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c© 2012 The Author(s). This article is published
with open access at Springerlink.com
DOI 10.1007/s00023-012-0185-9 Annales Henri Poincaré

On the Energy-Momentum Spectrum
of a Homogeneous Fermi Gas

Jan Dereziński, Krzysztof A. Meissner and Marcin Napiórkowski

Abstract. We consider translation-invariant quantum systems in thermo-
dynamic limit. We argue that their energy-momentum spectra should
have shapes consistent with effective models involving quasiparticles. Our
main example is second quantized homogeneous interacting Fermi gas in
a large cubic box with periodic boundary conditions, at zero temperature.
We expect that its energy-momentum spectrum has a positive energy gap
and a positive critical velocity.

1. Introduction

1.1. Excitation Spectrum of Fermi gas

In [8], one of the authors of this paper together with H. Cornean and P. Ziń dis-
cussed a number of conjectures about the excitation spectrum of the interacting
Bose gas at zero temperature with repulsive potentials in the thermodynamic
limit. In particular, [8] conjectured that such systems have a quasiparticle-like
excitation spectrum without an energy gap and with a positive critical velocity.
These conjectures seem to be consistent with experimental data. In particular,
they explain various phenomena related to the superfluidity.

In this paper, we would like to sketch a number of analogous conjec-
tures about the interacting Fermi gas at zero temperature with an attractive
interaction in thermodynamic limit. We will argue that these systems should
possess a quasiparticle-like excitation spectrum with a positive energy gap and
a positive critical velocity. This conjecture implies in particular that the ground
state energy is separated from the rest of the spectrum. In some situations,
this ground state can be interpreted as a current carrying state, and plays an
important role in the phenomenon of superconductivity.

The most robust quantity related to the excitation spectrum seems to
be its infimum. Therefore, our main conjectures involve the infimum of the
excitation spectrum (separately in the even and odd sector). They are based
on the grand-canonical Hamiltonian for a fixed chemical potential.
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However, to have full information about the excitation spectrum, it is
not enough to know its infimum. In fact, the HFB approximation suggests
that the excitation spectrum of the Fermi gas has “lacunas” near its bottom.
We make an attempt to express some conjectures about these lacunas. These
conjectures are more complicated to state, probably also more delicate, and
involve the canonical Hamiltonian, (that is, for a fixed number of particles).

We do not prove our conjectures. However, we introduce a rather gen-
eral class of model Hamiltonians for which these conjectures can be tested
and, maybe, proven under some assumptions. These Hamiltonians consist of
a two-body kinetic energy, not necessarily quadratic, and an interaction. The
interaction does not have to be local (given by a local potential). We also sup-
pose that our system has “internal degrees of freedom” (e.g., “spin”). It seems
important to assume that the interaction is in some sense “attractive”, which
means some kind of negative definiteness. This is suggested by the Hartree–
Fock–Bogoliubov (HFB) method.

We include in our paper short computations based on the HFB approach.
The basic principle of these computations is well known, but in the literature
they are usually presented in simple special cases. Our presentation applies to
a rather general case. As a result of the HFB approach we obtain an approxi-
mate quasiparticle representation of our Hamiltonian with a dispersion relation
possessing very special features: a positive energy gap and a positive critical
velocity. We conjecture that this dispersion relation suggests basic qualitative
features of the true excitation spectrum of interacting Fermi gas in thermody-
namic limit.

1.2. Role of Translation Invariance

There exist many papers that study the energy spectrum of interacting Fermi
and Bose systems. In particular, there are interesting works that study the
HBF approximation in such systems. What makes our paper different is the
role of translation invariance. This enables us to ask questions about the exci-
tation spectrum, which we expect to have interesting properties.

Many papers attempt to show that models based on quasiparticles give
some kind of an approximation to realistic Hamiltonians, see e.g., [5,9]. How-
ever, only relatively crude features are considered in essentially all these papers.
Typically, they study the energy or the free energy per volume in thermody-
namic limit. We are interested in the excitation spectrum, which is a finer
quantity and does not involve dividing by the large volume. The only rigor-
ous result that we know devoted to the excitation spectrum of an interacting
quantum gas is due to Seiringer [21]. It concerns the Bose gas in finite volume
and a mean field limit.

We always assume that the interaction is translation invariant. In realistic
physical systems translation invariance is at most approximate. Superconduc-
ting materials are perhaps the closest to idealized translation-invariant models
that we consider. Nevertheless, we believe that the picture presented in our
paper is physically relevant also in many Fermi systems that are quite far from
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being translationally invariant, such as quantum dots and nuclei. In fact, one
can argue that “traces” of translational degrees of freedom are present also in
these systems, disguised as rotations and vibrations. In particular, the energy
spectra of their odd and even sectors have various features consistent with our
conjectures, see [3] for quantum dots and [19, Sect. 6.1] for nuclei.

The immediate motivation of our paper is to state mathematically inter-
esting rigorous conjectures together with heuristic arguments in their favor.
Therefore, we do not strive at all costs to describe realistic concrete physical
systems. The assumption of translation invariance helps to formulate a clean
and rigorous definition of various concepts.

2. Quasiparticles and Quasiparticle-Like Excitation Spectrum

The concept of “quasiparticle”, although often used, seems to have no satisfac-
tory definition in the literature. In this section we attempt to give a number of
rigorous interpretations of this term. We will also discuss spectral properties
of quantum systems that can be described in terms of quasiparticles.

The discussion of this section will be rather general and abstract. To a
large extent it will be independent of the rest of the paper.

2.1. Translation-Invariant Quantum Systems

The main object of interest of this paper are translation-invariant quantum
systems in thermodynamic limit. There are at least two approaches that can
be used to describe such systems.

In the first approach one starts with a construction of a system in finite
volume, using Λ = [−L/2, L/2]d, the d-dimensional cubic box of side length
L, as the configuration space. It is convenient, although somewhat unphysical,
to impose the periodic boundary conditions, The system is described by its
Hilbert space HL, Hamiltonian HL and momentum PL. The spectrum of the
momentum is discrete and coincides with 2π

L Z
d. After computing appropriate

quantities (such as the infimum of the excitation spectrum) one tries to take
the limit L → ∞.

Sometimes a different approach is possible. One can try to construct a
Hilbert space H, a Hamiltonian H and a momentum P that describe the sys-
tem on R

d. This may be not easy. It may require the use of refined techniques
[7,16]. It is probably not always possible. Note that in this case the spectrum
of the momentum is expected to be absolutely continuous, with the exception
of the ground state.

The latter approach seems conceptually more elegant. Throughout most
of this section we will adopt it. In most situations this will allow us to formulate
some of the physical concepts in a concise manner. (Sometimes, however, it
will lead to technical complications).

In the next two sections we adopt the former approach, which is more
down-to-earth. Thus only a family (HL, PL) for finite L will be defined.

To sum up, throughout most of this section by a translation-invari-
ant quantum system we will mean d + 1 commuting self-adjoint operators
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(H,P1, . . . , Pd) on a Hilbert space H. H has the interpretation of a Hamil-
tonian and P = (P1, . . . , Pd) describes the momentum.

2.2. Excitation Spectrum

The joint spectrum of the operators (H,P ) (which is a subset of R
1+d) will be

denoted by sp(H,P ) and called the energy-momentum spectrum of (H,P ).
We will often assume that H is bounded from below. If it is the case, we

can define the ground state energy as E := inf spH. We will also often assume
that H possesses translation-invariant ground state Φ, which is a unique joint
eigenvector of H,P . In particular, HΦ = EΦ and PΦ = 0.

Under these assumptions, by subtracting the ground state energy from
the energy-momentum spectrum we obtain the excitation spectrum of (H,P ),
that is, sp(H − E,P ). We can also introduce the strict excitation spectrum as
the joint spectrum of restriction of (H − E,P ) to the orthogonal complement
of Φ:

Exc := sp
(
(H − E,P )

∣∣∣
{Φ}⊥

)
(2.1)

Thus if (E,0) is an isolated simple eigenvalue of (H,P ), then

Exc = sp(H − E,P )\(0,0).

Otherwise Exc = sp(H − E,P ).
We introduce also a special notation for the infimum of Exc:

ε(k) := inf{e : (e,k) ∈ Exc}.

The following two parameters have interesting physical implications. The
first is the energy gap, defined as

ε := inf
(
sp(H − E)

∣∣∣
{Φ}⊥

)
= inf{ε(k) : k ∈ R

d}.

Another quantity of physical interest is the critical velocity:

ccr := inf
k�=0

ε(k)
|k| .

Physical properties of a system are especially interesting if the energy
gap ε is strictly positive. In such a case, the ground state energy is separated
from the rest of the energy spectrum, and hence the ground state is stable.

