of the Bose gas

Let us consider two-point Green’s functions of the Bose gas. We assume that � · � is the state
obtained by the limiting procedure in the thermodynamic limit, and we will ignore the complica-
tions due to the thermodynamic limit.
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We define a 2
2 matrix of Green’s functions,

G�z,k� ª �G11�z,k� G21�z,k�
G12�z,k� G22�z,k� � ,

G11�z,k� = �ak�H − E − z�−1ak
�� + �ak

��H − E + z�−1ak� ,

G21�z,k� = �a−k
� �H − E − z�−1ak

�� + �ak
��H − E + z�−1a−k

� � ,

G12�z,k� = �ak�H − E − z�−1a−k� + �a−k�H − E + z�−1ak� ,

G22�z,k� = �a−k
� �H − E − z�−1a−k� + �a−k�H − E + z�−1a−k

� � .

Note that, using the notation of Appendix H,

Gij�z,k� = GAi,Bj
�z� ,

where A1ªak, A2ªa−k
� and B1ªak

�, B2ªa−k. We use the conventions described in this appendix
for the meaning of Green’s functions both away from the real line and on the real line.

It is a general fact, which does not depend on the details of the system, that

G11�z,k� = G11�z̄,k� = G22�− z,− k� ,

G12�z,k� = G21�z̄,k� = G12�− z,− k� .

By the reflection invariance of the Bose gas,

Gij�z,k� = Gij�z,− k� . �5.25�

Obviously, for any observable A, �A��= �A�. But the state � · � is real, hence �A�= �Ā�. Note also

that H= H̄, ak= āk. Therefore,

G12�z,k� = G21�z,k� .

Note that G11�0,k�= ��ak
� ,ak�� and G12�0,k�= ��ak ,a−k��, hence by �5.22�,

G11�0,k� − G12�0,k� 

c

k2 . �5.26�

Let us introduce the “full mass operator,”

��z,k� = ��11�z,k� �12�z,k�
�21�z,k� �22�z,k� �ª

1

2�
�G11�z,k� G12�z,k�

G21�z,k� G22�z,k� �−1

=
1

2�
�G11�z,k�G22�z,k�

− G12�z,k�G21�z,k��−1� G22�z,k� − G12�z,k�
− G21�z,k� G11�z,k� � .

Consequently,

�11�0,k� − �12�0,k� =
1

2��G11�0,k� − G12�0,k��
.

�5.26� implies

062103-38 Cornean, Dereziński, and Ziń J. Math. Phys. 50, 062103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



k2

2�c

 �11�0,k� − �12�0,k� 
 0,

and, in particular,

�11�0,0� − �12�0,0� = 0. �5.27�

�5.27� was first proven in the framework of perturbation theory for the Bose gas with isolated
condensate and is sometimes called the Hugenholz–Pines theorem,14 see also Ref. 9. The proof
that we present is valid for the correct Hamiltonian of the Bose gas and is due to Bogoliubov.4

Note that �5.27� implies that G�z ,k� has a singularity at �z ,k�= �0,0�, which is an argument
for the absence of a gap in the excitation spectrum. Bogoliubov4 gave also an argument for the
phononic shape of the excitation spectrum. The argument is based on the assumption that ��z ,k�
is regular in z, k around �0,0�. Note that

det ��z,k� = �11�z,k��22�z,k� − �12�z,k��21�z,k�

is invariant with respect to the transformations k�−k and z�−z. Finally, by �5.27�, we know
that ��0,0�=0. Therefore,

det ��z,k� = �z2 + �k2 + O�	z	4 + 	k	4� .

We have det ��z ,k�=det ��z̄ ,k�. Hence � and � are real as well. For purely imaginary nonzero z,
det ��z ,k� is nonzero. Hence � and � cannot have the same sign. Therefore, �=−� /�
0.

Assume now that � , � are not zero. Then 0���	, and

det ����	k	,k� = O�	k	4� .

Hence, for small � , k, Green’s function G�� ,k� has a sharp peak along ��k�=��	k	.
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APPENDIX A: ENERGY-MOMENTUM SPECTRUM OF QUADRATIC HAMILTONIANS

Suppose that we consider a quantum system described by the Hamiltonian,

H = �
Rd

��k�ak
�akdk , �A1�

with the total momentum

P = �
Rd

kak
�akdk ,

both acting on the Fock space �s�L2�Rd��. We will call the function � appearing in H the elemen-
tary excitation spectrum of our quantum system, and we will assume it to be non-negative.

Clearly, the ground state energy of H is 0. The excitation spectrum of �A1� is not arbitrary—it
has to be a subadditive function. This appendix describes a number of easy results about subad-
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ditive functions. They are quite straightforward and probably they mostly belong to the folk
wisdom. However, we have never seen them explicitly described in the literature, and we believe
them to be relevant for physical properties of Bose gas.

The Hamiltonian of interacting Bose gas is not purely quadratic. Nevertheless, some argu-
ments indicate that the IES in the thermodynamic limit is subadditive. A heuristic argument in
favor of this conjecture is described in the Appendix B.

Even if one questions this argument, there exists another motivation for a study of subadditive
functions. Quadratic Hamiltonians are often used in statistical physics as approximate effective
Hamiltonians. In particular, this is the case of the Bogoliubov Hamiltonian Hbg.

We will show that there exists a large class of subadditive functions with the properties
properties described by Conjecture 1.1 or 3.4, �3� or �3��, and �4� �which correspond to the
superfluidity or periodicity and to a finite speed of sound�. We will also show that if the elemen-
tary excitations possess these properties, then so does the IES.

Let Rd�k���k��R be a non-negative function. We say that it is subadditive if and only if

��k1 + k2� � ��k1� + ��k2�, k1,k2 � Rd.

Let Rd�k���k��R be another non-negative function. We define the subadditive hull of �
to be

��k� ª inf���k1� + ¯ + ��kn�:k1 + ¯ + kn = k, n = 1,2, . . .
 .

Clearly, ��k� is subadditive and satisfies ��k����k�.
Clearly, if ��k� is the elementary excitation spectrum of a quadratic Hamiltonian, and ��k� its

subadditive hull, then ��k� is the IES.
Let us state and prove some facts about subadditive functions and subadditive hulls, which

seem to be relevant for the homogeneous Bose gas.
Theorem A.1: Let f be an increasing concave function on �0,	� with f�0�
0. Then f�	k	� is

subadditive.
Proof:

f�	k1 + k2	� � f�	k1	 + 	k2	� �
	k1	

	k1	 + 	k2	
f�	k1	 + 	k2	� +

	k2	
	k1	 + 	k2	

f�0� +
	k2	

	k1	 + 	k2	
f�	k1	 + 	k2	�

+
	k1	

	k1	 + 	k2	
f�0� � f�	k1	� + f�	k2	� .

�

We can generalize Theorem A.1 to periodic functions.
Theorem A.2: Let f be an increasing concave function on �0,�d /2� with f�0�
0. Define � to

be the function on Rd periodic with respect to the lattice Zd such that if k��− 1
2 , 1

2
�d, then ��k�

= f�	k	� (which defines � uniquely). Then � is subadditive.
Proof: We can extend f to a concave increasing function defined on �0,	�, e.g., by putting

f�t�= f��d /2� for t
�d /2.
Let k1 ,k2�Rd. Let p1 ,p2��− 1

2 , 1
2
�d such that ki−pi�Zd. Let p��− 1

2 , 1
2
�d such that ki+k2

−p�Zd. Note that 	p	� 	p1+p2	. Now

��k1 + k2� = f�	p	� � f�	p1 + p2	� � ¯ � f�	p1	� + f�	p2	� = ��k1� + ��k2� ,

wherein . . . we repeat the estimate of the proof of Theorem A.1. �

Obviously, we have the following.
Theorem A.3: Let �0 be subadditive and �0��. Let � be the subadditive hull of �. Then

�0��.
In the case of the Bose gas with repulsive interactions, we expect that the excitation spectrum

may have resemble that of a quadratic Hamiltonian with the properties described by the following
two theorems, which easily follow from Theorems A.1–A.3.
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Theorem A.4: Suppose that �
0 is a spherically symmetric function on Rd and � is its
subadditive hull.

�1� � is spherically symmetric.
�2� If inf

k�0

��k� / 	k	=c, then inf
k�0

��k� / 	k	=c.

�3� If lim infk→0 ��k� / 	k	=c, then ��k��c	k	.
�4� Suppose that for some c�0, we have ��k�
c min�	k	 ,1�. Then

lim inf
k→0

��k�
	k	

= cph implies lim
k→0

��k�
	k	

= cph.

Theorem A.5: Suppose that �
0 is an even function on R periodic with respect to Z. Let �
be its subadditive hull.