Positive critical velocity is also very interesting. Physically, a positive
critical velocity is closely related to the phenomenon of superfluidity, see e.g.,
a discussion in [8].

2.3. Essential Excitation Spectrum

One expects that most of a typical excitation spectrum is absolutely con-
tinuous wrt. the Lebesgue measure on R

d+1. However, it may also contain
isolated shells continuously depending on the momentum. In this subsection
we attempt to define the part of the excitation spectrum that corresponds to
such a situation.
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Note that this is not easy in the abstract framework that we adopted
in this section. Actually, in the next section, based on finite volume systems
(HL, PL), we will use a different approach to define isolated shells, see Sect. 3.7.

We say that (e,k) ∈ R
d+1 belongs to Excd, called the discrete excitation

spectrum, if there exists δ > 0 such that the operator P has an absolutely
continuous spectrum of uniformly finite multiplicity when restricted to

Ran 1l(|H − E − e| < δ)1l(|P − k| < δ).

The essential excitation spectrum is defined as Excess := Exc\Excd.
(We use an obvious notation for spectral projections of self-adjoint oper-

ators H and P : e.g., 1l(|H − e| < δ) denotes the spectral projection of H onto
]e − δ, e + δ[.)

We introduce also a special notation for the bottom of Excess:

εess(k) := inf{e : (e,k) ∈ Excess}.

Obviously,

Exc ⊃ Excess,

ε(k) ≤ εess(k), k ∈ R
d.

Note that typically Excd consists of a finite number of shells separated
by lacunas.

Abstract theory allows us to represent the Hilbert space H as the direct
integral over R

d given by the spectral decomposition of P , see e.g., [6], 4.4.1.
Suppose, in addition, that this direct integral can be taken with respect to the
Lebesgue measure, so that we can write

H =

⊕∫

k∈Rd

H(k)dk. (2.2)

Then it is tempting to claim that

sp(H − E,P ) =
⋃

k∈Rd

sp
(
H(k) − E

) × {k}, (2.3)

Excess =
( ⋃
k∈Rd

spess

(
H(k) − E

) × {k}
)cl

, (2.4)

where spess denotes the essential spectrum and the subscript cl denotes the
closure. Unfortunately, at this level of generality there is a problem with (2.3)
and (2.4). First of all, there is no guarantee that we can put the Lebesgue mea-
sure in (2.2). Secondly, the direct integral representation (2.2) is not defined
uniquely, but only modulo sets of measure zero.

In concrete situations, however, (such as quasiparticle systems considered
in Sect. 2.4) the direct integral (2.2) has an obvious distinguished realization
involving the Lebesgue measure, for which the identities (2.3) and (2.4) are
actually true.
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2.4. Quasiparticle Quantum Systems

Many important translation-invariant quantum systems can be described in
terms of quasiparticles, that is, independent bosonic or fermionic modes with
appropriately chosen dispersion relations (the dependence of the quasiparticle
energy on the momentum).

Let us be more precise. For a Hilbert space Z, the notation Γs(Z), resp.
Γa(Z) will stand for the bosonic, resp. fermionic Fock space with the one par-
ticle space Z.

By a quasiparticle quantum system we will mean (Hfr, Pfr), where

Hfr =
∑
i∈Q

∫

Ii

ωi(k)b∗
i (k)bi(k)dk, (2.5)

Pfr =
∑
i∈Q

∫

Ii

kb∗
i (k)bi(k)dk, (2.6)

for some intervals Ii ⊂ R
d, real continuous functions Ii � k 	→ ωi(k), and

creation, resp. annihilation operators b∗
i (k) and bi(k). Q is called the set of

quasiparticle species and it is partitioned into Qs and Qa—bosonic and fermi-
onic quasiparticles.

We are using the standard notation of the formalism of 2nd quantiza-
tion: b∗

i (k) and bi(k) satisfy the usual commutation/anticommutation rela-
tions. They are not true operators, only formal symbols, however the right
hand sides of (2.5) and (2.6) are well defined as operators on the Fock space

⊗
i∈Qs

Γs

(
L2(Ii)

) ⊗ ⊗
j∈Qa

Γa

(
L2(Ij)

)
. (2.7)

For i ∈ Q, the set Ii describes the allowed range of the momentum of a
single ith quasiparticle and ωi(k) is its energy (dispersion relation) for momen-
tum k ∈ R

d. Note that Ii can be strictly smaller than R
d—some quasiparticles

may exist only for some momenta. This allows us more flexibility and is con-
sistent with applications to condensed matter physics. It will be convenient to
define

I(k) := {i ∈ Q : k ∈ Ii(k)}

(the set of quasiparticles that may have momentum k ∈ R
d).

Clearly, if we know the dispersion relations Ii � k 	→ ωi(k), i ∈ Q, then
we can determine the energy-momentum spectrum of (Hfr, Pfr):

sp(Hfr, Pfr) = {(0,0)}
∪ {(

ωi1(k1) + · · · + ωin
(kn),k1 + · · · + kn

)
: n = 1, 2, 3 . . .}cl.

Note that there is an obvious direct integral representation of the form (2.2)
and the relations (2.3) and (2.4) hold.
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2.5. Properties of the Excitation Spectrum of Quasiparticle Systems

Let (H,P ) be a quasiparticle system. The energy-momentum spectrum of such
systems has special properties. First, we have

(0,0) ∈ sp(H,P ), (2.8)

because of the Fock vacuum state, which is a unique joint eigenstate of (H,P ).
Moreover, we have a remarkable addition property

sp(H,P ) = sp(H,P ) + sp(H,P ). (2.9)

Assume now that the Hamiltonian (2.5) is bounded from below, or what
is equivalent, assume that all the dispersion relations are non-negative. Then
the Fock vacuum is a ground state satisfying E = 0, so that the excitation
spectrum coincides with the energy-momentum spectrum. Thus we can rewrite
(2.8) and (2.9) as

(0,0) ∈ sp(H − E,P ), (2.10)

sp(H − E,P ) = sp(H − E,P ) + sp(H − E,P ). (2.11)

Given (2.10), (2.11) is equivalent to

Exc ⊃ Exc + Exc. (2.12)

Another remarkable property holds true if in addition the number of
particle species is finite. We have then

Excess =
(
Exc + Exc

)cl
. (2.13)

Indeed, using the continuity of the momentum spectrum, we easily see that
only 1-particle states can belong to the discrete spectrum of the fiber Hamil-
tonians H(k).

Before we proceed, let us introduce some terminology concerning real
functions that will be useful in our study of quasiparticle-like spectra. Recall
that a function R

d � k 	→ ε(k) is called subadditive if

ε(k1 + k2) ≤ ε(k1) + ε(k2).

Let R
d ⊃ I � k 	→ ω(k) be a given function. Define

ςω(k) = inf{ω(k1) + · · · + ω(kn) : k1 + · · · + kn = k, n = 1, 2, 3, . . .},

ςess,ω(k) = inf{ω(k1) + · · · + ω(kn) : k1 + · · · + kn = k, n = 2, 3, . . .},

(By definition, the infimum of an empty set is +∞). ςω is known under the
name of the subadditive hull of ω. Equivalently, ςω is the biggest subadditive
function less than ω.

Note the relation

ςω(k) = min{ω(k), ςess,ω(k)}.

Let us go back to a quasiparticle system (2.5), (2.6) with nonnegative
dispersion relations. For k ∈ R

d, define

ωmin(k) := min{ωi : i ∈ I(k)}. (2.14)
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Recall the functions ε and εess and the parameters ε and ccr that we defined
in Sects. 2.2 and 2.3.

Theorem 2.1. 1. The bottom of the strict excitation spectrum is the subad-
ditive hull of ωmin:

ε(k) = ςωmin(k), k ∈ R
d.

2. The energy gap satisfies

ε = inf
k

ωmin(k).

3. The critical velocity satisfies

ccr = inf
k�=0

ωmin(k)
|k| = inf

k�=0

εess(k)
|k| .

4. If in addition the number of quasiparticle species is finite, then

εess(k) = ςess,ωmin(k), k ∈ R
d.

Note that we assume that the momentum space is R
d. If we replace the

momentum space R
d with 2π

L Z
d (that is, if we put our system on a torus

of side length L) and we assume that all quasiparticles are bosonic, then all
statements of this subsection generalize in an obvious way. However, because
of the Pauli principle, not all of them generalize in the fermionic case.

2.6. Approximate Versus Exact Quasiparticles

One often considers quantum systems of the form

H = Hfr + V, P = Pfr, (2.15)

where (Hfr, Pfr) is a quasiparticle system and the perturbation V is in some
sense small. A description of physical systems in terms of approximate quasi-
particles is very common in condensed matter physics. In particular, it appears
naturally in the context of the so-called Hartree–Fock–Bogoliubov approxi-
mation, where one tries to optimize a quasiparticle description for a given
quantum system [13].

Clearly, there is a considerable freedom in choosing the splitting of H
into Hfr and V , and so quasiparticles of this kind are only vaguely deter-
mined. We will argue that in some cases a different concept of quasiparticles
is useful, which is rigorous and in a way much more interesting. This concept
is expressed in the following definition.

Let (H,P ) be a translation-invariant system on a Hilbert space H. We
will say that it is a quasiparticle-like system if it is unitarily equivalent to a
quasiparticle system.

2.7. Asymptotic Quasiparticles

The above definition has one drawback. In practice we expect that the uni-
tary equivalence mentioned in this definition is in some sense natural and
constructed in the framework of scattering theory.

Scattering theory is quite far from the main subject of this paper, which
is mostly concerned with purely spectral questions. However, since it has been
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mentioned and is very closely related to the concept of a quasiparticle, let us
give a brief discussion of this topic.

For a number of many-body systems the basic idea of scattering theory
can be described as follows. Using the evolution eitH for t → ±∞, we define
two isometric operators

S± : ⊗
i∈Qs

Γs

(
L2(Ii)

) ⊗ ⊗
j∈Qa

Γa

(
L2(Ij)

) → H. (2.16)

S± are called the wave or Møller operators and they satisfy

HS± = S±Hfr, PS± = S±Pfr,

where (Hfr, Pfr) is a quasiparticle system. S := S+∗S− is then called the
scattering operator.

We will say that the system is asymptotically complete if the wave oper-
ators S± are unitary. Clearly, if a system is asymptotically complete, then it
is quasiparticle-like.

There are at least two classes of important physical system which possess
a natural and rigorous scattering theory of this kind.

The first class consists of the 2nd quantization of Schrödinger many-body
operators with two-body short range interactions [11]. One can show that these
systems are asymptotically complete (see [10] and references therein). In this
case the system is invariant wrt. the Galileian group and the dispersion rela-
tions have the form R

d � k 	→ E + k2

2m . Quasiparticles obtained in this context
can be “elementary”—in applications to physics these are typically electrons
and nuclei—as well as “composite”—atoms, ions, molecules, etc.

Another important class of systems where the concept of asymptotic
quasiparticles has a rigorous foundation belongs to (relativistic) quantum field
theory, as axiomatized by the Haag–Kastler or Wightman axioms. If we assume
the existence of discrete mass shells, the so-called Haag–Ruelle theory allows
us to construct the wave operators, see e.g., [17]. Note that in this case the
system is covariant wrt. the Poincaré group and the dispersion relation has the
form R

d � k 	→ √
m2 + k2. Here, quasiparticles are the usual stable particles.

Let us stress that both classes of systems can be interacting in spite of
the fact that they are equivalent to free quasiparticle systems. In particular,
their scattering operator can be nontrivial.

The above described classes of quantum systems are quite special. They
are covariant wrt. rather large groups (Galilei or Poincaré) and have quite
special dispersion relations.

2.8. Quasiparticles in Condensed Matter Physics

The concept of a quasiparticle is useful also in other contexts, without the
Galilei or Poincaré covariance.

An interesting system which admits a quasiparticle interpretation is the
free Fermi gas with a positive chemical potential. We describe this system in
Sect. 2.16. In this case the scattering theory is trivial: S+ = S−, and hence
S = 1l.
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It seems that condensed matter physicists apply successfully the concept
of a quasiparticle also to various interacting translation-invariant systems.

One class of such systems seems to be the Bose gas with repulsive inter-
actions at zero temperature and positive density. In this case, apparently, the
system is typically well described by a free Bose gas of quasiparticles of (at
least) two kinds: at low momenta we have phonons with an approximately
linear dispersion relation, and at somewhat higher momenta we have rotons.
This idea underlies the famous Bogoliubov approximation [4], see also [8,14].
The phenomenon of superfluidity can be to a large extent explained within
this picture. The model of free asymptotic phonons seems to work well in real
experiments [18].

Another class of strongly interacting systems that seems to be success-
fully modeled by independent quasiparticles is the Fermi gas with attractive
interactions at zero temperature and positive chemical potential. By using the
Hartree–Fock–Bogoliubov (HFB) approach [19], which is closely related to the
original Bardeen–Cooper–Schrieffer (BCS) approximation [1], one obtains a
simple model that can be used to explain the superconductivity of the Fermi
gas at very low temperatures. The corresponding quasiparticles are sometimes
called partiholes.

Note that the above two examples—the interacting Bose and Fermi gas—
are neither Galilei nor Poincare covariant. This allows us to consider more
general dispersion relations. However, we do not know whether these systems
admit a quasiparticle interpretation or possess some kind of scattering theory.
Unfortunately, rigorous results in this direction are rather modest. (There are
attempts at scattering theory for some non-relativistic models of quantum field
theory, see [12] and [15]. There exist also some results in a purely perturbative
approach [20].)

2.9. Quasiparticle-Like Excitation Spectrum

The concept of a quasiparticle-like system, as defined in Sect. 2.6, is probably
too strong for many applications. Let us propose a weaker property, which is
more likely to be satisfied in various situations.

Again, our starting point is a translation-invariant system described by
its Hamiltonian and momentum (H,P ). Let us assume that H is bounded
from below, with E, as usual, denoting the ground state energy. We will say
that the excitation spectrum of (H,P ) is quasiparticle-like if it coincides with
the excitation spectrum of a quasiparticle system [see (2.5) and (2.6)].

Clearly, the excitation spectrum of a quasiparticle-like system with a
bounded from below Hamiltonian is quasiparticle-like. However, a system may
have a quasiparticle-like excitation spectrum without being a quasiparticle-like
system.

A quasiparticle-like excitation spectrum has special properties. In partic-
ular, it satisfies (2.10) and (2.11).

There exists a heuristic, but, we believe, a relatively convincing gen-
eral argument why realistic translation-invariant quantum systems in thermo-
dynamic limit at zero temperature should satisfy (2.10) and (2.11). It was
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essentially described at length in [8], but for the convenience of the reader
we reproduce it here. Note in particular, that the infinite size of the quantum
system plays an important role in this argument.

Consider a quantum gas in a box of a very large side length L, described
by (HL, PL). For shortness, let us drop the superscript L. First of all, it seems
reasonable to assume that the system possesses a translation-invariant ground
state, which we will denote by Φ, so that HΦ = EΦ, PΦ = 0. Thus (2.10)
holds.

Let (E + ei,ki) ∈ sp(H,P ), i = 1, 2. We can find eigenvectors with these
eigenvalues, that is, vectors Φi satisfying HΦi = (E + ei)Φi, PΦi = kiΦi.
Let us make the assumption that it is possible to find operators Ai that are
polynomials in creation and annihilation operator smeared with functions well
localized in configuration space such that PAi ≈ Ai(P+ki), and which approx-
imately create the vectors Φi from the ground state, that is Φi ≈ AiΦ. (Note
that here a large size of L plays a role.) By replacing Φ2 with eiyP Φ2 for some
y and A2 with eiyP A2 e−iyP , we can make sure that the regions of localization
of A1 and A2 are separated by a large distance.

Now consider the vector Φ12 := A1A2Φ. Clearly,

PΦ12 ≈ (k1 + k2)Φ12.

Φ12 looks like the vector Φi in the region of localization of Ai, elsewhere it
looks like Φ. The Hamiltonian H involves only expressions of short range (the
potential decays in space). Therefore, we expect that

HΦ12 ≈ (E + e1 + e2)Φ12.

If this is the case, it implies that (E +e1 +e2,k1 +k2) ∈ sp(H,P ). Thus (2.12)
holds.

2.10. Bottom of a Quasiparticle-Like Excitation Spectrum

Now suppose that (H,P ) is an arbitrary translation-invariant system with a
bounded from below Hamiltonian. For simplicity, assume that its ground state
energy is zero. We assume that we know its excitation spectrum sp(H,P ).
There are two natural questions

1. Is sp(H,P ) quasiparticle-like?
2. If it is the case, to what extent its dispersion relations are determined

uniquely?
In order to give partial answers to the above questions, recall the func-

tions ε and εess, as well as the sets Excd and Excess that we defined in Sects. 2.2
and 2.3.

Theorem 2.2. Suppose that the excitation spectrum of (H,P ) is quasiparticle-
like. Then the following is true:

1. ε is subadditive.
2. We can partly reconstruct some of the dispersion relations:

Excd = {(ωi(k),k) : i ∈ Q, k ∈ R
d}\Excess. (2.17)
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Consequently, for k satisfying ε(k) < εess(k),

ε(k) = ωmin(k),

where ωmin was defined in (2.14).
3. If the number of quasiparticles species is finite, we can reconstruct εess

from ε:

εess(k) = inf{ε(k1) + ε(k2) : k = k1 + k2}. (2.18)

The existential part of the inverse problem has a partial solution:

Theorem 2.3. Suppose that R
d � k 	→ ω(k) be a given subadditive function.