�1� ��k� is even and periodic with respect to Z.
�2� If, for some c�0, we have ��k�
c dist�k ,Z�, then

lim inf
k→0

��k�
	k	

= cph implies lim
k→0

��k�
	k	

= cph.

APPENDIX B: SUBADDITIVITY OF THE EXCITATION SPECTRUM OF INTERACTING
BOSE GAS

In this appendix we describe a heuristic argument in favor of Conjecture 3.4 �5�. Recall that
this conjecture says that the IES of interacting Bose gas in the thermodynamic limit should be
subadditive. Clearly, this would be true if the Bose gas was described by a quadratic Hamiltonian
of a form �A1�. We will see, however, that this conjecture follows as well from an assumption
saying that one can describe excitations by approximately localized operators.

Consider Bose gas in a box of side length L where L is very large. Let �0 be the ground state
of the Hamiltonian and E0 its ground state energy, so that H�0=E0�0 and P�0=0. Let �E0

+ei ,ki��sp�H , P�, i=1,2. We can find eigenvectors with these eigenvalues, that is, vectors �i

satisfying H�i= �E0+ei��i, P�i=ki�i. Let us make the assumption that it is possible to find
operators Ai, which are polynomials in creation and annihilation operator smeared with functions
well localized in configuration space such that PAi�Ai�P+ki�, and which approximately create
the vectors �i from the ground state, that is, �i�Ai�0. �Note that here a large size of L plays a
role.� By replacing �2 with eiyP�2 for some y and A2 with eiyPA2e−iyP, we can make sure that the
regions of localization of A1 and A2 are separated by a large distance.

Now consider the vector �12ªA1A2�0. Clearly,

P�12 � �k1 + k2��12.

�12 looks like the vector �i in the region of localization of Ai, elsewhere it looks like �0. The
Hamiltonian H involves only expressions of short range �the potential decays in space�. Therefore,
we expect that

H�12 � �E0 + e1 + e2��12.

If this is the case, it implies that �E0+e1+e2 ,k1+k2��sp�H , P�, and hence it shows that the IES
is subadditive.

Clearly, the argument we presented has its weak points—it is based on approximate locality,
which can be violated because of correlations due to the BE condensation. Nevertheless, we have
the impression that many physicists believe that even in the interacting case, in the thermodynamic
limit, one can often “compose excitations” in a sense similar to the one described above. �See the
discussion of the concept of elementary excitations in interacting systems by Lieb19 and the
experimental paper.24�
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APPENDIX C: SPEED OF SOUND AT ZERO TEMPERATURE

It is well known �e.g., Ref. 13� that at any temperature the speed of sound is given by

cs =�� �p

��
�

S

,

where p is the pressure, � is the density, and S is the entropy. �Recall that we assume that the mass
of an individual particle is 1.�

Let E denote the ground state energy �which corresponds to the total energy at zero tempera-
ture�, V the volume, and n the number of particles. Note that n=V� and E=Ve���, where e���
denotes the energy density. At zero temperature the pressure is given by

p = − � �E

�V
�

n

= − e��� + �e���� .

Clearly, at zero temperature the entropy is zero. Therefore,

cs
2 = � �p

��
�

S=0
= � �p

��
�

T=0
=

�

��
�− e��� + �e����� = �e���� .

APPENDIX D: WICK AND ANTI-WICK SYMBOLS

Let a1
� ,a2

� , . . . ,an
� and a1 ,a2 , . . . ,an be creation/annihilation operators. Let H be an operator

given as a polynomial in these operators. We can write H in two ways,

H = �
�,�

h�,��a���a� = �
�,�

h̃�,�a��a���.

�We use here the multi-index notation, e.g., a�=a1
�1
¯an

�n.� Then the function

Cn � � � H��� = �
�,�

h�,��̄���

is called the Wick symbol of the operator H. �Synonyms: lower symbol, normal symbol, covariant
symbol, a� , a-symbol, Q-representation.� The function

Cn � � � H̃��� = �
�,�

h̃�,��̄���

is called the anti-Wick symbol of the operator H. �Synonyms: upper symbol, antinormal symbol,
contravariant symbol, a , a�-symbol, P-representation.�

Introduce the standard coherent states,

W��� ª exp��
i=1

n

�− �iai
� + �̄iai��, �� ª W���� .

Note the identities �that can be used as alternative definitions of the Wick and anti-Wick symbols�

H��� = ���	H��� , �D1�

H = �
C

H̃���	������	
d2�

�
. �D2�

Let H be a bounded from below self-adjoint operator. We have the following lower and upper
bounds for the ground state energy of H, which follow immediately from �D1� and �D2�:
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inf�H̃���:� � Cn
 � inf sp H � inf�H���:� � Cn
 . �D3�

APPENDIX E: BOGOLIUBOV TRANSFORMATIONS

In this appendix we recall the well-known properties of Bogoliubov transformations and
squeezed vectors. For simplicity we restrict ourselves to one degree of freedom.

Let a� and a the creation and annihilation operators and � the vacuum vector. Recall that
�a ,a��=1 and a�=0.

Here are the basic identities for Bogoliubov translations and coherent vectors. Let

W� ª e−�a�+�̄a.

Then

W�aW�
� = a + � ,

W�a�W�
� = a� + �̄ ,

W�
�� = e−	�	2/2e�a�

� .

Here are the basic identities for Bogoliubov rotations and squeezed vectors. Let

U� ª e−��/2�a�a�+��̄/2�aa.

Then

U�aU�
� = cosh	�	a +

�

	�	
sinh	�	a�,

U�a�U�
� = cosh	�	a� +

�̄

	�	
sinh	�	a ,

U�
�� = �1 + tanh2	�	��1/4�e−�/�2	�	�tanh	�	a�a�

� .

Vectors obtained by acting with both Bogoliubov translation and rotation will be also called
squeezed vectors.

APPENDIX F: COMPUTATIONS OF THE BOGOLIUBOV ROTATION

In this appendix we give the computations of the rotated terms in the Hamiltonian used in Sec.
III D,

U�ak
�akU�

� = 	sk	2 + ck
2ak

�ak − ckskak
�a−k

� − cks̄kaka−k + 	sk	2a−k
� a−k,

U�ak
�a−k

� U�
� = − s̄kck + ck

2ak
�a−k

� − cks̄kak
�ak − cks̄ka−k

� a−k + s̄k
2a−kak,

U�aka−kU�
� = − skck + ck

2aka−k − ckskak
�ak − ckska−k

� a−k + sk
2a−k

� ak
� ,

U�ak+k�
� akak�U�

� = �c0�	sk	2��k�� + 	sk�	
2��k�� + s̄0cksk��k + k���a0 − �s0�	sk	2��k�� + 	sk�	

2��k��

+ c0c̄ksk��k + k���a0
� + higher order terms,
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U�ak+k�ak
�ak�

� U�
� = �c0�	sk	2��k�� + 	sk�	

2��k�� + s0cks̄k��k + k���a0
� − �s̄0�	sk	2��k�� + 	sk�	

2��k��

+ c0cks̄k��k + k���a0 + higher order terms,

��k1 + k2 − k3 − k4�U�ak1

� ak2

� ak3
ak4

U�
� = ck1

s̄k1
ck3

sk3
��k1 + k2���k3 + k4� + 	sk1

	2	sk2
	2���k1

− k3���k2 − k4� + ��k1 − k4���k2 − k3��

+ �s̄k1
ck1

�sk3
ck3

a−k3

� a−k3
− sk3

2 ak3

� a−k3

� − ck3

2 ak3
a−k3

+ sk3
ck3

ak3

� ak3
� + sk3

ck3
�s̄k1

ck1
ak1

� ak1
− s̄k1

2 ak1
a−k1

− ck1

2 ak1

� a−k1

� + s̄k1
ck1

a−k1

� a−k1
�� 
 ��k1 + k2���k3 + k4�

+ �	sk2
	2�	ck1

	2ak1

� ak1
− ck1

sk1
ak1

� a−k1

� − ck1
s̄k1

ak1
a−k1

+ 	sk1
	2a−k1

� a−k1
� + 	sk1

	2�	ck2
	2ak2

� ak2
− ck2

sk2
ak2

� a−k2

�

− ck2
s̄k2

ak2
a−k2

+ 	sk2
	2a−k2

� a−k2
�� 
 ���k1 − k3���k2 − k4�

+ ��k1 − k4���k2 − k3�� + higher order terms.

APPENDIX G: OPERATOR INEQUALITIES

Let us fix a vector � and let �A� denote �� 	A��. Let �A ,B�+ªAB+BA denote the anticom-
mutator. Occasionally, we will write �A ,B�−ªAB−BA for the usual commutator.

Theorem G.1: Suppose that A , B are operators. We have the following inequalities.