Consider the translation-invariant system

Hfr =
∫

ω(k)b∗
kbkdk, Pfr =

∫
kb∗

kbkdk.

Then

ε(k) = ω(k),

εess(k) = inf{ω(k1) + ω(k2) : k = k1 + k2}.

The answer to the uniqueness part of the inverse problem is negative.
The only situation where we can identify dispersion relations from the spec-
tral information involves Excd, see (2.17). The following example shows that
we have quite a lot of freedom in choosing a dispersion relation giving a pre-
scribed excitation spectrum. For instance, all the Hamiltonians below have
the same excitation spectrum and essential excitation spectrum with ε(k) =
εess(k) = |k|:

H =
∫

|k|<c

|k|(1 + d|k|α)b∗
kbkdk,

where c > 0, d ≥ 0 and α > 0 are arbitrary.

2.11. Translation-Invariant Systems with Two Superselection Sectors

Suppose that a Hilbert space H has a decomposition H = H+⊕H−, which can
be treated as a superselection rule. This means that all observables decompose
into direct sums. In particular, the Hamiltonian and momentum decompose
as (H,P ) = (H+, P+) ⊕ (H−, P−). Clearly,

sp(H,P ) = sp(H+, P+) ∪ sp(H−, P−). (2.19)

We will often assume that H is bounded from below and possesses a trans-
lation-invariant ground state Φ with energy E, which belongs to the sector H+.
The sector H+ will be called even. The other sector H− will be called odd.

Under these assumptions we will call sp(H+ − E,P+), resp. sp(H− −
E,P−) the even, resp. odd excitation spectrum. We introduce also the strict
even excitation spectrum:

Exc+ := sp
(
(H+ − E,P+)

∣∣∣
{Φ}⊥

)
(2.20)

The strict odd excitation spectrum will coincide with the full odd excitation
spectrum:
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Exc− := sp(H− − E,P−). (2.21)

Finally, we define the even and odd essential excitation spectrum Exc±
ess

just as in Sect. 2.3, except that we replace (H,P ) with (H±, P±).
We introduce also a special notation for the bottom of the sets Exc± and

Exc±
ess:

ε±(k) := inf{e : (e,k) ∈ Exc±},

ε±
ess(k) := inf{e : (e,k) ∈ Exc±

ess}.

Clearly,

sp(H − E,P ) = sp(H+ − E,P+) ∪ sp(H− − E,P−), (2.22)

Exc = Exc+ ∪ Exc−, (2.23)

Excess = Exc+
ess ∪ Exc−

ess, (2.24)

ε(k) = min{ε−(k), ε+(k)}, (2.25)

εess(k) = min{ε−
ess(k), ε+ess(k)}. (2.26)

2.12. Quasiparticle Systems with the Fermionic Superselection Rule

Consider a quasiparticle system (Hfr, Pfr) on the Fock space (2.7). Define the
fermionic number operator as

Na =
∑
i∈Qa

b∗
i (k)bi(k).

Clearly, the fermionic parity (−1)Na provides a natural superselection rule. If
H = H+ ⊕ H− denotes the corresponding direct sum decomposition, then the
Hamiltonian and momentum decompose as

(Hfr, Pfr) = (H+
fr , P+

fr ) ⊕ (H−
fr , P−

fr ). (2.27)

(2.27) will be called a two-sector quasiparticle system.
Clearly, if we know the dispersion relations Ii � k 	→ ωi(k), i ∈ Q, then

we can determine the even and odd energy momentum spectrum of (H+
fr , P+

fr ):

sp(H+
fr , P+

fr ) = {(0,0)}
∪ {(

ωi1(k1) + · · · + ωin
(kn),k1 + · · · + kn

)
:

even number of fermions, n = 1, 2, 3 . . .}cl,

sp(H−
fr , P−

fr ) =
{(

ωi1(k1) + · · · + ωin
(kn),k1 + · · · + kn

)
:

odd number of fermions, n = 1, 2, 3 . . .}cl.

2.13. Properties of the Excitation Spectrum of Two-Sector Quasiparticle
Systems

Let (H,P ) = (H+, P+) ⊕ (H−, P−) be a two-sector quasiparticle system.
Clearly, we have

(0,0) ∈ sp(H+, P+) (2.28)
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because of the Fock vacuum. Here are the properties of the even and odd
excitation spectrum:

sp(H+, P+) = sp(H+, P+) + sp(H+, P+) (2.29)

⊃ sp(H−, P−) + sp(H−, P−), (2.30)

sp(H−, P−) = sp(H−, P−) + sp(H+, P+). (2.31)

Assume now that the Hamiltonian is bounded from below. Then the Fock
vacuum is a translation-invariant ground state satisfying E = 0, so that the
excitation spectrum coincides with the energy-momentum spectrum. Thus we
can rewrite (2.28)–(2.31) as

(0,0) ∈ sp(H+ − E,P+), (2.32)

sp(H+ − E,P+) = sp(H+ − E,P+) + sp(H+ − E,P+) (2.33)

⊃ sp(H− − E,P−) + sp(H− − E,P−), (2.34)

sp(H− − E,P−) = sp(H− − E,P−) + sp(H+ − E,P+). (2.35)

Given (2.32), (2.33)–(2.35) are equivalent to

Exc+ ⊃ (
Exc+ + Exc+

) ∪ (
Exc− + Exc−)

, (2.36)

Exc− ⊃ Exc− + Exc+. (2.37)

If in addition the number of particle species is finite, then

Exc+
ess =

(
Exc+ + Exc+

)cl ∪ (
Exc− + Exc−)cl

, (2.38)

Exc−
ess =

(
Exc− + Exc+

)cl
. (2.39)

2.14. Two-Sector Quasiparticle-Like Spectrum

Consider now an arbitrary translation-invariant system with two superselec-
tion sectors (H,P ) = (H+, P+)⊕(H−, P−). We will assume that H is bounded
from below and the ground state with energy E is translation invariant and
belongs to the sector H+.

We will say that the excitation spectrum of (H+, P+) ⊕ (H−, P−) is
two-sector quasiparticle-like if it coincides with the excitation spectrum of a
two-sector quasiparticle system. Such an excitation spectrum has special prop-
erties. In particular, it satisfies (2.32)–(2.35).

There exists a heuristic general argument why realistic translation-invari-
ant quantum systems in thermodynamic limit should satisfy (2.32)–(2.35). It
is an obvious modification of the argument given in Sect. 2.9.

Indeed, we need to notice what follows. (−1)Na is always a superselection
rule for realistic quantum system. In particular, if we assume that the ground
state is nondegenerate, it has to be either bosonic or fermionic. We make an
assumption that it is bosonic.

The eigenvectors Φ1 and Φ2, discussed in Sect. 2.9, can be chosen to
be purely bosonic or fermionic. Using the fact that the ground state is purely
bosonic, we see that we can chose the operators A1 and A2 to be purely bosonic



On the Energy-Momentum Spectrum

or fermionic. (That means, they either commute or anticommute with (−1)Na).
Consequently, we have the following possibilities:

• Both Φ1 and Φ2 are bosonic. Then Φ12 is bosonic.
• Both Φ1 and Φ2 are fermionic. Then Φ12 is bosonic.
• One of Φ1 and Φ2 is bosonic, the other is fermionic. Then Φ12 is

fermionic.
This implies (2.36) and (2.37).

2.15. Bottom of a Two-Sector Quasiparticle-Like Excitation Spectrum

Suppose again that (H,P ) = (H+, P+) ⊕ (H−, P−) is a translation-invariant
system with two superselection sectors. We assume that we know its excita-
tion spectrum. We would like to describe some criteria to verify whether it is
two-sector quasiparticle-like. These criteria will involve the properties of the
bottom of the even and odd excitation spectrum.

Theorem 2.4. Suppose that the excitation spectrum of (H+, P+) ⊕ (H−, P−)
is two-sector quasiparticle-like.

1. We have the following subadditivity properties:

ε−(k1 + k2) ≤ ε−(k1) + ε+(k2),

ε+(k1 + k2) ≤ ε−(k1) + ε−(k2),

ε+(k1 + k2) ≤ ε+(k1) + ε+(k2).

2. If the number of species of quasiparticles is finite, then we can reconstruct
ε−
ess and ε+ess from ε− and ε+:

ε−
ess(k) = inf{ε−(k1) + ε+(k2) : k = k1 + k2},

ε+ess(k) = inf{ε+(k1) + ε+(k2), ε−(k1) + ε−(k2) : k = k1 + k2}.

2.16. Non-Interacting Fermi Gas

Let us give a brief discussion of the free Fermi gas with chemical potential μ
in d dimensions. For simplicity, we will assume that particles have no internal
degrees of freedom such as spin.

The Hilbert space of n fermions equals Γn
a

(
L2(Rd)

)
(antisymmetric

square integrable functions on (Rd)n). Let Δ(i) denote the Laplacian Δ acting
on the ith variable. Then the Hamiltonian equals

Hn =
n∑

i=1

(−Δ(i) − μ). (2.40)

It commutes with the momentum operator

Pn :=
n∑

i=1

−i∇(i).

It is convenient to put together various n-particle sectors in a single Fock
space

Γa(L2(Λ)) :=
∞⊕

n=0
Γn

a

(
L2(Λ)

)
.
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Then the basic observables are the Hamiltonian, the total momentum and the
number operator:

H =
∞⊕

n=0
Hn =

∫
a∗
x(−Δ − μ)axdx,

P =
∞⊕

n=0
Pn = −i

∫
a∗
x∇xaxdx, (2.41)

N =
∞⊕

n=0
n =

∫
a∗
xaxdx,

where a∗
x/ ax are the usual fermionic creation/annihilation operators.

The three operators in (2.41) describe only a finite number of parti-
cles in an infinite space. We would like to investigate homogeneous Fermi
gas at a positive density in the thermodynamic limit. Following the accepted,
although somewhat unphysical tradition, we first consider our system on Λ =
[−L/2, L/2]d, the d-dimensional cubic box of side length L, with periodic
boundary conditions. Note that the spectrum of the momentum becomes 2π

L Z
d.

At the end we let L → ∞.
It is convenient to pass to the momentum representation:

HL =
∑
k

(k2 − μ)a∗
kak

PL =
∑
k

ka∗
kak, (2.42)

NL =
∑
k

a∗
kak,

where we used (2.41) and ax = L−d/2
∑

k eikx ak. We sum over k ∈ 2π
L Z

d.
It is natural to change the representation of canonical anticommutation

relations and replace the usual fermionic creation/annihilation operators by
new ones, which kill the ground state of the Hamiltonian:

b∗
k := a∗

k, bk := ak, k2 > μ,

b∗
k := ak, bk := a∗

k, k2 ≤ μ.

Then,

HL =
∑
k

|k2 − μ|b∗
kbk + EL,

PL =
∑
k

kb∗
kbk,

NL =
∑
k

sgn(k2 − μ)b∗
kbk + CL,

where

EL =
∑
k2≤μ

(k2 − μ),

CL =
∑
k2≤μ

1.
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It is customary to drop the constants EL and CL.
Set (temporarily) ω(k) = |k2 − μ|. In the case of an infinite space, the

above analysis suggests that it is natural to postulate

H =
∫

ω(k)b∗
kbkdk, (2.43)

P =
∫

kb∗
kbkdk, (2.44)

N =
∫

sgn(k2 − μ)b∗
kbkdk, (2.45)

as the Hamiltonian, total momentum and number operator of the free Fermi
gas from the beginning, instead of (2.41).

The operators b∗
k/bk can be called quasiparticle creation/annihilation

operators and the function k 	→ ω(k) the quasiparticle dispersion relation.
Thus a quasiparticle is a true particle above the Fermi level and a hole below
the Fermi level.

In Sect. 4 we describe a version of the BCS theory based on the Hartree–
Fock–Bogoliubov approximation. This approximation suggests that the inter-
acting Fermi gas can be described, at least approximately, by a Hamiltonian
of the form (2.43) with a dispersion relation k 	→ ω(k) that resembles |k2 −μ|,
except that its minimum is strictly positive.

2.17. Examples of the Energy-Momentum Spectrum

The energy-momentum spectrum of a Fermi gas described by (2.43) and (2.44)
with various dispersion relations ω can sometimes have a curious shape. In the
remaining part of this section we will illustrate this with several examples. We
will present diagrams representing the energy-momentum spectrum. In the full
and the odd cases, the dispersion relation ω is a singular part of the spectrum
and it will be denoted by a solid line. In the even case, the dispersion rela-
tion will be denoted by a dotted line. We will always consider the spherically
symmetric case.

First consider the non-interacting Fermi gas, which, as we argued above,
has the dispersion relation ω(k) = |k2 − μ|. In dimension 1 its energy-momen-
tum spectrum looks quite interesting (Figs. 1, 2, 3).

Clearly, for d ≥ 2 the energy-momentum spectrum is rather boring
(Fig. 4).

In the case of an interacting Fermi gas, we assume that

ω =
√

(k2 − μ)2 + γ2. (2.46)

Calculations presented in Sect. 4, in particular (4.16), suggest that the disper-
sion relation obtained by the HFB method is qualitatively similar to (2.46)
(Figs. 5, 6, 7, 8, 9, 10).

Again, the case d = 1 differs from d ≥ 2. However, in all dimensions the
energy gap and the critical velocity are strictly positive.
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P

H

Figure 1. sp(H,P ) in the non-interacting case, d = 1

P

H

Figure 2. sp(H+, P+) in the non-interacting case, d = 1

P

H

Figure 3. sp(H−, P−) in the non-interacting case, d = 1
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P

H

Figure 4. sp(H,P ), sp(H+, P+), sp(H−, P−) in the non-
interacting case, d ≥ 2

P

H

Figure 5. sp(H,P ) in the interacting case, d = 1

P

H

Figure 6. sp(H+, P+) in the interacting case, d = 1
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P

H

Figure 7. sp(H−, P−) in the interacting case, d = 1

P

H

Figure 8. sp(H,P ) in the interacting case, d ≥ 2

P

H

Figure 9. sp(H+, P+) in the interacting case, d ≥ 2
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P

H

Figure 10. sp(H−, P−) in the interacting case, d ≥ 2

3. The Model and Conjectures

In this section we describe some classes of interacting models that seem to be
relevant for condensed matter physics. We also formulate conjectures about
these models that we think are suggested by “physical intuition”.

Internal degrees of freedom of particles, such as spin, play an impor-
tant role in fermionic systems. They are in particular crucial in the BCS
approach. Therefore, we will take them into account. We will assume that they
are described by a finite dimensional Hilbert space C

m. Thus the one-particle
space of the system is L2(Rd, Cm).

3.1. 1-Particle Energy

The kinetic energy of one particle including its chemical potential is given by
a self-adjoint operator T on L2(Rd, Cm). We use the following notation for its
integral kernel: for Φ ∈ L2(Rd, Cm),

(TΦ)i1(x1) =
∑
i2

∫
Ti1,i2(x1,x2)Φi2(x2)dx2.

We assume that T is a self-adjoint and translation-invariant one-body opera-
tor. Clearly,

Ti1,i2(x1,x2) = Ti2,i1(x2,x1)

= Ti1,i2(x1 + y,x2 + y).

The first identity expresses the hermiticity and the second the translation
invariance of T .

We will sometimes assume that T is real, that is, invariant with respect to
the complex conjugation. This means that Ti1,i2(x1,x2) are real. An example
of a real 1-particle energy is

Tij =
(

− 1
2mi

Δ − μi

)
δi,j ,

where the ith “spin” has the mass mi and the chemical potential μi.
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If the operator T has the form

Ti,j(xi,xj) = t(xi,xj)δi,j ,

for some function t satisfying

t(x1,x2) = t(x2,x1)

= t(x1 + y,x2 + y),

then we will say that T is spin-independent.
Clearly, the 1-particle energy can be written as

Ti,j(x1,x2) = (2π)−d

∫
τi,j(k) eik(x1−x2) dk.

If it is real, then τi,j(k) = τi,j(−k)
If it is spin independent, then

τi,j(k) = τ(k)δi,j .

In the real spin-independent case we have τ(k) = τ(−k).

3.2. Interaction

The interaction of the Fermi gas will be described by a two-body operator V .
It acts on the antisymmetric 2-particle space as

(V Φ)i1,i2(x1,x2) =
∑
i3,i4

∫ ∫
Vi1,i2,i3,i4(x1,x2,x3,x4)Φi4,i3(x4,x3)dx3dx4,

where Φ ∈ Γ2
a

(
L2(Rd, Cm)

)
. We will assume that it is self-adjoint translation

invariant. Its integral kernel satisfies

Vi1,i2,i3,i4(x1,x2,x3,x4) = −Vi2,i1,i3,i4(x2,x1,x3,x4)

= −Vi1,i2,i4,i3(x1,x2,x4,x3)

= Vi4,i3,i2,i1(x4,x3,x2,x1)

= Vi1,i2,i3,i4(x1 + y,x2 + y,x3 + y,x4 + y).