�1� Schwarz inequality for an anticommutator:

	��A�,B�+�	2 � ��A�,A�+���B�,B�+� . �G1�

�2� Uncertainty relation for a pair of operators:

	��A�,B��	2 � ��A,A��+���B,B��+� . �G2�

Proof: We add the inequalities

0 � �A + tB���A + tB�, 0 � �A � tB��A � tB��,

obtaining

0 � �A,A��+ + t̄�B�,A�� + t�A�,B�� + 	t	2�B�,B�+.

Then we take the expectation value of both sides and set t=−��B� ,A��� / ��B� ,B�+�. �

Suppose that H is an operator bounded from below and � is its ground state vector,

H� = E�, H − E 
 0.

Assume that �A�= �B�=0. Then we will write

��A,B�� ª �A�H − E�−1B� + �B�H − E�−1A� .

Theorem G.2:

	��A�,B��	2 � ��A�,A����B�,B�� , �G3�

	��A�,B��	2 � ��A�,A����B�,�H,B��� . �G4�

Proof: To see �G3� we apply the Schwarz inequality to the positive definite form ��A� ,B��.
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To obtain �G4� we first use the identity

��A�,B�� = ��A�,�H,B��� , �G5�

and then �G3�. �

Theorem G.3: Let H0 be the space

H0 ª �f1�H�A� + g�H�A��:f ,g
cl

(the smallest invariant subspace of the operator H containing A� and A��). Let �
ª inf sp H 	H0

−E. Then

� �
��A�,�H,A���

��A�,A�+�
, �G6�

�2 �
��A�,�H,A���

��A�,A��
, �G7�

�2 �
��A�,�H,A�����B�,�H,B���

	��A�,B��	2
, �G8�

�2 �
���A�,H��H,�H,A����

��A�,�H,A���
. �G9�

Proof: To prove �G6� we add

��A�A� � �A��H − E�A�, ��AA�� � �A�H − E�A�� .

To prove �G7� we add

�2�A��H − E�−1A� � �A��H − E�A�, �2�A�H − E�−1A�� � �A�H − E�A�� .

�G8� follows from �G7� and �G4�. �

�G6� is called the Feynman bound34 and �G8� is due to Wagner.39,34 �G9� comes from Refs. 29
and 25.

APPENDIX H: GREEN’S FUNCTIONS

We consider a quantum system described by a bounded from below Hamiltonian H. We
assume that it has a unique ground state �� 	 ·��= � · �, H�=E�. If A is an operator, then we will
write

A�t� ª eitHAe−itH.

The time-dependent Green’s function associated with a pair of operators A, B is defined as the
function depending on t�R,

GA,B
td �t� = ��− t��A�0�B�t�� + ��t��B�t�A�0�� = ��− t��Aeit�H−E�B� + ��t��Be−it�H−E�A� , �H1�

where � is the Heaviside function.
We also introduce the energy-dependent Green’s function, which is the Fourier transform of

�H1� �with one of conventional normalizations�. It is the distribution on ��R defined as

GA,B�z� = lim
�↘0

i� GA,B�t�e−i�t−�	t	dt = lim
�↘0

i�
0

	

��Ae−it�H−E−�−i��B� + �Beit�H−E+�−i��A��dt

= �A�H − E − � − i0�−1B� + �B�H − E + � − i0�−1A� . �H2�
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Finally, the analytic Green’s function is defined for z�C \ �sp�H−E��sp�E−H�� and is de-
fined as

GA,B
an �z� = �A�H − E − z�−1B� + �B�H − E + z�−1A� .

The distribution GA,B��� is the boundary value of the analytic function GA,B
an �z�, provided that we

approach the real line from the appropriate side. Besides, in the energy gap both functions coin-
cide,

GA,B��� = GA,B
an �� − i0�, � � sp�E − H� � − 	,0,

GA,B��� = GA,B
an ���, � � R \ �sp�H − E� � sp�E − H�
 ,

GA,B��� = GA,B
an �� + i0�, � � sp�H − E� � 0,	 .

Motivated by the above relations, following the usual convention, we can treat GA,B��� and
GA,B

an �z� as restrictions of a single function and drop the superscript an. Note that

GA,B�z� = GB�,A��z̄� = GB,A�− z� .

Green’s functions are well motivated physically. Let us briefly describe their two separate
physical applications.

Following Ref. 4, let us first describe the physical meaning of the static Green’s function,

GA,B�0� = ��A,B�� .