The first two identities express the antisymmetry of the interaction, the third—
its hermiticity and the fourth—its translation invariance. We also assume that
V (x1,x2,x3,x4) decays for large differences of its arguments sufficiently fast.

We will sometimes assume that V are real, that means, they are invariant
with respect to the complex conjugation. This means Vi1,i2,i3,i4(x1,x2,x3,x4)
is real.

We will say that the operator V is spin independent if there exists a
function v(x1,x2,x3,x4) such that

Vi1,i2,i3,i4(x1,x2,x3,x4)

=
1
2
(
v(x1,x2,x3,x4)δi1,i4δi2,i3 − v(x1,x2,x4,x3)δi1,i3δi2,i4

)
,
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Note that

v(x1,x2,x3,x4) = v(x2,x1,x4,x3)

= v(x4,x3,x2,x1)

= v(x1 + y,x2 + y,x3 + y,x4 + y).

It will be convenient to write the Fourier transform of V as follows

V (x1,x2,x3,x4)

= (2π)−4d

∫
eik1x1+ik2x2−ik3x3−ik4x4 Q(k1,k2,k3,k4)

× δ(k1 + k2 − k3 − k4)dk1dk2dk3dk4,

where Q(k1,k2,k3,k4) is a function defined on the subspace k1+k2 = k3+k4.
(Thus we could drop, say, k4 from its arguments; we do not do it for the sake
of the symmetry of formulas.) Clearly,

Qi1,i2,i3,i4(k1,k2,k3,k4) = −Qi2,i1,i3,i4(k2,k1,k3,k4)

= −Qi1,i2,i4,i3(k1,k2,k4,k3)

= Qi4,i3,i2,i1(k4,k3,k2,k1).

If we assume that the interaction is real, then

Qi1,i2,i3,ik
(k1,k2,k3,k4) = Qi1,i2,i3,ik

(−k1,−k2,−k3,−k4).

If we assume that the interaction is spin-independent, then

Qi1i2i3i4(k1,k2,k3,k4)

=
1
2
(
q(k1,k2,k3,k4)δi1i4δi2i3 − q(k1,k2,k4,k3)δi1i3δi2i4

)
,

for some function q defined on k1 + k2 = k3 + k4 satisfying

q(k1,k2,k3,k4) = q(k2,k1,k4,k3)

= q(k4,k3,k2,k1).

In the real spin-independent case we have in addition

q(k1,k2,k3,k4) = q(−k1,−k2,−k3,−k4).

For example, a two-body potential V (x) such that V (x) = V (−x) corre-
sponds to the real spin-independent interaction with

v(x1,x2,x3,x4) = V (x1 − x2)δ(x1 − x4)δ(x2 − x3),

q(k1,k2,k3,k4) =
∫

dqV̂ (q)δ(k1 − k4 − q)δ(k2 − k3 + q).
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3.3. n-Body Hamiltonian

The n-body Hamiltonian of the homogeneous Fermi gas acts on the Hilbert
space Γn

a

(
L2(Rd, Cm)

)
(antisymmetric square integrable functions on (Rd)n

with values in (Cm)⊗n). Let T(i) denote the operator T acting on the ith var-
iable and V(ij) denote the operator V acting on the (ij)th pair of variables.
The full n-body Hamiltonian equals

Hn =
∑

1≤i≤n

T(i) +
∑

1≤i<j≤n

V(ij). (3.1)

It commutes with the momentum operator

Pn :=
n∑

i=1

−i∇xi
.

3.4. Putting System in a Box

As discussed already in the previous section, to investigate homogeneous Fermi
gas at positive density in thermodynamic limit it is convenient to put the sys-
tem on a box Λ = [−L/2, L/2]d with periodic boundary conditions. This means
in particular that the kinetic energy is replaced by

TL(x1, x2) =
1
Ld

∑

k∈ 2π
L Zd

eik·(x1−x2) τ(k),

and the potential V is replaced by

V L(x1,x2,x3,x4)

=
1

L3d

∑

k1,...,k4∈ 2π
L Z

d,
k1+k2=k3+k4

eik1·x1+ik2x2−ik3x3−ik4x4 Q(k1,k2,k3,k4).

Note that V L is periodic with respect to the domain Λ, and V L(x) → V (x)
as L → ∞. The system on a torus is described by the Hamiltonian

HL,n =
∑

1≤i≤n

TL
(i) +

∑
1≤i<j≤n

V L
(ij) (3.2)

acting on the space Γn
a

(
L2(Λ, Cm)

)
.

3.5. Grand-Canonical Hamiltonian of the Fermi Gas

It is convenient to put all the n-particle spaces into a single Fock space

Γa(L2(Λ, Cm)) :=
∞⊕

n=0
Γn

a

(
L2(Λ, Cm)

)

with the Hamiltonian

HL :=
∞⊕

n=0
HL,n

=
∫

a∗
x,i1T

L
i1,i2(xi1 − xi2)ax,i2dx1dx2

+
1
2

∫ ∫
a∗
x1,i1a

∗
x2,i2V

L
i1,i2,i3,i4(x1,x2,x3,x4)ax3,i3ax4,i4dx1dx2dx3dx4,
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where ax,i, a∗
x,i are the usual fermionic annihilation and creation operators.

The second quantized momentum and number operators are defined as

PL :=
∞⊕

n=0
Pn,L = −i

∫
a∗
x,i∇L

xax,idx,

NL :=
∞⊕

n=0
n =

∫
a∗
x,iax,idx.

Above we use the summation convention. In what follows we will usually omit
the indices.

In the momentum representation,

HL =
∑
k

τ(k)a∗
kak

+
1

2Ld

∑
k1+k2=k3+k4

Q(k1,k2,k3,k4)a∗
k1

a∗
k2

ak3ak4 , (3.3)

PL =
∑
k

ka∗
kak,

NL =
∑
k

a∗
kak.

In the spin-independent case, the interaction equals
1

2Ld

∑
k1+k2=k3+k4

q(k1,k2,k3,k4)a∗
k1,ia

∗
k2,jak3,jak4,i

In the case of a (local) potential, it is

1
2Ld

∑
k,k′,q

V̂ (q)a∗
k+q,ia

∗
k′−q,jak′,jak,i.

HL,±(k) will denote the operator HL restricted to the subspace PL =k,

(−1)NL

= ±1.

3.6. Infimum of the Excitation Spectrum

For a large class of potentials the finite volume Hamiltonians HL are bounded
from below and have a discrete spectrum.

The ground state energy is defined as

EL = inf spHL. (3.4)

For k ∈ 2π
L Z

d we define the infimum of the excitation spectrum in the even/odd
sector in finite volume:

εL,+(k) := inf spHL,+(k)−EL, k �= 0,

εL,+(0) := inf
(
sp(HL,+(0)−EL)\{0}),

εL,−(k) := inf spHL,−(k)−EL.

For k ∈ R
d, we would like to define the infimum of the excitation spec-

trum in thermodynamic limit. To this end, first we define its finite volume
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version in a “window” given by δ > 0:

εL,δ,±(k) := inf{εL,±(k′
L) : k′

L ∈ 2π

L
Z

d, |k − k′
L| < δ}.

Then we set

ε±(k) = sup
δ>0

(
lim inf
L→∞

(
εL,δ,±(k)

))
.

Let us now formulate our conjectures about ε±.

Conjecture 3.1. We expect that for a large class of potentials with attractive
interactions the following statements hold true:

1. The functions R
d � k 	→ ε±(k) ∈ R are continuous.

2. Let k ∈ R
d. Let (ks, Ls) ∈ 2π

Ls
Z

d × [0,∞) obey ks → k, Ls → ∞. Then
εLs,±(ks) → ε±(k).

3. If d ≥ 2, then

inf
k

min
(
ε−(k), ε+(k)

)
=: ε > 0.

4. If d ≥ 2, then

inf
k�=0

min
(
ε−(k), ε+(k)

)
|k| =: ccr > 0.

5. We have the following subadditivity properties:

ε−(k1 + k2) ≤ ε−(k1) + ε+(k2),

ε+(k1 + k2) ≤ ε−(k1) + ε−(k2),

ε+(k1 + k2) ≤ ε+(k1) + ε+(k2).

To motivate the above conjecture, consider a model Hamiltonian

H =
∑
i∈Q

∫

Ii

ωi(k)b∗
k,ibk,idk, (3.5)

where bk,i, b∗
k,i are (fermionic, but possibly also bosonic) annihilation/

creation operators and Ii � k 	→ ωi(k) are continuous functions defined on
closed subsets Ii ⊂ R

d. For k ∈ R
d, let ωmin(k) be the lowest dispersion

relation defined as in (2.14). Assume that

ε := inf
k

ωmin(k) > 0,

ccr := inf
k�=0

ωmin(k)
|k| > 0,

which is suggested by the HFB approximation, see Sect. 4. Then the infimum
of the even/odd excitation spectrum of the Hamiltonian H equals ε±(k) =
ς±
ωmin

(k) and has the properties described in Conjecture 3.1.
Note that in this conjecture we expect statements (3) and (4) to be true

only in d ≥ 2. This is due to an argument based on the Galilean covariance in
a box with periodic boundary conditions in one dimension explained in Sect.
II B of [8]. It is valid both for bosons and fermions.
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3.7. Isolated Quasiparticle Shells

The quadratic part of the model Hamiltonian (4.11) obtained as the result
of the HFB approximation involves m fermionic quasiparticles (corresponding
to the dimension of the “internal subspace” C

m). Its excitation spectrum will
contain “lacunas” above its infimum separated by at most m shells. In this
subsection we try to formulate an additional conjecture that takes these lacu-
nas into account. This is more difficult than the conjectures from the previous
subsection. It is also more dubious.

For k ∈ 2π
L Z

d and j, n ∈ N, we define the jth shell in finite volume in the
n-body case

νL,n,+
j (k) := the jth lowest eigenvalue of HL,n,+(k)−EL, k �= 0,

νL,n,+
j (0) := the j + 1st lowest eigenvalue of HL,n,+(0)−EL,

νL,n,−
j (k) := the jth lowest eigenvalue of HL,n,−(k)−EL.

(Of course, when counting eigenvalues we take into account their multiplicity.)
Let N

+ := {0, 2, 4, . . .} and N
− := {1, 3, 5, . . .}. For k ∈ R

d, we would like
to define the the jth shell in thermodynamic limit. To this end, first we define
its finite volume version in a “window” given by δ > 0:

νL,δ,+
j (k) := inf

k′
L∈ 2π

L Zd, |k−k′
L|<δ, n∈N±

{νL,n
j (k′

L), inf spHL,n − EL < δ}.

Then we set

ν±
j (k) = sup

δ>0

(
lim inf
L→∞

(
νL,δ,±

j (k)
))

.

Clearly,

ν±
1 (k) = ε±(k),

ν±
j (k) ≤ ν±

j+1(k).

Set

ε±
ess(k) := sup{ν±

j (k) : j = 1, 2, . . .}.

Let us now formulate the conjectures about ε±
ess.

Conjecture 3.2. We expect that for a large class of attractive potentials the
following statements hold true:

1. The functions R
d � k 	→ ν±

j (k), ε±
ess(k) ∈ R+ are continuous.

2. Let (ks, Ls, ns) ∈ 2π
Ls

Z
d × [0,∞[×N

± obey ks → k, inf spHLs,ns −ELs →
0, Ls → ∞. Then

νLs,ns,±
j (ks) → ν±

j (k).

A similar property holds for ε±
ess.
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3. ε±
ess are related to ε± as follows:

ε−
ess(k) = inf{ε−(k1) + ε+(k2) : k = k1 + k2},

ε+ess(k) = inf{ε+(k1) + ε+(k2), ε−(k1) + ε−(k2) : k = k1 + k2}.

To justify this conjecture, let us note first that it is consistent with the
spectral properties of the model Hamiltonian (3.5) if we assume that the num-
ber of quasiparticles is finite.

We can try to be more precise. We expect that the functions νj stabi-
lize. In other words, for a certain m± and j ≥ m±, all ν±

j are equal to one
another, and hence equal to ε±

ess. Then it is natural to guess that the functions
ωj that appear in the model Hamiltonian (3.5) and correspond to bosonic,
resp. fermionic quasiparticles coincide with ν±

j for j ≤ m±.
Note that the HFB approximation, described in the next section, sug-

gests that m+ = 0 and m− = m, where m is the number of internal degrees of
freedom. In particular, this would mean that all quasiparticles are fermionic.
This conjecture is probably too strong. One cannot exclude that the interac-
tion leads to a formation of quasiparticles consisting of an even number of
fermions. Such quasiparticles would be of course bosonic.

4. The Hartree–Fock–Bogoliubov Approximation Applied
to Homogeneous Fermi Gas

One can try to compute the excitation spectrum of the Fermi gas by approxi-
mate methods. Historically, the first computation of this sort is due to
Bardeen–Cooper–Schrieffer.

In its original version, the BCS method involved a replacement of qua-
dratic fermionic operators with bosonic ones. We will use the approach based
on a Bogoliubov rotation of fermionic variables, which is commonly called the
Hartree–Fock–Bogoliubov method. Its main idea is to minimize the energy
in the so-called fermionic Gaussian states—states obtained by a Bogoliubov
rotation from the fermionic Fock vacuum. The minimizing state will define
new creation/annihilation operators. We express the Hamiltonian in the new
creation/annihilation operators and drop all higher order terms. This defines
a new Hamiltonian, that we expect to give an approximate description of low
energy part of the excitation spectrum.

4.1. The Rotated Hamiltonian

One can start the HFB method with a rotation of the fermionic creation/
annihilation operators. For any k this corresponds to a substitution

a∗
k = ckb∗

k + skb−k, ak = ckbk + skb∗
−k, (4.1)

where ck and sk are matrices on C
m satisfying

ckc∗
k + sks∗

k = 1, (4.2)

cks#
−k + skc#

−k = 0. (4.3)
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(∗ denotes the hermitian conjugation, # denotes the transposition and · denotes
the complex conjugation).

(4.3) guarantees that [a∗
k, a∗

−k]+ = 0. Note that [a∗
k, ak′ ]+ = 0,

[a∗
k, a∗

−k′ ]+ = 0, k �= k′ are satisfied automatically.
For a sequence 2π

L Z
d � k 	→ θk with values in matrices on C

m such that
θk = θ−k, set

Uθ :=
∏
k

e− 1
2 θka∗

ka∗
−k+ 1

2 θ∗
kaka−k . (4.4)

It is well known that for an appropriate sequence θ we have

U∗
θ akUθ = bk, U∗

θ a∗
kUθ = b∗

k.

Note also that Uθ is the general form of an even Bogoliubov transformation
commuting with PL.

In this section we drop the superscript L, writing e.g., H for HL. The
Hamiltonian (3.3) after the substitution (4.1) and the Wick ordering equals

H = B

+
1
2

∑
k

O(k)b∗
kb∗

−k +
1
2

∑
k

O(k)b−kbk +
∑
k

D(k)b∗
kbk

+terms higher order in b’s. (4.5)

Here are explicit formulas for B, D(k) and O(k):

B =
∑
k

τ(k)sksk

+
1

2Ld

∑
k,k′

Q(k,−k,−k′,k′)skc−kc−k′sk′

+
1
Ld

∑
k,k′

Q(k,k′,k′,k)sksk′sk′sk;

O(k) = 2τ(k)cksk

+
1
Ld

∑
k′

Q(k′,−k′,−k,k)sk′c−k′s−ksk

+
1
Ld

∑
k′

Q(k,−k,−k′,k′)ckc−kc−k′sk′

+
4
Ld

∑
k′

Q(k,k′,k′,k)cksk′sk′sk

D(k) = τ(k)ckck − (
τ(k)s−ks−k

)T

+
1
Ld

∑
k′

Q(k′,−k′,−k,k)sk′c−k′s−kck

+
1
Ld

∑
k′

Q(k,−k,−k′,k′)cks−kc−k′sk′
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+
2
Ld

∑
k′

Q(k,k′,k′,k)cksk′sk′ck

− 2
Ld

∑
k′

(
Q(−k,k′,k′,−k)s−ksk′sk′s−k

)T
.

Note that the formulas for B, O(k) and D(k) are written in a special
notation, whose aim is to avoid putting a big number of internal indices. The
matrices ck and sk have two internal indices: right and left. We sum over
the right internal indices, whenever we sum over the corresponding momenta.
The left internal indices are contracted with the corresponding indices of τ or
Q. The superscript T stands for the transposition (swapping the indices).

4.2. Minimization Over Gaussian States

Let Ω denote the vacuum vector. Ωθ := U∗
θ Ω is the general form of an even

fermionic Gaussian vector of zero momentum. Clearly,

(Ωθ|HΩθ) = B, (4.6)
(b∗

kΩθ|Hb∗
kΩθ) = B + D(k). (4.7)

Therefore, we obtain rigorous bounds

E ≤ B,

E + ε−(k) ≤ B + inf D(k).