Suppose that � is an eigenvector of H �not necessarily a ground state�. Let B be a perturbation
with 1�E
�H�B�=0. Suppose that it is possible to apply perturbation theory to the family H�

ªH+�B obtaining an analytic family of eigenvectors �� with eigenvalues E� such that E0=E and
�0=�. The Rayleigh–Schrödinger perturbation theory says that

�� = � + ��H − E�−1B� + O��2� . �H3�

Let �A��ª ��� 	A���. �H3� implies that for any operator A we have

d

d�
�A��	�=0 = ��B,A�� . �H4�

Thus ��A ,B�� measures the linear response of eigenvalues of a quantum system.
Let us describe a typical illustration of the physical meaning of GA,B�z� for a general z.

Suppose that at time 0, the system described by a Hamiltonian H is in its ground state. We perturb
the Hamiltonian by a weak perturbation �B, and at time t we measure the observable A. The shift
of the expectation of the measurement is

���t� ª �eit�H+�B�Ae−it�H+�B�� − �A� � i��
0

t

du��B�u�,A�t��� = i��
0

t

ds��Beis�H−E�A� − �Ae−is�H−E�B�� ,

where we took the leading term in �. For some Im z�0, we compute the Laplace transform of
���t�, make the linear approximation, and change the variable u= t−s,
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�
0

	

e−itz���t�dt � i��
0

	

e−itzdt�
0

t

��Beis�H−E�A� − �Ae−is�H−E�B��ds

= i��
0

	

e−iuzdu�
0

	

��Beis�H−E−z�A� − �Ae−is�H−E+z�B��ds

=
i�

z
GB,A�z� .

Thus, GA,B�z� measures the linear response of the dynamics of a quantum system.

1. The van Hove formfactor

A typical experiment measuring excitation spectrum involves scattering with a beam of par-
ticles, typically neutrons. Following van Hove,38 let us try to describe such an experiment math-
ematically.

We can assume that a neutron of mass m interacts with each particle of the Bose gas through
a potential w. Its incident momentum is pi. We measure scattered neutrons of momentum p f

�pi. The space describing the Bose gas and a single neutron is �s��� � L2�Rd� and the Hamil-
tonian is

H̃� ª H̃0 + �I = H � 1 + 1 �
1

2m
Dy

2 + �� ax
�axw�x − y�dx ,

where y denotes the position of the neutron, Dy its momentum, � is small, and as usual H is the
Hamiltonian of the Bose gas. Let �p denote the plane wave function of momentum p, that is,
�p�y�=V−1/2eipy.

Suppose that the initial state of the composite system is � � �pi
, where � is the ground state.

Let E be the ground state energy and �i= �1 /2m�pi
2 the energy of the incident neutron. After time

2T the evolved state is given by

 �T,pi� = e−i2TH̃�� � �pi
� e−i2TH̃0� � �pi

− i��
0

2T

e−i2TH̃0+it�H̃0−E−�i�Idt� � �pi

= e−i2T�E+�i�� � �pi
− 2i�e−iT�H̃0+E+�i�

sin T�H̃0 − E − �i�

H̃0 − E − �i

I� � �pi
,

where we used the so-called Born approximation. Let � fª �1 /2m�p f
2 be the final energy of the

neutron. We introduce also the momentum and energy transfer,

q = pi − p f, � ª �i − � f .

To obtain the amplitude of the measurement of the momentum p f, we take the partial scalar
product of  �T ,pi���s��� � L2�Rd� with �pf

�L2�Rd� obtaining the vector in �s�L2���� equal

 �T,�,q� ª ��pf
	 �T,pi�� = −

2�i

V
e−iT�H0+E+�f+�i�

sin T�H0 − E − ��
H0 − E − �

� � w�x − y�ax
�ax�eiqydydx

= −
2�i

V
e−iT�H0+E+�f+�i�

sin T�H0 − E − ��
H0 − E − �

ŵ�q�Nq� .

Note that the number of states in a cube dq1¯dqd equals V�2��−ddq1¯dqd. Therefore, the
scattering cross section per unit time in the Born approximation is
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1

2T
� �T,�,q��2V�2��−d =

2�2

V2 	ŵ�q�	2��	Nq
� sin2 T�H0 − E − ��

T�H0 − E − ��2 Nq��V�2��−d

→
T→	

�2��1−d�2�	ŵ�q�	2S��,q� , �H5�

where �= �N� /V is as usual the density and

S��,q� = �N�−1��	Nq
���H − E − ��Nq�� �H6�

is sometimes called the van Hove form factor.
It is interesting to note that �H5� depends on the incoming and outgoing data only through the

momentum and energy transfer.
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