We would like to find a fermionic Gaussian vector that minimizes B—the
expectation value of H. We assume that there exists a stationary point (s̃k, c̃k)
of B considered as a function of c and s. Bogoliubov transformations form a
group, hence the neighborhood of the stationary point can be expressed in the
following way: [

ck sk

sk ck

]
=

[
c̃k s̃k

s̃k c̃k

] [
c′
k s′

k

s′
k c′

k

]
. (4.8)

This means (including internal indices) that

cil,k = c̃im,kc′
ml,k + s̃im,ks′

ml,k,

cil,k = s̃im,ks′
ml,k + c̃im,kc′

ml,k,

sil,k = c̃im,ks′
ml,k + s̃im,kc′

ml,k,

sil,k = s̃im,kc′
ml,k + c̃im,ks′

ml,k.

We enter the above formulas into the expressions for B,O(k) and D(k).
We can always multiply ck and sk by a unitary matrix without changing

the Gaussian state. Hence, we can assume that

c′
k =

√
1 − (s′

k)∗s′
k. (4.9)

Since s′ is a complex function we can treat s′ and s′ as independent variables.
ck = c̃k, sk = s̃k corresponds to s′ = 0, s′ = 0. Because of (4.9), we have

∂

∂s′
k

c′
k

∣∣∣
s′=0
s′=0

= 0,
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∂

∂s′
k

c′
k

∣∣∣
s′=0
s′=0

= 0.

Then, for example, taking the first term of B one gets

∂

∂s′
rt,k′

∑
k

ταβ,ksαα′,ksβα′,k

∣∣∣
s′=0
s′=0

= ταβ,k′ c̃αr,k′ s̃βt,k′ ,

which equals the first term of O(k) at c = c̃ and s = s̃. Calculating other terms
of B one finally gets

∂B

∂s′

∣∣∣
s′=0
s′=0

=
1
2
O(k)|c=c̃

s=s̃
. (4.10)

Thus the minimizing procedure is equivalent to O(k) = 0. This result is a spe-
cial case of a more general fact discussed in [13] where it is called the Beliaev
Theorem [2].

Thus, if we choose the Bogoliubov transformation according to the min-
imization procedure, the Hamiltonian equals

H = B +
∑
k

D(k)b∗
kbk + terms higher order in b’s. (4.11)

In the case of the model interaction considered by Bardeen–Cooper–
Schrieffer, described in many texts, e.g., in [14], the minimization of B yields
a dispersion relations that has a positive energy gap and a positive critical
velocity uniformly as L → ∞, that is,

inf
k

D(k) > 0, inf
k�=0

D(k)
|k| > 0. (4.12)

This phenomenon is probably much more general. In particular, we expect that
it is true for a large class of real, spin-independent and attractive interactions.
In what follows we provide computations that seem to support this claim.

Note that the reality and spin-independence of the interactions leads to
a considerable computational simplification. By an attractive interaction we
mean an interaction, which in some sense, described later on, is negative defi-
nite.

Let us assume in addition that higher order terms in (4.11) are in some
sense negligible. Then formally H is approximated by a quadratic Hamiltonian
B +

∑
k D(k)b∗

kbk whose dispersion relation has a strictly positive energy gap
and critical velocity. We view this as an argument in favor of Conjectures 3.1
and 3.2.

4.3. Reality Condition

Let us first apply the assumption about the reality of the interaction. In this
case, it is natural to assume that the trial vector is real as well. This means
that we impose the conditions

ck = c−k, sk = s−k.
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This allows us to simplify the formulas for B, D(k) and O(k):

B =
∑
k

τ(k)sksk

+
1

2Ld

∑
k,k′

Q(k,−k,−k′,k′)skckck′sk′

+
1
Ld

∑
k,k′

Q(k,k′,k′,k)sksk′sk′sk,

O(k) = 2τ(k)cksk

+
1
Ld

∑
k′

Q(k,−k,−k′,k′)(ckck − sksk)ck′sk′

+
4
Ld

∑
k′

Q(k,k′,k′,k)cksk′sk′sk,

D(k) = τ(k)(ckck − sksk)

+
2
Ld

∑
k′

Q(k,−k,−k′,k′)ckskck′sk′

+
2
Ld

∑
k′

Q(k,k′,k′,k)(cksk′sk′ck − sksk′sk′sk).

4.4. Spin 1
2

Case

Assume that the “spin space” is C
2 and the Hamiltonian is spin independent.

We make the BCS ansatz:

ck = cos θk

[
1 0
0 1

]
,

sk = sin θk

[
0 1

−1 0

]
,

where, keeping in mind the reality condition, the parameters θk are real. Then

B =
∑
k

τ(k)(1 − cos 2θk)

+
1

4Ld

∑
k,k′

α(k,k′) sin 2θk sin 2θk′

+
1

4Ld

∑
k,k′

β(k,k′)(1 − cos 2θk)(1 − cos 2θk′),

where

α(k,k′) :=
1
2
(
q(k,−k,−k′,k′) + q(−k,k,−k′,k′)

)
,

β(k,k′) = 2q(k,k′,k′,k) − q(k′,k,k′,k).
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Note that

α(k,k′) = α(k′,k), β(k,k′) = β(k′,k).

In particular, in the case of local potentials we have

α(k,k′) :=
1
2
(
V̂ (k − k′) + V̂ (k + k′)

)
,

β(k,k′) = 2V̂ (0) − V̂ (k − k′).

We further compute:

O(k) =
(
δ(k) cos 2θk + ξ(k) sin 2θk

) [
0 1

−1 0

]
,

D(k) = (ξ(k) cos 2θk − δ(k) sin 2θk)
[

1 0
0 1

]
,

where

δ(k) =
1

2Ld

∑
k′

α(k,k′) sin 2θk′ ,

ξ(k) = τ(k) +
1

2Ld

∑
k′

β(k,k′)(1 − cos 2θk′).

We are looking for a minimum of B. To this end, we first analyze critical
points of B. We compute the derivative of B:

∂2θk
B = δ(k) cos 2θk + ξ(k) sin 2θk.

The condition ∂2θk
B = 0, or equivalently O(k) = 0, has many solutions. We

can have

sin 2θk = 0, sin 2θk = ±1, (4.13)

or

sin 2θk = −εk
δ(k)√

δ2(k) + ξ2(k)
�= 0, cos 2θk = εk

ξ(k)√
δ2(k) + ξ2(k)

,

(4.14)

where εk = ±1.
In particular, there are many solutions with all θk satisfying (4.13). They

correspond to Slater determinants and have a fixed number of particles. The
solution of this kind that minimizes B is called the normal or Hartree–Fock
solution.

One expects that under some conditions the normal solution is not the
global minimum of B. More precisely, one expects that a global minimum is
reached by a configuration satisfying

sin 2θk = − δ(k)√
δ2(k) + ξ2(k)

, cos 2θk =
ξ(k)√

δ2(k) + ξ2(k)
, (4.15)
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where at least some of sin 2θk are different from 0. It is sometimes called a
superconducting solution. In such a case we get

D(k) =
√

ξ2(k) + δ2(k)
[

1 0
0 1

]
. (4.16)

Thus we obtain a positive dispersion relation. One can expect that it is strictly
positive, since otherwise the two functions δ and ξ would have a coinciding zero,
which seems unlikely. Thus we expect that the dispersion relation D(k) has a
positive energy gap.

If the interaction is small, then ξ(k) is close to τ(k) and δ(k) is small.
This implies that D(k) is close to |τ(k)|. If τ(k) has a critical velocity for large
k and D(k) has an energy gap, then this implies that D(k) also has a critical
velocity.

In other words, we expect that for a large class of interactions if the min-
imum of B is reached at a superconducting state, then D(k) satisfies (4.12).

We will not study conditions guaranteeing that a superconducting solu-
tion minimizes the energy in this paper. Let us only remark that such condi-
tions involve some kind of negative definiteness of the quadratic form α—this is
what we vaguely indicated by saying that the interaction is attractive. Indeed,
multiply the definition of δ(k) with sin 2θk and sum it up over k. We then
obtain

∑
k

sin2 2θk

√
δ2(k) + ξ2(k) = − 1

2Ld

∑
k,k′

sin 2θkα(k,k′) sin 2θk′ . (4.17)

The left hand side of (4.17) is positive. This means that the quadratic form
given by the kernel α(k,k′) has to be negative at least at the vector given by
sin 2θk.

Let us also indicate why one expects that the solution corresponding to
(4.15) is a minimum of B. We compute the second derivative:

∂2θk
∂2θk′ B = δk,k′

(− sin 2θkδ(k) + cos 2θkξ(k)
)

+
1

2Ld
α(k,k′) cos 2θk cos 2θk′

+
1

2Ld
β(k,k′) sin 2θk sin 2θk′ . (4.18)

Substituting (4.15) to the first term on the right of (4.18) gives

δk,k′
√

δ2(k) + ξ2(k),

which is positive definite. One can hope that the other two terms in the second
derivative of B do not spoil its positive definiteness.
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Jan Dereziński and Marcin Napiórkowski
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